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Abstract: The mobility patterns and trip behavior of people are usually extracted from data
collected by traditional survey methods. However, these methods are generally costly and difficult
to implement, especially in developing cities with limited resources. The massive amounts of call
detail record (CDR) data passively generated by ubiquitous mobile phone usage provide researchers
with the opportunity to innovate alternative methods that are inexpensive and easier and faster to
implement than traditional methods. This paper proposes a method based on proven techniques to
extract the origin–destination (OD) trips from the raw CDR data of mobile phone users and process the
data to capture the mobility of those users. The proposed method was applied to 3.4 million mobile
phone users over a 12-day period in Mozambique, and the data processed to capture the mobility
of people living in the Greater Maputo metropolitan area in different time frames (weekdays and
weekends). Subsequently, trip generation maps, attraction maps, and the OD matrix of the study area,
which are all practically usable for urban and transportation planning, were generated. Furthermore,
spatiotemporal interpolation was applied to all OD trips to reconstruct the population distribution in
the study area on an average weekday and weekend. Comparison of the results obtained with actual
survey results from the Japan International Cooperation Agency (JICA) indicate that the proposed
method achieves acceptable accuracy. The proposed method and study demonstrate the efficacy of
mining big data sources, particularly mobile phone CDR data, to infer the spatiotemporal human
mobility of people in a city and understand their flow pattern, which is valuable information for
city planning.

Keywords: call detail record (CDR); mobile phone data; origin–destination matrix;
spatiotemporal mobility; trip generation and attraction

1. Introduction

The quality of urban life and a city’s economic growth may lie in how well its urban spaces
and transportation infrastructure have been planned for and developed. In urban and transportation
planning, it is critical to consider how to efficiently and effectively move people and goods in the
city from their points of origin to their respective destinations by understanding how people conduct
their daily activities and, with that, their travel behavior. Traditional methods persist in collecting
such needed travel and activity behavior data via household and person-trip interview surveys and
roadside monitoring. However, these activities are usually limited to a relatively small sample size,
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involve relatively large-scale deployment, and are resource intensive in terms of cost and labor. As we
now enter the era of big data [1], and in light of advances in digital and sensing technologies that
acquire big data, researchers in urban and transportation planning-related fields have been developing
new approaches that utilize potentially better alternatives to traditional methods that can sense
different aspects of crowd mobility with less effort and money while maintaining an acceptable level
of accuracy.

The widespread use of pervasive sensors allows different levels of human mobility to be captured,
and to better describe the displacement of people in time and space. Such is the case of mobile phones
that are arguably the highest scale consumer tech in the world with 66% global penetration rate and
more than five billion unique worldwide subscribers in 2017 [2]. In much of Sub-Saharan Africa,
mobile phones are more common than access to electricity [3]. Mobile phone data, also known as
call detail records (CDR), is a digital record passively produced and collected by telecommunications
equipment of mobile network operators (MNOs) for each instance of mobile phone communication
usage (i.e., voice calls, short message service (SMS), and internet service). Each record includes the
exact time stamp and the location of the used telecommunications tower. Thus, mobile phone data has
been seen by urban planners and traffic engineers as a promising source to develop a wide range of
smart city applications [4] such as enhancing smart mobility and transportation, as well as collecting
reliable information about real-time population distribution.

The advantages of using mobile phone data over traditional methods include ease and continuous
streaming of data over a long period of time. While traditional survey methods provide a snapshot of
the traffic situation in a typical weekday, mobile phone data can capture weekday and weekend travel
patterns, as well as seasonal variation [5] of a large sample of the population at a low cost and wide
geographical scale [6]. On the other hand, limitations of mobile phone data include sparseness [6],
representativeness [7], and anonymity [8]. Arai, 2013 [9] discussed the previously mentioned limitations
and their impact on mobile phone data analysis results. Despite the limitations, researchers have been
trying to handle such data with various statistical measures to extract useful information and add
social value.

