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Abstract: Among spatial information applications, SpatialHadoop is one of the most important
systems for researchers. Broad analyses prove that SpatialHadoop outperforms the traditional
Hadoop in managing distinctive spatial information operations. This paper presents a
Two Dimensional Priority R-Tree (2DPR-Tree) as a new partitioning technique in SpatialHadoop.
The 2DPR-Tree employs a top-down approach that effectively reduces the number of partitions
accessed to answer the query, which in turn improves the query performance. The results were
evaluated in different scenarios using synthetic and real datasets. This paper aims to study the quality
of the generated index and the spatial query performance. Compared to other state-of-the-art methods,
the proposed 2DPR-Tree improves the quality of the generated index and the query execution time.
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1. Introduction

The rapid and continuous growth of geospatial information generated from devices such as
smartphones, satellites, and other Internet of Things (IoT) devices means that traditional Geographic
Information System (GIS) cannot support such a large amount of data [1,2]. GIS is insufficient in this
situation because of poor adaptability of the basic incorporated frameworks. Therefore, blending both
GIS and cloud computing represents a new era for the advancement of data storage and processing,
and their applications in GIS [3,4].

Recently, Hadoop [5,6] has become the most well-known open source cloud-computing platform.
Hadoop provides a solution for the problem of data processing of huge datasets in many fields.
Hadoop employs MapReduce [7–10] to produce an efficient data processing framework. MapReduce
is a simplified distributed processing programming paradigm that has been utilized for a variety
of applications, such as constructing indexes, data classification and clustering, and different types
of information analysis [11]. MapReduce was developed to give an effective distributed parallel
processing paradigm with a high degree of fault tolerance and adequate scalability mechanisms.
However, Hadoop has some deficiencies in terms of effectiveness, especially when dealing with
geospatial data [8]. A primary inadequacy is the absence of any indexing mechanism that could
support specific access to spatial information in particular areas due to the demands for effective
query processing. Because of this issue, an expansion of Hadoop, called SpatialHadoop, has been
developed. SpatialHadoop [12,13] is a Hadoop system that is suited for spatial operations. It adds
spatial constructs and geospatial information into the Hadoop core functionality.

In SpatialHadoop, spatial data are purposely fractioned and distributed to Hadoop cluster
nodes. From that point, information that has spatial nearness is congregated in the same partition,
which will be indexed later. All SpatialHadoop indexing structures are based on a set of partitioning
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techniques. All of these partitioning techniques are built-in to the Hadoop Distributed File System
(HDFS). Consequently, SpatialHadoop provides efficient query processing algorithms that access just
a particular area of the information and give the correct query result. As exhibited in the paper by
Ahmed Eldawy and Mohamed Mokbel [12], many spatial operations are proposed, such as range
query [14–16], kNN query [17,18], spatial joins [19–21], and skyline query [22].

The contributions of this paper are summarized as follows: (1) the Two-Dimensional Priority
R-Tree (2DPR-Tree) is proposed as a version of the PR-Tree with some enhancements that make
it applicable in SpatialHadoop. (2) Unlike other techniques, the 2DPR-Tree algorithm achieves
simultaneous partitioning of the input shapes into the desired number of partitions and highly
preserved spatial proximity of these shapes. (3) A broad arrangement of experiments on different
datasets (synthetic and real) was executed to illustrate the efficiency and scalability of the 2DPR-Tree
indexing technique. (4) Compared to other techniques, the 2DPR-Tree has a superior performance and
functionality for range and kNN queries.

The rest of the paper is organized as follows: Section 2 discusses related works on SpatialHadoop
and SpatialHadoop indexing techniques. Section 3 illustrates the overall architecture of SpatialHadoop.
Section 4 presents a description of the Priority R-Tree (PR-Tree). Section 5 presents a description of the
proposed 2DPR-Tree partitioning technique in SpatialHadoop. Section 6 presents the experimental
setup, configurations, and the performance measures. The representative results of the extensive
experimentation performed are also included in this section. Finally, Section 7 concludes the work and
discusses future research directions.

