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Abstract: Contemporary development of computer hardware and software, WebGIS and geo-web
services as well as the availability of semantic 3D city models, facilitate flexible and dynamic
implementation of web applications. The aim of this paper is to introduce 4D CANVAS, a web-based
application for dynamic visualization of 3D geospatial data for improved decision making in smart
city applications. It is based on the Cesium Virtual Globe, an open-source JavaScript library developed
with HTML5 and WebGL. At first, different data formats such as JSON, GeoJSON, Cesium Markup
Language (CZML) and 3D Tiles are evaluated for their suitability in 4D visualization applications.
Then, an interactive Graphical User Interface (GUI) is built observing the principle of cartographic
standards to view, manage, understand and explore different simulation outputs at multiple spatial
(3D surface of buildings) and temporal (hourly, daily, monthly) resolutions. In this regard, multiple
tools such as aggregation, data classification, etc. are developed utilizing JavaScript libraries.
As a proof of concept, two energy simulations and their outputs of different spatial and temporal
resolutions are demonstrated in five Asian and European cities. Finally, the 4D CANVAS is deployed
both in desktop and multi-touch screens. The proposed application allows easy integration of any
other geospatial simulation results, thereby helps the users from different sectors to explore them
interactively in 4D.
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1. Introduction

Recent years have seen an immense increase in the appearance of smart city information and
communication technologies (ICT) that include the development of software services, sensor systems
and data standards. A large topic in smart city related research lies in the field of energy, environment
and sustainability that requires explorative analysis and visualization of multidimensional (2D,
2.5D, 3D and 4D) data. Such applications require granular visualization resolutions and are usually
aggregated and illustrated at the building, building surface or building object levels (e.g., points or
raster grids). The most common topics in urban energy research include for example the assessment of
solar irradiance, the modelling of photovoltaic (PV) potential, or the simulation of energy demand
at the building scale as well as research on the assessment of Urban Heat Islands (UHI) and air
quality monitoring at a coarser scale that encompasses whole neighborhoods or cities. Besides spatial
resolutions, varying temporal resolutions also play an important role in urban energy analysis.

ISPRS Int. J. Geo-Inf. 2018, 7, 276; doi:10.3390/ijgi7070276 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-6786-9881
http://dx.doi.org/10.3390/ijgi7070276
http://www.mdpi.com/journal/ijgi
http://www.mdpi.com/2220-9964/7/7/276?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2018, 7, 276 2 of 18

For example, in the case of the modelling of solar energy or PV potential, results could be aggregated
at different temporal (hourly, daily, monthly, annual) resolutions. This requires a higher granularity of
visualization and therefore 4D becomes a necessity [1,2]. Unfortunately, such ready-to-use applications
are not available for explorative visualization and analyses.

3D visualization has been of an increasing interest in many different domains, due to its ample
advantages over 2D approaches [3]. In particular, for urban modelling applications 3D becomes a
necessity, as the results need to be analyzed and visualized directly at the building object. The inclusion
of the temporal scale (4D) is still a very demanding task in terms of providing an interesting and
interactive environment. Such spatiotemporal visualizations play an important role in understanding
and discovering some predictive patterns from both the space and time dimensions of data, supporting
decision-making and better representing the real world. Lately, static visualizations have been deemed
tedious against the new technologies that support dynamic and interactive platforms, allowing users
to navigate, zoom and even query data in real-time on a web-based application. The advancement
of newer technologies such as WebGL [4] different proprietary and open-source software, tools and
libraries enable the design and development of such interactive interfaces (Cesium.js [5], Glob3m [6]).
On the other hand, although 3D web-based visualization has been a topic of increasing popularity in
recent years, the cartographic principles that can be applied to such representations has not been fully
investigated and standards have not been established [3,7].

One commonly used data model to store and model building and other relevant objects (terrain
surfaces, infrastructure, etc.) in the context of Smart Cities applications is the 3D city model. An explicit
XML-based exchange format for 3D city models is CityGML. It supports geometric description of 3D
city model components, specifies semantics and topology information as well as stores multi-level of
detail (LOD) information at different spatial and temporal scales [8]. Furthermore, object modelling
specifications can be shown at different LODs—ranging from simple building block models with flat
roofs (LOD1) to detailed building models that include building interiors (LOD4) (Figure 1).
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Multiple application domain extensions (ADE) covering various smart city research applications
(energy, utility networks, sensor data) have been developed or are currently under development [10,11].
Thereby, the 3D city models act as a container for storing ICT relevant smart city data and multiple
software architectures (both open-source and proprietary) have been developed to store and access all
this relevant information.