Studies have demonstrated the use of CDR data analytics to understand the travel behavior and
mobility of people in cities and generate meaningful results that are readily useable and interpretable
for city planning purposes. The trajectory of 100,000 individuals was analyzed by [10] from their
call record history and concluded that human trajectories show high degree of spatial and temporal
regularity, and that humans follow a simple reproducible pattern. The concept of motifs from network
theory was employed by [11] to analyze different travel patterns in Paris, France. The authors were
able to detect 17 unique travel network patterns in the daily mobility of the population, which are
sufficient to capture 90% of the trip patterns found from travel survey data. In addition to mobility
behaviour of the individual, [12] studied the spatial structure of 31 Spanish cities from mobile
phone data of the population. They were able to define a set of indicators to classify cities from
the dynamic of their population. A framework to detect patterns of road usage in a city using mobile
phone data was developed by [13]. They found that only few road segments are congested and that
most of those segments can be associated with few major driver sources. Estimating the origin and
destination (OD) of trips has been an active area of research in the past decade. Early studies [14] using
synthetic vehicular and mobile phone data have shown that mobile phone data have great potential.
An origin–destination matrix from mobile phone data was developed by [15] by extracting tower
to tower transient OD, and using a simulator to estimate the appropriate scaling factor. In addition,
various efforts to estimate characteristics of individual trips extracted from mobile phone data
has emerged. A method to infer transportation mode was proposed by [16] based on travel time
extracted from CDR data in the city of Boston. Although CDR data is coarse-grained, their method
demonstrated acceptable accuracy on par with that obtained using fine-grained data. A method
to estimate transportation mode from mobile phone data was developed by [17] by incorporating
geographic information system (GIS) urban transportation network data to estimate modal split at a
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given location. The movement of people in Yangon was esrtimated by [18] within a limited time frame
separately for weekdays and weekends based on CDR data. The origins and destinations of the trips
were taken based on traffic analysis zones corresponding to the cellular tower in which the record
was made. CDR was utilized by [19] in Singapore to examine human travels in an activity-based
approach that focused on patterns of tours and trip-chaining behavior in daily mobility networks.
They developed an integrated pipeline that included parsing, filtering, and expanding massive and
passive raw CDR data and extracting meaningful mobility patterns from them that can be directly
used for urban and transportation planning purposes. An activity-aware map was developed by [20]
that described the probable daily activities of people (during weekdays) for specified areas based on
CDR data. Their results showed a strong correlation in daily activity patterns within the group of
people who share a common work area’s profile. Furthermore, it had the advantage of being low cost
and suitable for statistical analysis on the transportation modes of a large population. Meanwhile, in a
more practical application of mobile phone big data mining, Toole et al. 2015 [21] demonstrated a full
method of transportation demand modeling that utilizes CDR data as the main input, and developed
an interactive visualization platform that provides output readily interpretable by planners and
policymakers. Demographic attributes and socio-economic indicators are also essential in parallel with
trip information. First evidence that a subscriber’s personality can be inferred from his/her mobile
phone records was provided by [22]. The authors were able to predict subscribers’ personality traits
with 42% accuracy. Furthermore, Blumenstock, Cadamuro and On, 2015 [23] and Steele et al. 2017 [24]
attempted to build predictive maps on poverty from mobile phone record data in Rwanda and
Dhaka, respectively.

We adopted some of the techniques used and proven in these studies to demonstrate the mining
of mobile phone big data to extract meaningful information for understanding the daily mobility of
people in Greater Maputo, which is a first for CDR data analytics in Mozambique. We also introduce
the use of the high-resolution settlement layer (HRSL), developed by the Facebook Connectivity
Lab and Center for International Earth Science Information Network (CIESIN). To our knowledge,
HRSL has never been used in combination with CDR data in previous studies to expand the CDR user
sample to the actual population. Furthermore, we incorporate widely available geographic information
from OpenStreetMap, and show how to derive the spatiotemporal distribution of the population in
Greater Maputo on an average weekday and weekend. To evaluate the accuracy of our method against
traditional survey methods, we introduce a validation approach that compares our results with actual
available person-trip survey data in three different spatial resolutions comprising the traffic analysis
zones (TAZs) established in the report of the Japan International Cooperation Agency (JICA) [25].

The remainder of this paper is organized as follows: Section 2 explains in detail the study area and
the data used, which include the CDR data for trip estimation, the HRSL population data for expanding
the user sample to the population, and the JICA survey data used for validation. Section 3 explains the
proposed methodology in detail, from preparing the study area to scaling up the sample to represent the
actual population. Section 4 presents experimental results of the proposed method, and its validation
with survey data. Finally, Section 5 presents concluding remarks, including discussion of the potential
of the proposed method for actual application in urban and transportation planning and development.

2. Study Area and Data

2.1. Study Area

The study area was Mozambique’s Greater Maputo metropolitan area—consisting of the capital
city Maputo, Matola City, Boane City, and Marracuene District. In recent years industrial and
residential development and the growing urban population has spread from Maputo City, the country’s
political and industrial center, to the neighboring areas of Matola, Boane, and Marracuene, creating
the 120,767-ha Greater Maputo metropolitan area, as shown in Figure 1 [25]. According to JICA’s
forecast for the medium term from 2012 to 2035, the population of Greater Maputo is expected to
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increase from 2.2 million to 3.7 million and its economy to grow by a factor of 2.3 in terms of gross
domestic product (GDP) per capita. With urban and economic development, Greater Maputo has seen
more movement of people and goods, and with it, worsening traffic conditions in its underdeveloped
road network. The number of daily person trips is estimated to more than double, from 3.1 million
trips/day in 2012 to 6.5 million trips/day in 2035, with car ownership increasing by a factor of 1.5
for the same medium-term period [25]. These rapid growth development indicators imply an urgent
need to formulate a comprehensive master plan that can facilitate implementation and improvement
of Greater Maputo’s public transport infrastructure and road network [25].
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Figure 1. Map of the Greater Maputo metropolitan area, which shows the four main cities/district it
covers, as taken from the report of the Japan International Cooperation Agency (JICA) [25].