2. Related Work

Since files in Hadoop are not indexed, they must be sequentially filtered and scanned. To overcome
this issue SpatialHadoop utilizes spatial indexes inside the Hadoop Distributed File System as a method
for the efficient recovery of spatial information [23]. Indexing is the key difference of SpatialHadoop in
terms of achieving a better execution than Hadoop and the other systems [24].

SpatialHadoop provides various indexing algorithms that mainly differ in data partitioning
techniques. As shown in Table 1, SpatialHadoop provides space partitioning techniques such as a grid
and Quadtree, space-filling curve (SFC) partitioning techniques such as the Z-curve and Hilbert curve,
and data partitioning techniques such as Sort-Tile-Recursive (STR), STR+, and KD-Tree [23].

Table 1. A general classification of SpatialHadoop partitioning techniques.

Dimension Category Grid Quad
Tree

Z
Curve

Hilbert
Curve STR STR+ KD-Tree 2DPR-Tree

Partition
Boundary

overlapping
√ √ √ √

non-overlapping
√ √ √ √

Search Strategy top-down N/A N/A
√ √

bottom-up N/A N/A
√ √ √ √

Split Criterion
space-oriented

√ √

space-filling curve (SFC)-oriented
√ √

data-oriented
√ √ √ √

The grid technique [25] is a uniform data partitioning technique. This technique divides the spatial
space into equal-sized rectangles using a uniform grid of

√
PN ×

√
PN cells, where PN is the desired

number of partitions, and data located on the boundaries between partitions are redundantly allocated
to those overlapping partitions. The simple process and calculations of the grid technique allow a
minimal index creation time. The grid partitioning technique is simple to implement, however it causes
non-uniform data distribution through the cluster nodes. This affects load balancing and therefore the
efficiency of the query. The spatial query efficiency is not optimal because of the unorganized data,
and the consequent time taken to search the data for the query [26].

The Quadtree technique is a Quadtree-based data partitioning technique. It preserves the
adjacent relationship of objects and provides a space uniform recursive decomposition into partitions



ISPRS Int. J. Geo-Inf. 2018, 7, 179 3 of 19

(four partitions in each iteration) until each partition has the object’s defined number limit. Therefore,
there is no way to control the generated partition number to satisfy the desired number of partitions.
Similar to the grid partitioning technique, data located on the partition boundaries are redundantly
allocated to those overlapping partitions. The Quadtree technique is extremely suited for parallel
processing. However, high data transfer and high I/O costs are required, and it is hard to apply in
higher dimensions [27].

The Z-curve technique sorts the input points based on their order on the Z-curve and then
separates the curve into PN partitions. Boundary objects that overlap in different partitions are
assigned to the partition with maximal overlap. The Z-curve technique generates almost equal sized
partitions with a linear complexity of the mapper’s input, but the spatial neighborhood relationships
are not always well preserved as it generates a high degree of overlap between partitions [26,28].

The Hilbert curve is a space-filling curve technique that uses the Hilbert-curve to bulk-load
the R-Tree on MapReduce [29]. The partitioning function puts objects in the same partition to keep
spatial proximity by using the sorted minimum boundary rectangle (MBR) values of object nodes
from the Hilbert-curve, and transforms them into a standard and proven multi-dimensional index
structure—R-Tree—through parallelization in MapReduce. Hilbert packing reduces the data transfer
overhead through the network and thersefore the query response time [30]. Similar to the Z-curve,
boundary objects that overlap in more than one partition are assigned to the maximal overlap partition.

The STR technique is an R-Tree packing algorithm [31,32]. It divides the input spatial data based
on a random sample into an R-Tree [33,34] and each node in the tree has k/PN objects, where k is the
random sample size and PN is the desired number of partitions. All leaf node boundaries are used as
partition boundaries. Boundary objects that overlap in more than one partition are assigned to the
maximal overlap partition.

The STR+ technique is the same as the STR technique. However, boundary objects that overlap in
more than one partition are redundantly assigned to the overlapping partitions [35].