This research describes the design and development of 4D CANVAS, a web-based application for
dynamic visualization of 3D geospatial data for improved decision making in smart city applications.
In this regard, a detailed literature review and current trends on recent 3D and 4D applications,
web services, technologies and standards are performed. A Graphical User Interface (GUI) is developed
to allow interaction with 3D spatial and temporal data sets representing multiple energy model outputs.
3D Buildings and their surfaces are introduced as interactive objects and different visual, structural
and behavioral primitives are incorporated [12]. This research also investigates cartographic aspects
of a 3D web-based interface, and tries to determine what rules and regulations should be followed
and applied to such interfaces. In this regard, the cartographic best practices and ISO standards for
usability, efficiency and design are respected [13]. In addition to what current interfaces offer in this
field, 4D CANVAS permits different analytical functionalities such as aggregation and disaggregation
of results, on-the-fly statistical analyses for exploration of the energy model outputs. Furthermore,
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the capabilities and limitations of using different data formats such as JSON, GeoJSON, Cesium
Markup Language (CZML) and 3D Tiles in 4D web applications are evaluated.

In the following section, an overview of the current trend of 3D and 4D web services,
their implementation and applications are explained. Section 3 describes the system architecture
of the proposed 4D application as well as the required data formats, software and technologies.
Section 4 demonstrates the visualization and functional capabilities of the web interface with some
energy simulation related case studies. The discussion of results and testing of performance of the
application are summarized in Section 5. Finally, a conclusion is drawn by highlighting the limitation
and future research issues in Section 6.

2. Related Research and Current Trends

Many 3D interfaces have been developed in the past. However, the development and success of
such interfaces is tightly coupled with major breakthroughs in technological advances in hardware
and software [14]. During the last two decades, several peaks in the development of such interfaces
could be observed. For example, VRML-based [15] applications experienced a short-lived hype but
disappeared again over time, as they were not fully accepted by the users. However, the current trend
towards native browser-based 3D visualizations that can be used on multiple platforms appears a real
breakthrough. For example, the development of WebGL and HTLM5 sparked many developments
such as Cesium.js [5], three.js [16], Unity3D [17], Unreal Engine [18]. X3DOM [19], OSG.js [20],
O3D [21], WebGL Earth [22], WebGL Globe [23], etc. to visualize 2D/3D features and different
geospatial capabilities [24,25]. They gained interest by a wider audience of both the consumer and
the scientific community. As a result, several commercial applications and scientific publications on
3D visualization have appeared. In general, these publications can be grouped into several categories
ranging from pure visualization based on open-source and proprietary software libraries to semantic
3D and spatiotemporal 4D visualization interfaces. Julin et al. [26] provide a detailed characterization
schema of 3D city modelling and visualization projects. They also provided concepts for harmonization
and visualization of such models in different use cases in Finland.

3D city models (e.g., CityGML format) are a key in urban energy modelling and several interfaces
have been developed. For example, the Energy Atlas Berlin [27], discussed by Kaden et al. ([28,29]),
aims to visualize information such as heating energy needs, energy rehabilitation and geothermal
energy in the city of Berlin in Germany. Their interface enables the visualization of LOD2 CityGML
building data at multiple aggregation scales. Wendel et al. [7] developed an interactive, plug-in free,
web-based application that allows the visualization and interaction with semantical 3D geospatial data
in the city of Karlsruhe in Germany with no dependencies on proprietary software or tools. It was
based on a custom-made three.js JavaScript but was not capable of visualizing spatiotemporal data.
The Sunshine project, an early adopter of Cesium implemented a cartographic display for urban
services and energy consumption at the urban scale [30]. For the purpose of direct visualization
capabilities for semantic 3D city models, Chatuverdi et al. [31] developed a web client based on
KML/COLLADA exports from CityGML in an interactive interface for the 3DCityDB [32], a simplified
database schema for CityGML in PostgreSQL [33]. Based on that methodology, Kolbe et al. [34]
published the whole city model of New York (over 1 million buildings) in CityGML on a Cesium
web-based interface that was further enriched by additional 3D city objects.

On the topic of 4D web visualization, Resch et al. [3] implemented a WebGL-based prototype to
incorporate marine spatiotemporal data in a native 3D web-based interface. They also discussed the
challenges in 4D visualization concept and discussed the lack of standards with temporal geo-data.
Evangelidis et al. [24] implemented motion effects for temporal and non-temporal animations on an
open geospatial software application prototype. It provides high-level capabilities for dynamically
creating user defined virtual geospatial worlds, populated by selected animated and moving 3D
models on user specified locations, paths and areas. Zhu et al. [35], developed an interface where
spatiotemporal data obtained by sensors was visualized in Cesium by means of OGC SOS services.
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In the context of big data, Lin et al. [36] implemented a Cesium-based interface for costal environmental
monitoring using real-time data. They further described and discussed the handling and storage of
data in 3D/4D web-based interfaces. A multimodal interface based on Glob3m, an open-source web
globe based on OpenGL and WebGL that can be viewed in multiple visualization modes on mobile
devices was presented in Santana et al. [37], where the user could interact with energy model outputs
in an immersive manner [38].