2.2. Call Detail Record (CDR) Data

This study used mobile phone CDR data collected over a 12-day period, i.e., 1st to 12th of March
2016, from a major mobile network operator (MNO) in Mozambique. The raw CDR dataset contained
a total of 393 million mobile phone usage records from 3.4 million anonymous subscribers of the MNO
nationwide. The observation period include 9 weekdays and 3 weekends and does not include any
public or religious holidays that may have different mobility patterns. As stated above, three main
types of mobile phone usage are considered: (1) making/receiving a voice call, (2) sending/receiving a
text message by SMS, and (3) using data or internet service. Because of privacy issues, all personal
information in the CDR that may reveal the subscriber’s identity were anonymized by the MNO prior
to its distribution. The relevant information contained in the CDR data include the user ID, timestamp
and type of mobile phone usage, and ID and location of the recording cellular tower.

Figure 2 shows the temporal distribution (daily and hourly) of the raw CDR dataset. It should be
noted that the 12-day observation period consists of nine weekdays and three weekends. The daily
distribution shows a consistent number of recorded mobile phone usage for all days, with the exception
of one day, i.e., 3 March 2016 (Wednesday), which has a relatively low number of records (minimum
value). Meanwhile, it is interesting to see that the hourly distribution shows low mobile phone usage
records between midnight and 5:00 am, the time period when most of the population is expected to
be sleeping. On the other hand, the most active period is between 6:00 pm and 8:00 pm. The trip
identification efficiency relies on the number of mobile phone records, which is relatively high from
8:00 am until 11:00 pm based on the hourly distribution. It is expected that it is within this time frame
that most trips occur—particularly people traveling between their home and workplace or some other
place, and would statistically provide better trip estimates.
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2.3. Population Data from the High-Resolution Settlement Layer (HRSL)

Clearly mobile phone dataset described in Section 2.2 represents a sample of the population and
need to be combined with accurate information about population distribution as will be discussed in
Section 3.5. This study used Greater Maputo’s population data obtained from the HRSL. The HRSL
developed for Mozambique, as shown in Figure 3, provides estimates of human population distribution
at a resolution of one arc-second (approximately 30 m) for the year 2015 based on recent census data
and high-resolution satellite imagery from DigitalGlobe [26]. This is done by first extracting urban
settlements from the 0.5-m spatial resolution satellite imagery by the Connectivity Lab at Facebook
using computer vision techniques, then applying proportional allocation to distribute population data
from subnational census data to the settlement extent. (Detailed information about the HRSL can be
found on the CIESIN website.). This means that HRSL is a finer disaggregated version of traditional
census data and that it can be used with confidence to calculate the population in any arbitrary
area of interest. Accordingly, the HRSL population distribution is used to estimate the population
at the cellular tower zone level, which is represented by Voronoi zones, as discussed in Section 3.1.
The estimated total population in the study area is 2,661,832. Statistics on the resulting population
aggregation to the Voronoi polygons in the study area are summarized in Table 1. This means that the
mean of the total population living within the boundary of Voronois is 10,277.

Table 1. Population distribution statistics per Voronoi for Greater Maputo.

Min Max Mean Median

62 45,261 10,277 6781
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2.4. OpenStreetMap Road Network Data

Similar to HRSL which will be used to scale up subscribers to represent the population.
Mobility should be analyzed with consideration of the existing transportation infrastructure in
the study area. This is particularly useful in reconstructing the route of each trip along available
transportation network infrastructure which will provide more realistic estimation of the population
distribution as will be discussed in Section 3.6. In this study, we use OpenStreetMap (OSM) [27] which
is a collaborative project that provides anyone free access to crowdsourced geographical data of the
world. Since the data itself is collected by volunteers, data representativeness varies from one country
to another. OSM data in Mozambique contains over 400,000 road links (as of May 2018) with sufficient
coverage in the Greater Maputo area to represent the transportation network in the study area, as
shown in Figure 4.
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2.5. Japan International Cooperation Agency (JICA) Survey Data for Results Validation

To assess the validity of the proposed method and its output, we compare the results to the
most recent person-trip survey data obtained from JICA’s Comprehensive Urban Transport Master
Plan for the Greater Maputo project [25]. The JICA survey sampled a total of 38,216 persons over
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the age of six from 9983 sampled households, producing a total of 65,168 trips in one day. In the
classical four-step demand forecasting model, the first step (which is trip generation) estimates the
number of trips originating from and attracted to TAZs that are defined based on socio-economic,
demographic, and land-use attributes of the cordoned area [28]. To validate our results, we considered
three TAZ levels based on the zoning levels of the Greater Maputo metropolitan area in the JICA
report; specifically, A TAZ, B TAZ, and C TAZ, as shown in Figure 5. The TAZs of the C TAZ
level were identified for the JICA survey and for transport modeling purposes. They correspond to
the administrative boundaries of the “bairro,” where census data are available. A few bairros were
consolidated to form larger TAZs for the B TAZ level, and further consolidation occurred to result in
four large TAZs for the A TAZ level. Table 2 shows a statistical summary of the three TAZ levels.
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and (c) C TAZ.

Table 2. Statistical summary of Voronoi zones in the study area.