The KD-Tree technique transforms multidimensional location information into one-dimensional
space. SpatialHadoop utilizes the KD-Tree partitioning method in the paper by Jon Louis Bentle [36]
to partition the input dataset into PN partitions. The KD-Tree technique begins with the input MBR as
one partition and partitions it PN − 1 times to produce n partitions. Boundary objects that overlap in
more than one partition are redundantly assigned to overlapping partitions.

3. The Overall Architecture of SpatialHadoop

A SpatialHadoop cluster has one master node that divides a map-reduce job into smaller tasks,
distributed to and executed by slave nodes. As shown in Figure 1, users access SpatialHadoop through
The Pigeon Language in the Language layer to process their datasets. The Pigeon is an SQL-like
language that supports the Open Geospatial Consortium (OGC) standard that was developed to
simplify spatial data processing [37].

The operations layer consists of the various computational geometry operations, as mentioned in
the paper by Ahmed Eldawy, et al. [9], and a set of spatial queries such as the range query and kNN
query. The range query [14] takes the spatial input dataset SR and a query area QA as information
and returns all objects in SR that are located within QA. In Hadoop, the input dataset is stored as a
sequential heap file. Thus, all spatial input objects must be examined to get the result. SpatialHadoop
attains a faster performance by exploiting the spatial index. In SpatialHadoop, the range query executes
in two stages. In the first stage, the file blocks that should be handled are chosen. This stage exploits
the index to choose blocks that are located within the specified area QA. Blocks that are completely
located in the area QA are considered a part of the result without needing further processing. The other
blocks, which are partially located in the specified area, are sent to a second stage that searches the
index to get objects covered by the specified area. Each block that needs to be processed is assigned to
a map function that searches its index to get the matching records [12]. The kNN query [14,18] takes
a query point Q and an integer k to find the k closest points to Q in the input dataset. In Hadoop,
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the kNN query checks all the input points in the input dataset, finds the distances between them
and Q, and then the top-k points are returned as the result [7]. In SpatialHadoop, the kNN query
is performed in three stages. The first stage returns an initial answer of the k nearest points to Q
within the same partition (the same file block). First, a filter function, which obtains only the covering
partition, is utilized to locate the partition that includes Q. At that point, the initial result is found
by applying the traditional kNN to the chosen partition index. The second stage checks if the initial
result can be considered a final result by sketching a test circle centered on the query point with a
span equivalent to the distance from the query point to its kth remotest neighbor from the initial result.
On the off chance that the test circle does not cover any partition other than the query point partition,
the initial result is considered the final result. Otherwise, we continue to the third stage. The third
stage runs a range query to find all points inside the MBR of the test circle. At that point, the final
result is prepared by gathering the initial result from the first stage and the result from the second
stage to get the nearest k points [23].

The MapReduce layer has two new components: the SpatialFileSplitter removes file blocks that
are not part of the result utilizing the global index, while the SpatialRecordReader gets the partial
result efficiently from each file block utilizing local indexes [12].
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In the storage layer, the MapReduce job constructs the SpatialHadoop index in three phases:
partitioning, local indexing, and global indexing [23]. In the partitioning phase, a file is spatially
parceled into the desired number of partitions. Each partition is represented in a rectangle with a size
equal to one file block (64 MB) as the default. This phase runs in three stages; the initial stage is fixed,
and the other two stages are repeated for each partitioning technique. The initial stage figures out the
number of partitions needed, which is fixed for all partitioning techniques. The second stage takes an
arbitrary specimen and examines the proportion PN of the partitions to such an extent that the number
of arbitrary specimen points in each partition is at most k/PN , where k is the arbitrary specimen size.
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The third stage segments the input file by allocating every record to at least one partition. In the local
indexing phase, a local index is constructed for each partition separately according to the index type
and saved to a file with one HDFS block, which is defined by the MBR of the partition. In the global
indexing phase, the local index files are grouped into one file. The global index is stored in the master
node main memory to index all partitions utilizing their MBRs as keys [23].