In contrast to the research-oriented developments presented in the sections above, there are
also several propriety and commercial 3D interfaces that were developed in recent years. Most of
these interfaces deal with the topic of smart cities, architectures, urban design, and urban planning.
Three main WebGL-based commercial software frameworks are ESRI City Engine web viewer, Unity
3D [17], and Google Earth/Maps 3D [39]. They provide comprehensive Application Programming
Interfaces (API) for customized project development. For example, the Smart Dubai project [40] was
develop on an ESRI platform that streams real-time 3D data to the public to help them understand
places, projects and events around the city. The city of Istanbul deployed Unity 3D to visualize solar
potential and energy needs [41].

There are several other projects in the field of native 3D visualization, each implementing a
different type of data and representing various information, such as NASA WebWorldWind [42].
In addition to true 3D and 4D interfaces, a recent trend could be observed in the extension of traditional
2D web mapping platforms such as leaflet.js [43] or Mapbox [44] being customized for 2.5D and 3.5D
applications, where only 3D perspective views are being provided in applications such as WRLD3D [45]
that is based on eego.js [46] and leaflet.js [43].

Many of these early implementations did not focus on the visual appearances and temporal
aspects (4D). There is a lack of open-source 4D web applications for smart city related simulation
results. Moreover, most of the applications focus on basic functionalities and do not provide customized
analytical functionalities for explorative analyses of simulation results. They were implemented in
single platform e.g., on desktops and not on multi-touch tablets, which provides easy navigation.
Proposed 4D CANVAS overcomes the limitations and demonstrates its applicability in several
use cases.

3. Proposed Architecture

Among the available WebGL-based visualization frameworks and libraries, Cesium is most
suitable to create virtual globes with time dynamic 3D visualization of geospatial data as it allows
native discrete temporal data support. In addition, it includes various geospatial functionalities such
as terrain visualization and imagery layers by using geospatial web services and standards. Cesium is
an open-source JavaScript package supporting the presentation of 3D contents within the web browser
where users can dynamically switch between 3D globe visualization and 2D map projection. It utilizes
WebGL to provide hardware acceleration and plugin independence and provides cross-platform and
cross-browser functionalities [31].

The architecture of the proposed 4D visualization interface is designed on Cesium’s existing
layers [47] (widgets, DataSources, Scene, Renderer and Core) and features (Figure 2). It consists of
three main parts: data preparation, implementation and visualization.

Data preparation: The proposed dynamic visualization interface supports different data formats
such as CityGML, JSON, GeoJSON, Cesium Markup Language (CZML) and Cesium 3D Tiles. Each of
these formats have specific capabilities and therefore the choice of the data format depends on the
functionalities/use and the level of details of the original CityGML data. CityGML data (LOD1 and
LOD2) is imported into the PostgreSQL databases as tables via 3DCityDatabase Import/Exporter to
run energy simulations on them. The energy simulation results are saved in the same database as
separate tables [2,48]. To visualize the results in the proposed interface, several Python scripts are
written in Eclipse environment in order to convert the database tables into the desired format.
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Implementation: Cesium.js (version 1.45) is deployed on a local server to customize and visualize
the energy simulation results. Cesium depends on a web server to host maps and files. It does not
have any server requirements but Node.js is used for this interface. After setting up the local host
connection, a programming development environment is created using Brackets, where the Cesium
Viewer is initially added to the JavaScript code to initiate the development of 4D CANVAS. Afterwards,
further analytical functionalities and time-dependent visualization are implemented using scripting
languages (see Section 3).

Visualization: The proposed interface is then deployed in both personal computers (desktops,
laptops) and in multi-touch tablets.

A summary of the functionalities of the different scripting languages (e.g., python, HTML5 [49],
CSS, JavaScript), libraries/API (AMCharts, JQuery UI, Geostats), software (3D City Database,
pgAdmin, Eclipse, FME), and data formats (CZML, JSON, etc.) are explained in Table 1.
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Table 1. Technologies, software and data formats deployed in developing the application.

Category Sub-Category Purpose of Use

Script languages

Python (interpreter Python 3.3)
Used for writing scripts to structure and extract data from the energy
database. Python scripts also automatize the data exportation in different
formats such as JSON, CZML, etc.