Zone Level No. of TAZs Min (km2) Max (km2) Mean (km2) Median (km2)

C TAZ 170 0.03 95.20 7.10 1.08
B TAZ 40 0.81 305.13 30.21 9.65
A TAZ 4 252.61 381.09 302.17 287.49

3. Methodology

In extracting the origin–destination (OD) trips from raw CDR data, and scaling them to
represent the mobility of the actual population of Greater Maputo in different time frames
(weekdays and weekends), we propose a method that incorporates proven techniques from previous
research [11,18,19]. Our method involves the following: (1) Voronoi tessellation of the study area,
(2) estimation of the home location of subscribers, (3) filtering of valid user-days of the sample,
(4) extraction of mobility/OD trips of the filtered sample, and (5) application of two types of
magnification factors—one to scale up the user sample to represent the actual population in each zone,
and the other to normalize the user sample to one observation day.

3.1. Voronoi Tessellation of the Study Area

There are 259 cellular towers in the study area, which are spatially distributed in relation to the
distribution of population density. The density distribution of the cellular towers, and correspondingly
the mobile phone network coverage area, increases toward the city center and central business district.
In general, there is overlapping of coverage areas of neighboring cellular towers, which should be
considered in order to appropriately represent the locational boundaries of each tower. Accordingly,
a centroidal Voronoi [29] diagram of the cellular tower network in the study area was developed,
as shown in Figure 6. Each Voronoi tessellation approximately represents the mobile phone network
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coverage and, correspondingly, the area coverage of each cellular tower. Table 3 gives a summary of
the Voronoi tessellations in the study area. The minimum area coverage is 0.01 km2 and the maximum
is 241.21 km2, whereas the mean and median are 8.15 km2 and 1.81 km2, respectively.

Table 3. Statistical summary of Voronoi zones in the study area.

Zone Source Number of Towers Min (km2) Max (km2) Mean (km2) Median (km2)

CDR Voronoi 259 0.01 241.21 8.15 1.83

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  8 of 21 

 

3 gives a summary of the Voronoi tessellations in the study area. The minimum area coverage is 0.01 
km2 and the maximum is 241.21 km2, whereas the mean and median are 8.15 km2 and 1.81 km2, 
respectively. 

Table 3. Statistical summary of Voronoi zones in the study area. 

Zone Source Number of Towers Min (km2) Max (km2) Mean (km2) Median (km2) 
CDR Voronoi  259 0.01 241.21 8.15 1.83 

 
Figure 6. Voronoi diagram of the study area (magnified area), representing the mobile network 
coverage of each cellular tower. 

3.2. Home Location Estimation 

There are several reasons why there is a need to identify the home location of the subscribers 
[19]. Firstly, it is needed when combining the CDR data and the population data from the HRSL to 
scale up the user sample to represent the actual population. Secondly, we considered only the users 
living within the study area; thus, if a user was found to have a home location outside the study area 
they were excluded from the sample. Thirdly, the environment and attributes of people’s homes, 
such as land use, affects their travel behavior and activities [30,31]. This is important to understand 
people’s mobility and travel behavior as affected by the space or environment that surrounds them, 
especially from an urban planning and development perspective [19]. 

Accordingly, we estimated the most probable location of a subscriber’s home based on their 
mobile phone usage records. It is expected that most people would be at home at night and during 
the weekends, rather than during working hours on weekdays. The home location of subscribers was 
estimated based on the frequency of recorded mobile phone usage at cellular towers (corresponding 
to the Voronoi zones) at these times. The “night time” considered for this study was between 8:00 pm 
and 6:00 am, because this time period was found to be when most of the people in Greater Maputo 
are at home according to the JICA household survey. Furthermore, most of the population reside 
outward of the city center in Maputo, in the outskirts of the study area. Therefore, the cellular towers 
(Voronoi zones) located in these areas were considered as home locations of the subscribers. Other 
subscribers with home locations estimated outside of the study area were excluded from the sample. 

Figure 6. Voronoi diagram of the study area (magnified area), representing the mobile network
coverage of each cellular tower.

3.2. Home Location Estimation

There are several reasons why there is a need to identify the home location of the subscribers [19].
Firstly, it is needed when combining the CDR data and the population data from the HRSL to scale
up the user sample to represent the actual population. Secondly, we considered only the users living
within the study area; thus, if a user was found to have a home location outside the study area
they were excluded from the sample. Thirdly, the environment and attributes of people’s homes,
such as land use, affects their travel behavior and activities [30,31]. This is important to understand
people’s mobility and travel behavior as affected by the space or environment that surrounds them,
especially from an urban planning and development perspective [19].