4. The Priority R-Tree

The PR-Tree is considered one of the best R-Tree variants for distributed extreme data. The PR-Tree
is the first R-Tree variant that can answer any window query in the optimal O

(√
N/Db + T/Db

)
I/Os,

where N is the number of d-dimensional (hyper) rectangles stored in the R-Tree, Db is the disk block
size, and T is the output size [38].

The PR-Tree works by considering each rectangle as a four dimensional point
(xmin, ymin, xmax, ymax) in a KD-Tree. The PR-Tree has a structure like the original R-Tree in
which the input rectangles are stored in the leaves, and each interior node V contains the MBR for each
of its children Vc. However, the PR-Tree structure is different from the original R-Tree in that not all
the leaves are on the same level of the tree and the interior nodes only have six degrees [38].

The idea of the PR-Tree is to deal with the input rectangle ((xmin, ymin); (xmax, ymax)) as a
four-dimensional point (xmin, ymin, xmax, ymax). The PR-Tree is then only a KD-Tree on N rectangles
that are sampled at N points. Aside from that, four additional leaves are included underneath each
interior node; these leaves have the most extraordinary B rectangles in each of the four dimensions,
where B is the number of rectangles that fit one partition (leaf). These leaves are called priority
leaves [39].

The definition of the structure of the PR-Tree is as follows: If S is a set of N rectangles,
R∗i = (xmin(Ri), ymin(Ri), xmax(Ri), ymax(Ri)) is defined as the representation of a rectangle,
Ri = ((xmin(Ri), ymin(Ri)); (xmax(Ri), ymax(Ri))) is a four dimensional point, and S* is the N four
dimensional points corresponding to S.

As mentioned in the paper by Lars Arge, et al. [38], Algorithm 1 illustrates how to construct
a PR-Tree TS on a set of four dimensional points S*. It is characterized recursively: If S* contains
four-dimensional points less than B then TS consists of a solitary leaf. Otherwise, TS consists of a node
V with six children, four priority leaves, and two recursive PR-Trees. The node V and the priority
leaves beneath it are created as follows:

• Extract the B four-dimensional points in S* with minimal xmin-coordinates and store them in the
first priority leaf V xmin

p .
• Extract the B four-dimensional points among the rest of the points with minimal ymin-coordinates

and store them in the second priority leaf Vymin
p .

• Extract the B four-dimensional points among the rest of the points with maximal xmax-coordinates
and store them in the third priority leaf V xmax

p .
• Finally, extract the B four-dimensional points among the rest of the points with maximal

ymax-coordinates and store them in the fourth priority leaf Vymax
p .

Consequently, the priority leaves contain the extraordinary four-dimensional points in S*. In the
wake of building the priority leaves, the set Sr* of the remaining four-dimensional points are partitioned
into two subsets; S*< and S*>. These are of a roughly similar size and recursively develop the PR-Trees
TS< and TS>. The division is performed utilizing the xmin; ymin; xmax, or ymax-coordinates in a
round-robin model, as if building a four-dimensional KD-Tree on Sr*. Table 2 shows the description of
symbols that are used in the presented algorithms.
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Table 2. Description of symbols that are used in the algorithms.

Symbol Description

S Set of rectangles in the working file
N Rectangles number in S.
np The number of shapes/points to be indexed

PN
Partition number calculated by dividing the size of working file by the file block size as each

partition should fit into only one file block
B Number of shapes/points assigned for each partition or file block calculated as np/PN
S∗ Set of 4D points (a point for each rectangle in S)

S∗2D Set of 2D points (a 2D point for each rectangle in S)
RN Initial node (root) with start index = 0 and end index = S*. length and depth = 0
µ Median (the divider that splits the rest of the points into two almost equal sized subsets)

Algorithm 1 PR-tree index creation working steps.