HTML5 The markup code for displaying pages on the web browser.

CSS A method used to add styles to the HTML page.

JavaScript Used to program how the webpage behaves by adding actions and listening
to events.

Libraries/API

Cesium.js 1.45 Cesium is the main library on which the 3D interface is built on.

AmCharts 4 Utilized for creating and displaying interactive charts.

JQuery UI 1.12.1 Facilitates UI interactions with widgets and functionalities.

JQuery Touch Punch This library enables JQuery UI to be implemented on multi-touch screens.

GeoStats 1.5.0 A JavaScript library that allows data classification using different methods
such as natural breaks and equal intervals.

Software

3D City Database Importer/Exporter A Java-based front-end that allows importing CityGML data to the database.

pgAdmin III Used for viewing the database tables.

Eclipse Oxygen.2 A programming environment used for Python coding with PyDev extension.

Brackets 1.12 A programming environment used for HTML, CSS, and JavaScript coding.

FME Used to facilitate the conversion from GeoJSON to Cesium 3D Tiles.

Data formats

CityGML The data format imported into the database for implementing energy
simulations.

JSON The format used for the graphics created by AmCharts.

GeoJSON Used to visualize static geospatial data of LOD1 and LOD2.

CZML Used to visualize spatiotemporal data of LOD1.

Cesium 3D Tiles Used to visualize huge geospatial datasets with LOD2.
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4. Deployment of 4D CANVAS

4.1. Data Format

The choice of a particular format depends on the nature (spatial or temporal), volume (several
buildings of a district or all buildings of the whole city), visualization options (charts or geospatial
visualization), and spatiotemporal resolution (building surfaces or buildings as a whole, hourly or
monthly) of data. Therefore, one of the major goals of this research is to review the data formats,
identify their suitability and limitations in visualization of energy simulation results and perform the
conversion into different formats. Figure 3 gives a recommendation on the selection of the suitable data
format and Table 2 highlights the visualization and functional capabilities of different data formats.

CZML and Cesium 3D Tiles formats are associated with core development of the Cesium interface.
Both are based on a JSON syntax and are easily understood. CZML is similar to KML format but is
adapted to Cesium products. 3D Tiles is an open specification for streaming massive heterogeneous 3D
geospatial datasets such as imagery, 3D contents including buildings, trees, point clouds, and vector
data [50]. CZML is the only format for visualizing dynamic (i.e., hourly or monthly temporal) data but
it has many limitations, especially regarding coarser level of details and the increased data volume.
The format is rather complex and raises multiple problems (discussed in Section 5.1). A detailed use of
CZML properties to describe time-varying characteristics of geospatial objects, and the use of CZML
to support streaming data are explained in Zhu et al. [51], while the relevant applications, academic
influences, and future developments of CZML are explored in Zhu et al. [52].
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In deploying 4D CANVAS application, JSON format is used to save different energy simulation
results (attributes) and connect them with AmCharts to visualize the dynamics in charts. GeoJSON
format represents static data at building surface level, whereas CZML displays time-dynamic data
without surface-based representation and the 3D Tiles format illustrates large volume of static data
in LOD2.
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Table 2. Visualization and functional capabilities of different data formats.

Visualization Functional Capabilities

Data
Formats

Geospatial
(2D/3D) Temporal Data Representation Suitability in

4D CANVAS
Complexity

Level

Level of
Detail

Support

JSON No No Charts representing attributes Yes Simple N/A
GeoJSON Yes No Thematic building surfaces Yes Simple LOD2

CZML Yes Yes Thematic building as a whole Yes Moderate LOD1
3D Tiles Yes No Thematic building surfaces Yes Very Complex LOD2

4.2. Energy Simulations Applications in Cities

In the 4D CANVAS web application, two energy simulation model outputs are visualized in five
different cities (Kuwait, Abu Dhabi, Hong Kong, Lyon and Karlsruhe)—with different number of
building surfaces stored as LOD1 and LOD2 buildings (Table 3).

Table 3. Visualization and functional capabilities of different data formats.