Accordingly, we estimated the most probable location of a subscriber’s home based on their
mobile phone usage records. It is expected that most people would be at home at night and during
the weekends, rather than during working hours on weekdays. The home location of subscribers was
estimated based on the frequency of recorded mobile phone usage at cellular towers (corresponding to
the Voronoi zones) at these times. The “night time” considered for this study was between 8:00 pm
and 6:00 am, because this time period was found to be when most of the people in Greater Maputo
are at home according to the JICA household survey. Furthermore, most of the population reside
outward of the city center in Maputo, in the outskirts of the study area. Therefore, the cellular
towers (Voronoi zones) located in these areas were considered as home locations of the subscribers.
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Other subscribers with home locations estimated outside of the study area were excluded from the
sample. Therefore, from our home estimation location, we found 1,279,291 subscribers living within
the study area out of the 3.4 million subscribers of the whole Mozambique (approximately 37%).
This corresponded to 48% of the total population of Greater Maputo estimated using HRSL (2,661,832
people). Figure 7 shows the distribution of subscribers living in the study area resulting from the home
location estimation. The average number of subscribers served by each cellular tower is 7250, which is
less than the mean population per cellular tower (10,277) as presented in Table 1.
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3.3. Filtering Valid User Days

According to Jiang, Ferreira and Gonzalez, 2017 [19], the advantages of CDR data are its longer
sample period and larger sample size compared to traditional survey data, whereas its disadvantage is
its sparseness. As such, it is important to consider user days with much mobile phone activity or usage.
According to previous studies [11,19], extracting individual mobility patterns from CDR data can be
regarded as statistically consistent and comparable with that of traditional survey data given that a
certain threshold of daily mobile phone activity or usage is met by users. The value of this threshold
should not be overly small as it would favor shorter trip patterns, and not overly large as it would
exclude too many users [11]. In this regard, this study used similar filtering rules, as follows:

• A day is valid for a user if he/she has a CDR in at least eight of the 48 half-hour time slots in one
day (24 h).

• Weekdays and weekends are treated separately as we presume that trip behavior can vary
between them.

After filtering the 1,279,291 users extracted from the home location estimation, there remained
797,329 users that had at least one valid user-day observation (62%). Figure 8 Shows the distribution
of the number of valid user days per user where 17.5% of filtered users have only one valid user day.
This translated to a total of 4,385,089 valid user days (3,252,971 user weekdays and 1,132,118 user
weekends), which correspond to 14,744,180 trips for user weekdays, and 4,965,739 trips for user
weekends as summarized in Table 4. This equates to an average of 4.5 trips per user per weekday,
and 4.3 trips per user per weekend. The filtered sample of 797,329 users corresponds to 30% of Greater
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Maputo’s population of 2,661,832 (from HRSL), as compared to the person-trip survey, which sampled
only 1.7% [25]. This gives the advantage of having better sample representativeness for the CDR data.

Table 4. Statistical summary of user sample before and after filtering valid user-days.

Before Filtering After Filtering

Number of users 1,279,291 797,329

Number of user-days 12,059,561
4,385,089

[Weekdays: 3,252,971,
Weekends: 1,132,118]

Number of trips 27,117,806
19,724,307

[Weekdays: 14,744,180,
Weekends: 4,965,739]
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3.4. Origin–Destination Extraction

Studying macroscopic mobility requires more knowledge about the start and the end of the trips
to quantify trip generation and attraction volumes across different parts of a city. On the other hand,
CDR has the attribute of sparseness, which therefore requires further processing in order to extract
meaningful trips. In this study, we utilized an approach similar to that of Jiang, Ferreira and Gonzalez,
2017 [19], in which the OD extraction process is split into two main steps: (1) estimation of the possible
stay zones for each subscriber, and (2) extraction of trip segments between the different stay points.
This method was previously applied to triangulate CDR traces with an uncertainty of 200–300 m for
all traces [32]. However, our CDR dataset is in the cellular tower level zone, which, as previously
discussed, has varying coverage areas, i.e., “location uncertainty.” Spatial constraints were, therefore,
also added to capture more underlying trips than focusing only on key places of interest.

3.4.1. Extraction of Stay Locations

Based on the fact that people spend most of their time at a few key locations [33], such as their
homes and workplaces, it is important to carefully capture those locations for each subscriber from
his/her CDRs. Those locations are normally associated with a longer stay period. However, it is
also important to identify other places that are visited less frequently, such as shopping areas and
cafés, that could possibly be associated with a stay state. Thus, we employed all 12 days of CDR data
to extract all possible stay locations for each subscriber. In general, for each subscriber, a zone was
identified as a stay location if his/her CDRs indicated that he/she continuously stayed in a certain
zone for a given threshold period. This threshold can influence the number of extracted stay locations
per user significantly, adding bias to any further trip extraction. Because cellular tower coverage varies
based on population density, as previously stated, the threshold period had to also be proportional to
the coverage area. The stay threshold period has an impact on the number of extracted stay locations
per user and, correspondingly, the number of trips. Therefore, it has to be considered reasonably.
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To capture trips with short stay locations, for example, buying at a store or dropping children at school,
it is important to define the minimum threshold period that would not capture a false stay location.
The exact stay time varies based on multiple parameters, including the transportation mode used to
arrive and leave the destination and, more importantly, the coverage area of the subject cellular towers.
Accordingly, we set the minimum threshold period at 30 min in order to ensure that small stays were
extracted without capturing noise. Figure 9 shows the distribution of the number of extracted stay
locations per user. The resulting average number of stay locations extracted per user was 3.2.
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3.4.2. Extraction of Trips