1 Function PRTreeIndex(S, PN)
2 Input: S = {R1, ...., RN}, PN

3 Output: A priority search tree (Stack of nodes)
4 Method:
5 B← np / PN

6 Foreach rectangle R ε S do // prepare S*

7 R* ← (RXmin, Rymin, Rxmax, Rymax)
8 S*← R* // store R* in S*
9 End For

10 RN ← Initial node with start_index = 0,end_index = S*.length and depth = 0
11 STACK.push(RN)
12 While (STACK is not empty)
13 Nd← pop(STACK)
14 If (Nd.size ≤ B) // where Nd.size = Nd.end_index - Nd.start_index
15 leaf←create a single leaf // TS consists of a single leaf;
16 Else If (Nd.size ≤ 4B)
17 b←d(Nd.size)/4e
18 Recursively sort and extract the B points in S* in a leaf node according to xmin, ymin, xmax and ymax

19 Else
20 Recursively sort and extract the B points in S* in a leaf node according to xmin, ymin, xmax, and ymax

21 µ← (Nd.size - 4B)/2
22 TS< (Nd.start_index + (4*B), Nd.start_index + (4*B) + µ,Nd.depth+1)
23 TS> (Nd.start_index + (4*B) + µ, Nd.end_index,Nd.depth+1)
24 STACK.push (TS< and TS>)
25 End if
26 End while

5. The 2DPR-Tree Technique in SpatialHadoop

Within all of the various SpatialHadoop partitioning techniques, all records from the input dataset,
no matter the spatial data type (point, line, or polygon), are changed into 2D points as they are sampled
to make the in-memory bulk-loading step unsophisticated and more effective [23]. This operation of
approximation of all input shapes into points is achieved by getting the MBR of each shape, converting
the input dataset to a set of rectangles, and then getting the center point of each rectangle. Motivated
by this observation, Algorithm 2 was proposed to develop the 2DPR-Tree Technique—a PR-Tree that
has its index points on the two-dimensional plane [40]—in SpatialHadoop, as a new partitioning and
indexing technique.

The 2DPR-Tree employs a top-down approach to bulk loading an R-Tree with the input shapes.
The tree may have sub-trees that contain fewer than four nodes or empty sub-trees with no nodes at
all, so this was handled in the search procedure.



ISPRS Int. J. Geo-Inf. 2018, 7, 179 7 of 19

Algorithm 2 begins with calculating B by dividing the total number of shapes in the input dataset
by the desired number of partitions, starting from the root node that contains the MBR of all data
shapes. If the number of shapes is less than or equal to B, a scalar priority leaf Vp is created. Otherwise,
the priority leaf V xmin

p is created and stores the left-extreme B shapes with minimal x-coordinates.
After that, if the rest of the shapes are less than or equal to B, then the second priority leaf Vp is created
and stores the remaining shapes. Otherwise, the second priority leaf Vymin

p is created and stores the
bottom-extreme B shapes with minimal y-coordinates. Again, the rest of the shapes are checked for if
they are less than or equal to B and, if so, the third priority leaf Vp is created and stores the remaining
shapes. Otherwise, the third priority leaf V xmax

p is created and stores the right-extreme B shapes with
maximal x-coordinates and the fourth priority leaf Vymax

p stores the remaining top-extreme B shapes
with maximal y-coordinates.

On the other hand, if the number of shapes under the root node is higher than 4B, a four-priority
leaf and two sub-P-Trees are created, as follows:

1. The first priority leaf V xmin
p stores the left-extreme B shapes with minimal x-coordinates.

2. The second priority leaf Vymin
p stores the bottom-extreme B shapes with minimal y-coordinates.

3. The third priority leaf V xmax
p stores the right-extreme B shapes with maximal x-coordinates.

4. The fourth priority leaf Vymax
p stores the top-extreme B shapes with maximal y-coordinates.

5. In separating the rest of the n-4B shapes into two parts in light of our present tree depth, the
first part contains the number of shapes equal to µ calculated as in line 32, and the second part
contains the rest of the n-4B shapes. The same plan is utilized in finding the KD-Tree:

(a) If ((depth % 4) == 0) split based on the ascending order of the x-coordinate
(left extraordinary).

(b) If ((depth % 4) == 1) split based on the ascending order of the y-coordinate
(bottom extraordinary).