City (LODx, Number of Surfaces) PLANTING Outputs and Temporal
Resolutions

CityBEM Outputs and Temporal
Resolutions

Kuwait (LOD1, 25,364) • Solar irradiance
• Energy production
• Installed power
• Producible
• Levelized Cost of Electricity (LCOE)
• Capital Expenditure (CAPEX)

Hourly, Daily, Monthly, Annual

• Heating energy need
• Heating energy use
• Cooling energy need
• Cooling energy use

Hourly, Daily, Monthly, Annual

Abu Dhabi (LOD1, 30,588)

Hong Kong (LOD1, 31,744)

Lyon (LOD2, 53,983)

Karlsruhe (LOD2, 60,000)

The first model, PLANTING (Photovoltaic Potential on Three Dimensional Building) calculates
solar irradiance and PV energy potential on the roof and wall surfaces of the buildings by considering
shading from terrain and neighboring buildings as well as users’ choice on panel installation options [2].
It produces different outputs such as solar irradiance, energy production, installed power, producible,
Levelized Cost of Electricity (LCOE), Capital Expenditure (CAPEX) at various temporal scales.
The second model, CityBEM (City-wide Building Energy Modelling) calculates monthly energy needs
and uses of 3D buildings [48] according to the ISO 13970:2008 standard [53]. The model produces
monthly heating and cooling energy needs and uses. Both models are implemented in an open-source
software architecture.

In 4D CANVAS, these outputs are visualized as time-static (e.g., annual) and time-dynamic (e.g.,
hourly, daily or monthly) manners. Hourly solar irradiance or energy production produces 8760 values
(each hour throughout the year) for each surface of the building, which makes it difficult to display such
data (explained in Section 5) in an interactive way. Therefore, hourly results are aggregated to monthly
and annual level or are visualized for limited number of surface objects. For annual data, GeoJSON
is used when total number of building surfaces is less than thirty thousand, otherwise, 3D Tiles is
used for its faster rendering service. They are shown in a static manner with thematic mapping/color
schemes on the building surfaces. The monthly results of the dynamic data are visualized as thematic
surfaces in CZML format and as bar charts in JSON format by connecting them to the JavaScript
Library AmCharts.

4.3. Description of the Interface and Functionnalities

Interface description: The 4D CANVAS aims to not only visualize different energy simulation
results of 3D geospatial and time-dynamic data but also allows user to have smooth experience
of explorative analyses of the results. For the later, such interactive experiences and actions are
implemented after the suggestions made by Jakob [54]. The navigation options (such as panning,
zooming) and other basic functionalities (animation, geocoding, base layer selection, etc.) are based on
the default Cesium.js library. Figure 4 illustrates the Graphical User Interface (GUI) of the first page of



ISPRS Int. J. Geo-Inf. 2018, 7, 276 8 of 18

the 4D CANVAS web application. It includes two main windows—information and globe windows,
which are separated by a dissolvable sidebar.
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After accessing to the application web page, the user is provided with a brief introduction to
the application and energy models in the information window. Here the user can select a model,
particular output, case study region and an output type to visualize in the display window. Users
can choose either PLANTING or CityBEM model, based on which corresponding case study regions
are highlighted. In the next step, user selects the type and temporal resolutions of the output that are
to be selected from the dropdown menu of the information window. Afterwards, the globe instantly
responds to the user’s selection and automatically loads the data and flies to that area of interest to
visualize the results in 3D/4D. At the same time, the respective area is centered in the globe. Then the
corresponding thematic map is displayed with varying colors assigned to the different features (e.g.,
buildings, surfaces, points) according to the output selected. A pre-assigned data classification also
appears with the colors and the legend. This process is automatized by a JavaScript function.

Functionalities: Several tools and functionalities are implemented in the basic/default
Cesium application in order to allow explorative and analytical visualization capabilities. Specific
functionalities are allocated depending on the type of energy simulation output selected. The user
can select an object (point or building surface) to display the temporal variations in a bar chart or a
table with detailed information about the object selected. An aggregation tool is developed to select
and aggregate multiple objects to view summary statistics e.g., sum or average values of the selected
objects or temporal variations in bar charts. Furthermore, a camera tool is added to the interface
to download and save the screenshots of the display window at any given time. The 4D CANVAS
interface also allows flexible display options by dragging charts, tables and legends anywhere in the
window. Finally, it is also possible to switch between the 3D view, 2D and the Columbus View with the
Viewer Type button. Figure 5 demonstrates the annual solar irradiations on different building surfaces
in different classes and their detailed information in a table.

Cesium globe consists of a built-in clock, which is implemented through a time slider. The play
and pause button on the slider helps to control the dynamic visualization of data. In 4D CANVAS
application, the slider is adjusted to run after the energy simulation data loading is completed. It
updates the time steps and dynamically visualizes (animates) the temporal variations in thematic 3D
buildings and their surfaces. Figure 6 illustrates the daily cooling energy needs in different buildings
in Karlsruhe city.