The basic concept for trip extraction is capturing recorded locations (in terms of cellular tower
zones) with successive time stamps as a trip or part of a trip depending on whether the locations are
identified as stay locations. Figure 10 shows an example of a trip, where S1 and S2 are origin and
destination stay locations, respectively, and T1 and T2 are intermediate records.
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3.5. Estimation of Magnification Factors

In order to expand the user sample to represent the actual population of Greater Maputo, as
in previous studies [18,19], we used two types of magnification factors: (1) scaling up the user
sample to represent the actual population in each zone, and (2) normalizing of the user sample to one
observation day.
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3.5.1. User Sample to Population Magnification Factor

The user magnification factor for a user i in zone j (usr_magij) is simply the proportion between
the total user sample with home location in that specific zone (Pop_userj) and the actual population
taken from HRSL in the same (Pop_HRSLj), as follows:

usr_magij =
Pop_HRSLj

Pop_userj
(1)

Figure 11 shows the distribution of the user magnification factors obtained in the study area.
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3.5.2. Valid User-Days Magnification Factor

The valid user-days magnification factor is needed to normalize all users’ mobility to one
observation day, particularly for those with more than one valid user day, as discussed in Section 3.1.
The valid user-days magnification factor should be treated separately for weekday and weekend
samples. The sample period had nine weekdays and three weekends; therefore, the maximum
valid user-days for the weekday sample and the weekend sample were nine and three, respectively.
Accordingly, the valid user-days magnification factor for user i (day_mag_ f aci) was simply the
proportion between the user magnification factor of user i (usr_magij) and the user’s corresponding
valid user-days (usr_dayi), as follows:

day_mag_ f aci =
usr_magij

usr_dayi

{
i f weekday, 1 ≤ usr_dayi ≤ 9
i f weekend, 1 ≤ usr_dayi ≤ 3

(2)

3.6. Spatiotemporal Interpolation

Before further utilization of the OSM road links, we applied topological correction and connectivity
assessment to handle insufficient and disconnected nodes as we previously proposed in [34],
resulting in 353,139 connected links and 271,454 nodes in the whole of Mozambique. Then, we used
the osm2po [35] converter and routing engine to parse OSM pre-processed links and make it routable.
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Such preprocessing is an essential step to ensure all road links are well connected without any possible
isolated road clusters.

To derive the spatiotemporal distribution of the population in the Greater Maputo area with the
previously estimated OD pairs as an input, we applied an automatic routing and temporal interpolation
for the subscriber location during all of his/her observed periods including stay periods when no
mobility is detected. First, a simple Dijkstra’s algorithm is used to reconstruct the subscriber’s route
over the previously prepared OSM road network. Then, we interpolate the position of the subscriber
along that route using an arbitrary 1-minute interval from the start to end time of his/her trip.
We applied the mentioned method to all ODs extracted from the 12-day study period which resulted in
a massive spatiotemporal people flow dataset. We then aggregated weekdays and weekends separately
for each hour of the day and constructed a 1-km resolution 3D map that represents the distribution of
the population in an average weekday and weekend in Greater Maputo. Figure 12 presents the flow of
the spatiotemporal interpolation method.
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4. Results and Validation

4.1. Results

The results of our method for extracting the trips of users in Greater Maputo are presented in the
form of trip generation and attraction maps, as shown in Figure 13. The trip generation and attraction
maps are classified as follows: (a) trip generation on average weekday, (b) trip attraction on average
weekday; (c) trip generation during weekday morning rush hours (6:00–9:00); (d) trip attraction during
weekday morning rush hours (6:00–9:00); (e) trip generation during weekday evening rush hours
(16:00–19:00); (f) trip attraction during weekday evening rush hours (16:00–19:00); (g) trip generation
on average weekend; and (h) trip attraction on average weekend. It can be observed that all eight
maps show similarity in the number of trips for all zones. The zones outward from the center of
Greater Maputo, particularly, in Marracuene District, Boane City, and the lower part of Maputo City,
have relatively low generated and attracted trips. This implies that a smaller share of the population
lives in these zones, resulting in correspondingly less travel activity. On the other hand, the central part
of Maputo City and the central-northern part of Matola City show the highest number of generated
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and attracted trips, implying a greater share of Greater Maputo’s population reside in those zones and
a high level of travel activity. This is in fact the case as those zones are part of the city center, wherein
the central business district, main commercial areas, and Mozambique’s major university are located.
Those zones continually produce and attract both short and long trips. The maps also provide an
insight on the land use of those zones, such as for residential, business, or education.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  14 of 21 

 

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

Figure 13. Trip generation and attraction maps: (a) trip generation on average weekday; (b) trip 
attraction on average weekday; (c) trip generation during weekday morning rush hours; (d) trip 
attraction during weekday morning rush hours; (e) trip generation during weekday evening rush 
hours; (f) trip attraction during weekday evening rush hours; (g) trip generation on average weekend; 
and (h) trip attraction on average weekend. 

Figure 14 shows the resulting people flow maps respectively for (a) weekday and (b) weekend, 
which show the origin and destination of trips connected by lines. It can be observed in the flow maps 
that most of the trips are heavily concentrated in the central part of the study area, similar to the 
observation from the trip generation and attraction maps, and that there is an obvious difference in 
trip volume between weekdays and weekends; specifically, the latter is much lower. In addition, 
there appears to be a formation of four clusters of short trips in the central area, which suggests land 
use with heavy daily activities on both weekdays and weekends. Furthermore, it can also be observed 
that some of the trips cross water, which are presumably the trips made by water ferries. From the 
report of JICA [25], 1% of the total trips are made using this transportation mode. It is interesting to 
note that this aspect can be visualized from CDR data. 

In addition, we show a demonstrative example by using our approach in capturing accurately 
the origin of all trips to a specific zone as destination, and the change in mobility between weekdays 
and weekends. Figure 15a,b shows a flow map of the trips toward Universidade Eduardo Mondlane, 
Mozambique’s oldest and largest university, on weekdays and weekends, respectively, while Figure 
16 shows the temporal distribution of trips over a 24-h period. With this example, we can observe 
distinctly the difference in the number of trips between weekday and weekend; specifically, there are 
more trips as classes are typically held on weekdays. Moreover, we can capture how many people 
arrive at the university at different times. It is interesting that we captured two peaks during 
weekdays when people arrive, i.e., in the morning (8:00–12:00) and in the evening (17:00–18:00). The 
first peak period pertains to the trips taken by the students (including university professors and staff) 
for the regular classes, while the other peak period is for the evening classes mostly taken by working 
students, as verified by the university. 

Trip generation on  
average weekday 

Trip attraction on  
average weekday 

Trip generation during weekday 
morning rush hours 

Trip attraction during weekday 
morning rush hours 

Trip generation during weekday 
evening rush hours 

Trip attraction during weekday 
evening rush hours 

Trip attraction on  
average weekend 

Trip generation on  
average weekend 

Figure 13. Trip generation and attraction maps: (a) trip generation on average weekday;
(b) trip attraction on average weekday; (c) trip generation during weekday morning rush hours;
(d) trip attraction during weekday morning rush hours; (e) trip generation during weekday evening
rush hours; (f) trip attraction during weekday evening rush hours; (g) trip generation on average
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Figure 14 shows the resulting people flow maps respectively for (a) weekday and (b) weekend,
which show the origin and destination of trips connected by lines. It can be observed in the flow
maps that most of the trips are heavily concentrated in the central part of the study area, similar to
the observation from the trip generation and attraction maps, and that there is an obvious difference
in trip volume between weekdays and weekends; specifically, the latter is much lower. In addition,
there appears to be a formation of four clusters of short trips in the central area, which suggests land
use with heavy daily activities on both weekdays and weekends. Furthermore, it can also be observed
that some of the trips cross water, which are presumably the trips made by water ferries. From the
report of JICA [25], 1% of the total trips are made using this transportation mode. It is interesting to
note that this aspect can be visualized from CDR data.

In addition, we show a demonstrative example by using our approach in capturing accurately
the origin of all trips to a specific zone as destination, and the change in mobility between weekdays
and weekends. Figure 15a,b shows a flow map of the trips toward Universidade Eduardo Mondlane,
Mozambique’s oldest and largest university, on weekdays and weekends, respectively, while Figure 16
shows the temporal distribution of trips over a 24-h period. With this example, we can observe
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distinctly the difference in the number of trips between weekday and weekend; specifically, there are
more trips as classes are typically held on weekdays. Moreover, we can capture how many people
arrive at the university at different times. It is interesting that we captured two peaks during weekdays
when people arrive, i.e., in the morning (8:00–12:00) and in the evening (17:00–18:00). The first peak
period pertains to the trips taken by the students (including university professors and staff) for the
regular classes, while the other peak period is for the evening classes mostly taken by working students,
as verified by the university.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  15 of 21 
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Furthermore, we constructed an OD matrix of the study area, as shown in Figure 17,
with 259 origins/destinations corresponding to the Voronoi cellular tower zones. This, as well as
the trip generation/attraction maps, are practically useful for transportation planning purposes,
particularly for transport demand forecasting for new roads, or for new public transport routes.ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  16 of 21 
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Finally, we present people flow (refer to the supplementary video) and the spatiotemporal
distribution of the population in the Greater Maputo area. Figure 18 presents the hourly distribution
of the population on an average weekday as captured by mobile phone data. Distribution starts to
change from 06:00 when people are expected to engage in their daily activities and move to the city
center, which is well captured in the figure. The city center is most congested at noon and during work
hours until 18:00. After that, the density at the city center starts to decrease between 18:00 and 23:00
when people return home. Figure 19 presents the hourly distribution of the population on an average
weekend as captured by mobile phone data. The population is well distributed across the study area
as compared to weekdays. The first change in the distribution seems to appear at 10:00 (which is later
than 06:00 on weekdays) with density increasing at city center as well but at a lower density than on
weekdays. In both the weekday and weekend distributions, there are two peaks that attract a large
number of the population during daytime. The first and strongest peak is found at the central part
of Maputo City, the commercial and business district of the capital city. The second peak contains
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Zimpeto, which is one of the main bus stations that receives people from urban and suburban areas
who are commuting to the central part of Maputo City or other areas.