Multi-touch functionalities are also added to be displayed on touch screens. The interrogative
button indicates the available movements with mouse or fingers to navigate naturally in the area
selected (Figure 7).
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5. Discussion

5.1. Discussion of Results

Free and open-source Cesium software: This study tested the capability of utilizing the
open-source Cesium.js library in visualizing 4D data of higher spatiotemporal resolutions.
The capability of identifying individual building-surfaces of different LODs (as in the CityGML
data) and providing their corresponding attributes from tables, was very beneficial to display
detailed information about each building object. The use of the CZML format facilitated the dynamic
visualization of temporal attributes in the monthly and daily data. Furthermore, the main advantage
of Cesium was the easy integrating of different libraries and API, such as AmCharts and Geostats,
which allowed further analytical functions to be implemented into the interface.

Data format evaluation: This research has tested and evaluated different data formats relevant
to the energy simulation application (Figure 8). GeoJSON and 3D Tiles showed similar capabilities
when static geospatial visualization is chosen and the data is not large in volume. Both can visualize
the LOD1 and LOD2 datasets. However, GeoJSON does not support tiling, and therefore attempts
to load the complete set of data into the viewer at a time. A function was developed to loop through
the whole data to perform statistical calculations such as maximum, minimum, variance, mean and
standard deviation, which are used for data classifications. Nevertheless, for larger volume of LOD2
datasets, such effort often caused to crush the browser.

In contrast, 3D Tiles is a suitable alternative to efficiently visualize large volume of data due to its
tiling property but it restricts the display of detailed statistical information of the individual building
surfaces, mainly due to its frequent re-rending. Every time the camera position is changed, the data is
reloaded into the viewer and different statistical values are obtained only for the current view. CZML
is the only suitable format used to visualize temporal variations in data. It does not support tiling and
it can visualize LOD1 buildings only. This format is adequate to represent monthly and daily data. Due
to the structure of the file, the hourly representation of data throughout a year (8760 values) for a large
number of buildings (as in this application) resulted a massive file size and therefore, found unsuitable
to visualize at hourly time step. However, hourly data for a few days could be easily visualized on
some buildings.
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Integration of popular geodatabase and data formats: Three main types of geodatabases (GDB)
supported by both ArcGIS and QGIS are File Geodatabases, Personal Geodatabases and ArcSDE
Geodatabases. These popular GDBs cannot be directly integrated into the Cesium application and
need to be converted to Cesium 3D Tiles. Besides the proprietary data formats of Cesium (CZML,
quantized-mesh, 3DTiles), it also supports some external formats such as gITF, GeoJSON, TopoJSON,
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Collada, ArcGIS ImageLayer, and google’s KML, etc. [55]. Other popular data formats need to be
converted to Cesium supported formats. For example, FME tool supports the conversion of shapefiles,
CityGML, GDB and Wavefront OBJ to Cesium 3D Tiles format. The HDF can be displayed as images in
Cesium and is demonstrated by NASA [56]. Images (.img), billboards, and icons can easily be added
to Cesium. However, the .geotiff, and .dem are not supported by Cesium.

Cartographic standards: Thematic cartographic representations are implemented on the
individual 3D surfaces and buildings. Based on the literature review, different websites and maps are
reviewed in order to understand the use of color hue properties for representing sequential data for 3D
object. In general, multiple hue values are used to represent the change from high values to low and
vice versa. Nevertheless, in 4D visualization, this has to be followed with upmost caution, due to the
presence of shadow effects on the globe. This effect might create confusion in distinguishing different
hue levels. Therefore, sequential color schemas with clear separations in the hue level are selected for
the data classifications. Moreover, according to color psychology studies, red and blue are the most
common representations used for temperature changes. However, due to issues related to red-blue
colorblindness, these color values are used cautiously with distinct and separable variations of hue
values. In case of visualization of energy related data, commonly color ranging from green to red is
used. In contrast, there are no established standards of color arrangements in representing economic
values such as cost of electricity or investment cost.

Data classification: Four different types of data classification methods—Static, Linear, Jenks
(natural breaks) and Quantiles—are tested with different sets of data and are implemented in
the 4D CANVAS application. Jenks is the most computational intensive, but it provides the
optimal classification scheme in most cases for static displays. However, when comparing different
spatiotemporal visualizations, it is recommended to use quantiles or standard deviation classification
schemes in order to better compare the results across multiple maps [57,58]. In this application, the
user can select any of the three methods to classify the data. In most use cases, linear method is
adopted because it is simple to make pleasant maps.