The above results indicate that mobile phone data can successfully represent the spatiotemporal
distribution of the population given an appropriate statistical handling and filtration of
non-representative users as we have previously shown in the methodology section. The results can be
used for multiple applications besides urban planning applications. For instance, in disaster-management
applications temporal distribution of the population is more important rather than the static nighttime
population. By considering the dynamic population distribution, disaster-management officials will be
able to enforce pre-disaster preparedness by estimating the impact of different hazard scenarios with
respect to population distribution. Furthermore, continuous monitoring of the real-time population
distribution after disaster will enable better response and data driven decision making when timeline
and efficiency of resources allocation are critical. More importantly, documenting and analyzing people’s
behavior and mobility pattern during disasters can provide a good indicator of the efficiency of disaster
awareness or suggest alternatives.
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4.2. Validation of Results

To validate the results, we compared the extracted trips from CDR data with JICA’s person-trip
interview survey data. However, our validation has the following limitations: (1) only weekday trips
were considered as JICA’s data did not cover weekends; (2) the JICA person-trip survey accounted for
population based on the 2011 census, whereas we used population from the HRSL in 2015; and (3) the
Voronoi zones vary with JICA’s traffic analysis zone levels (A TAZ, B TAZ, and C TAZ), as discussed
in Section 3.1. Figure 20 compares the daily weekday trip volume extracted from CDR to that from
JICA’s person-trip survey. Relatively good correlation of the daily trip volume from CDR with the B
TAZ level trips (R2 = 0.84) and A TAZ level trips (R2 = 0.97) can be obtained based on the obtained
R-squared (R2) values. It can be observed that the correlation or accuracy improves as the zoning size
increases, considering that the zoning mismatch decreases between the Voronoi zoning level and larger
TAZ levels (B TAZ and A TAZ). Accordingly, it can be said that we achieved acceptable accuracy with
respect to data collected from a traditional method, which in this case is from JICA’s person-trip survey.

Furthermore, CDR can capture short trips between neighboring zones, which the person-trip
survey is not able to as it only accounts for a person’s main trip of purpose, such as, typically between
home and workplace. In essence, the person-trip survey does not account for trips other than their
main purpose. This can be seen as an advantage of CDR data over the person-trip survey data as
the mobility of people taking short trips as well as the intermediate points/locations of trips can be
captured, not just the “endpoints” or origin and destination locations.
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5. Conclusions

This paper proposed an innovative method based on proven techniques for extracting the
spatiotemporal mobility patterns of millions of people living in a metropolitan area and reconstructing
their spatiotemporal distribution from mobile phone big data—specifically, call detail record (CDR)
data. The results of the proposed method are presented in the form of trip generation and attraction
and people flow maps and OD matrix, which are easily interpretable and practically useful for urban
and transportation planning purposes. Furthermore, we presented in addition 1-h interval population
density maps for an average weekday and weekend. We applied the proposed method to Greater
Maputo, as a first for CDR data analytics in Mozambique. The main advantages of using CDR data
over traditional data collection methods include utilization of fewer resources in terms of cost and
labor for both data acquisition and method implementation, and a larger sample size that provides
less bias. Moreover, our method is easily reproducible such that the results can be updated regularly
or as soon as new CDR data are acquired, unlike traditional surveys, which take years to be updated.
In addition, our method is able to capture trips in different time frames (weekdays and weekends),
in contrast to person-trip interview surveys which can give biased results.

Our results are practically useful for planners and policymakers as they provide them with
an understanding of which areas should be considered or prioritized for developing/improving
new/existing road and public transportation networks and infrastructure. For example, our OD matrix
can be readily used and interpreted for transportation demand modeling. The population distribution
map allows monitoring the dynamic changes in how people move an emerging metropolitan area.
Such can be directly used to detect and comprehend the temporal characteristics of congestion and
to adjust the existing transportation facilities correspondingly. Urban planners can find the temporal
density of an area a useful indicator of land use. Public facility managers may also benefit from
understanding how and where people move in the surrounding neighborhood to operate their facilities
more effectively.

Our analysis provided thoughtful insights and represented temporal changes in densities in the
metropolitan area. We applied an offline data processing in our method for 12 days only due to limited
data availability. A longer observation period may enhance the robustness of the results and show
seasonal changes in mobility. In addition, we relied directly on the cellular tower location, and the
Voronoi polygons, correspondingly, to infer population mobility patterns. However, the distribution of
such infrastructure may change when the MNO decides to add or remove a cellular tower at a certain
location. That may result in inconsistent results over time. However, telecommunications companies
can triangulate and localize the location of mobile phones when recording any transaction with an
accuracy between 200 to 300 m as in [32]. Such will convert the geographical location associated with
CDR to coordinates and eliminate the aforementioned problem.
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In future work we plan to fine-tune our method to obtain more accurate results, and extend the
coverage of our study to the entire country of Mozambique with a longer observation period and
localized coordinates.

Supplementary Materials: The following are available online at https://zenodo.org/record/1302815#
.WzmFMVJwuVk.
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