Hourly data visualization: Representation of hourly time dynamic visualization of simulation
results involves processing of a large amount of data for each object. Animating hourly irradiance data
was attempted throughout the year for some building surfaces, but the browser (in a standard laptop)
failed to load the data and crashed immediately. This problem was solved by limiting hourly time
scale to a few days and/or aggregated them in daily resolution for a year (Figure 9 and Supplementary
Material). Charts are also used to dynamically illustrate the daily values for different objects.
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The complexities associated with the visualization of hourly dynamic data can be resolved by
modifying the JavaScripts and Html files to smoothly animate the hourly results. It is also helpful to
know the exact number of features and hourly data points that can be visualized without risking the
browser to crash. Moreover, as some energy models produce results at building surface level (e.g., PV
energy), the CZML format can be adapted to cope with it.

Automatize data conversion and integration into application: The energy simulation results are
saved in the PostgreSQL databases as tables. They are, at first, manually converted using python
scripts into required data formats and then integrated/loaded into the web application (see Figure 2).
This process can be automatized through on-the-fly data conversion within the web application and
thus avoid the data conversion steps (Figure 10).
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From a technical point of view, it was investigated whether such process improves the application
performance. The primary advantage of processing on-the-fly data conversion within the 4D CANVAS
application is the need of less software and python scripts, but this approach has some limitations
in terms of long loading-time of the data and thus delayed visualization. This may lead to addition
errors as the complexity of such automatic conversions increase. Therefore, the conversion process is
performed beforehand.

Visualization of spatiotemporal analysis for smart cities: The analytical visualization capabilities
of the application can be enhanced further by allowing various spatiotemporal (4D) data analysis and
making data more valuable. Song et al. [59] identified four such analyses categories: description of
spatiotemporal characteristics (e.g., time series analyses, clustering, interpolation, etc.), exploration of
potential factors and spatiotemporal prediction (e.g., regression analyses), modelling and simulation of
spatiotemporal process (e.g., process modelling using cellular automation or agent-based models) and
spatiotemporal decision making (e.g., models using multi-criteria decision making). The 4D CANVAS
application can be used to visualization the results describing spatiotemporal characteristics and
decision making. However, it lacks the mathematical modelling, such as clustering and classification for
describing the spatiotemporal characteristics, and geospatial decision making methods for improved
decision making. Therefore, many geospatial methods and algorithms can be incorporated into the
application to perform robust pattern mining or predictive analyses. This will be particularly helpful
in different smart city related applications such as air pollution modelling, crime and epidemic spread
analysis, where it is important to discover some predictive patterns from both the space and time
dimensions of data. In this regard, additional toolboxes can be integrated into the application to allow
model and data-driven spatial and spatiotemporal analyses.

5.2. Performance Testing

The performance of the 4D CANVAS web application and the GUI were tested both desktop
screens and a touchscreen tablet. In this regard, some popular web-browsers such as Mozilla
Firefox (v60.0.1), Google Chrome (v66.0.3359.181), Microsoft Internet Explorer (v11.1088.15063.0) were
considered to observe possible configuration changes in the user interface in terms of UI content scroll
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performance, UI latency/response time, Finger tracking and UI functionality. In many cases, Chrome
had shown faster and smoother response during navigation with the Cesium globe, in comparison to
Firefox. Firefox had displayed a more robust performance in loading large volume of data. However,
JQuery functionality required some code adjustment to make use of it in the Firefox browsers.

The performance of the 4D CANVAS was also tested on a personal Dell Inspiron Laptop with an
IntelCore i5 CPU (Central Processing Unit), 16 GB of RAM (Random Access Memory) and without
any GPU (Graphical Processing Unit) power as well as on a Lenovo Horizon tablet with an IntelCore
i7 CPU, 8 GB of RAM and Nvidia GeForce GT 620 M GPU. Both the touch tablet and the laptop
performed similarly in the Chrome and Firefox browsers.

It was observed that the most important factor in the browsers was their compatibility to handle
WebGL. Other factors such as CPU, GPU and RAM of the deployed machines influence the performance
enormously. For example, the loading of the terrain with 3D Tiles runs up to 90% of GPU capacity.
Another most crucial factor for better performance of the application is the uninterrupted internet
connection because the loading and rendering of the Cesium terrain tiles requires internet for a
seamless interaction.

6. Conclusions

6.1. Summary

In this research, the 4D CANVAS web application was developed based on the open-source
Cesium virtual globe. Multiple energy simulation results such as techno-economic PV potential or
energy needs of the 3D buildings are dynamically visualized in the context of different Asian and
European cities. Several analytical functionalities are also integrated and a GUI is built to allow
user explorative analyses of results. This study demonstrates that with widely available 3D datasets
and technological advancements in virtual globe software frameworks, many different smart city
applications can be integrated into the application.

6.2. Limitations

Cesium is an open-source project, backed-up by a large user-base and therefore, is under frequent
improvements and development. The inclusion of additional functionalities, supporting of more data
formats, or improving the existing capabilities of the interface depend on the initiatives of the Cesium
core team. For instance, the 3D Tiles format is still in a very early stage of development, and significant
improvement can be expected in the near future to visualize the temporal dimension efficiently [60].

In the process of developing the presented interface, several limitations in terms of performances
and analytical capabilities in Cesium were observed. Some of them e.g., customized tools for analytical
functionality were developed in this study. However, the management of a large volume of data by
different data formats is still a major drawback in Cesium. Some of the use cases in this study consist
of more than thirty thousand objects (e.g., points, surfaces, buildings), and Cesium showed poor
performance in displaying and rendering large amount of GeoJSON that caused out-of-memory issues.
Vector tiling of the GeoJSON format can solve this problem and the development efforts are ongoing.
In the meantime dividing a large area with around 5000 features can be efficient for 4D visualization.

3D Tiles allows fast rendering and efficient handling of large amount of both vector and raster data.
However, (a) it does not support temporal data visualization; and (b) it cannot display attribute info
box of a selected object without manual coding in JavaScript; (c) The conversion tool to 3D Tiles is still
under development and is not yet publicly available (The original data must be shared with Cesium
team to be converted). In this research, FME’s Cesium 3D Tiles Writer [61] was deployed to convert the
PostgreSQL tables into 3D tiles. However, it does not permit the user to specify desired configurations
(e.g., number of features per tile). Moreover, the generated tiles are built with shaders specification,
which could be set by the user in the JavaScript code. The shadow effect caused the surfaces that are
opposite to the sun to appear black. For an unexplained reason, some energy simulation outputs could
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not be classified in 3D Tiles to display in color schemes of the buildings, despite the data has been
called and the intervals were created. In this regard, the complex structure of 3D Tiles was investigated
(Figure 11). It consists of one data folder and a Tileset.json file. In the data folder, multiple b3dm
(Batched 3D Model, [62]) files are saved which include information and values correspond to each
object. Tileset refers to all the object/geometry (e.g., surfaces) that are visible at a particular view in
the globe. Once the particular tileset is visible on the globe, it fetches the required values from the
corresponding b3dm file to be visualized. This way it reduces the loading and displaying large amount
of data at a time.

CZML is able to visualize 4D data, but it (a) cannot display tilted roofs of the buildings and
degrades them into flat roofs. Moreover; (b) the file size also becomes too large. In case of hourly
irradiance of the Karlsruhe Buildings, the size is 3.4 GB, which disabled the browser to respond once
the data was added to the Cesium Viewer.

Immutable terrain exaggeration is a problem in Cesium. In cases where original CityGML data
had terrain information, the terrain provider is utilized with an exaggeration parameter. However this
function is still under development and is currently immutable. It can only be initially set with the
first constructor options of the Cesium Viewer. As a result, terrain exaggeration cannot be modified
in real-time. It imposes multiple problems when different exaggeration settings need to be set in
the viewer. This problem was solved by recreating the viewer for each change required using the
TerrainExaggeration parameter.

Cesium is built on new technologies such as HTML5 and WebGL, which are not supported by
some older browsers that could still be an issue for stakeholders in the public or commercial sector that
are forced by IT restrictions to use a specific (often outdated) version of a web browser. Furthermore,
high CPU and GPU capacity are inherent to WebGL application (to visualize high-resolution terrain
models efficiently) and to ensure a satisfying user experience for Cesium applications.
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6.3. Future Research

In the future, additional statistical analysis tools can be developed. For example, in this current
application, the energy simulation results are visualized on 3D buildings and their surfaces. A tool
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can be developed to help users to aggregate/add/summarize results of particular surface type (e.g.,
roofs facing south only) and visualize in 4D. A JavaScript function can loop through the data set and
highlight all such geometries and returns their statistical information.

3D Tiles can be directly extracted from the PostgreSQL database using the FME translator. In this
regard, the feasibility of conversion of 3D Tiles can be investigated by writing a python script, which
can connect to PostgreSQL database to get it converted.

The hourly visualization of 3D dataset for a small number of objects is already demonstrated in
this paper. In the future, this capability for a large volume of objects (a whole city) can be enhanced
by investing more time on JavaScript coding. Current version of the 4D CANVAS demonstrates ten
outputs of two energy simulations in five cities. In the future, further applications and simulation
results in other cities can be illustrated. Finally, a qualitative analysis of the user experiences on the
usability and performance of the application can also be evaluated.

Supplementary Materials: A demo video of the 4D CANVAS is available online: https://youtu.be/ErEje6CL-GE.
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