(c) If ((depth % 4) == 2) split based on the descending order of the x-coordinate
(right extraordinary).

(d) If ((depth % 4) == 3) split based on the descending order of the y-coordinate
(top extraordinary).

Recursively applying this calculation will make two sub-trees in the parceled parts. Stop when no
shapes remain to be filed (e.g., stop when n-4B? 0).

The proposed 2DPR-Tree in Algorithm 2 is different from the traditional PR-Tree described in
Algorithm 1 in two situations. The first is when the Nd.size is less than 4B. In line 17 in Algorithm 1
the Nd.size is divided by four to generate four leaves with a capacity less than B, which will cause
the generated leaves to be partially filled with shapes. On the other hand, lines 12–30 in Algorithm 2
guarantee that all generated leaves are filled with shapes. The second situation occurs while calculating
µ, which determines the number of shapes in each of the generated subtrees. In Algorithm 1, µ is
calculated to produce two subtrees with shapes of roughly similar sizes. In Algorithm 2, µ is calculated
as multiples of 4B. As a result, the proposed Algorithm 2 fills all available leaves with shapes except in
the worst case scenario in which one leaf is partially filled. This in turn guarantees that the number of
generated leaves satisfies the desired number of partitions PN and achieves 100% space utilization.

As an example, assuming that a file has 1.5 M records and B—the maximum capacity of the
partition—is equal to 100,000 records, the desired number of partitions PN should be 15 partitions.
Figure 2 shows the structure of the traditional PR-Tree of the file using Algorithm 1. It generates
12 partitions with a full capacity (100,000 records) and 16 partitions with 18,750 records each. Therefore,
the traditional PR-Tree divides the input file into 28 partitions. Figure 3 shows the structure of the
2DPR-Tree for the same file. It generates 15 partitions at full capacity, achieving 100% space utilization
and satisfying the desired number of partitions PN .
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Algorithm 2 2DPR-Tree index creation working steps.

1 Function 2DPRTreeIndex (S, PN)
2 Input: S = {R1, ...., RN}, PN

3 Output: A 2DPR-tree(Stack of nodes)
4 Method:
5 B← np / PN

6 Foreach rectangle R ε S do // prepare S*

7 R* ← R.getCenterPoint(); // converting each rectangle to a 2D point
8 S∗2D← R* // store R* in S*
9 End For

10 RN← Initial node with start_index = 0 and end_index = S*. length and depth = 0
11 STACK.push (RN)
12 While (STACK is not empty)
13 Nd← pop (stack)
14 If(Nd.size ≤ B) //where Nd.size = Nd.end_index - Nd.start_index
15 leaf← create a single leaf //TS comprises a single leaf;
16 Else If (Nd.size ≤ 4B)
17 Sort (the S* points, X, ASC)
18 Extract (the B points in S* with the minimal X coordinate, leaf V xmin

p )
19 If ((Nd.size – B) ≤ B)
20 Sort (the rest S* points, Y, ASC)
21 leaf Vymin

p ← create a leaf with the rest S* points
22 Else
23 Sort (the rest S* points, Y, ASC)
24 Extract (the B points in S* with the minimal Y coordinate, leaf Vymin

p )

25 If ((Nd.size – 2B) ≤ B)
26 Sort (the rest S* points, X, DESC)
27 leaf V xmax

p ← create a leaf with the rest S* points
28 Else
29 Sort (the rest S* points, X, DESC)
30 Extract (the B points in S* with the maximal X coordinate, leaf V xmax

p )
31 Sort (the rest S* points, Y, DESC)
32 leaf Vymax

p ← create a leaf with the rest S* points
33 End if
34 End if
35 Else

36 µ←
⌊(
b(n− 4B)/(4B)c

2

)⌋
× 4B

37 If ((Nd.depth % 4) == 0)
38 split by the x coordinate (left extraordinary)
39 Else If ((Nd.depth % 4) == 1)
40 split by the y coordinate (bottom extraordinary)
41 Else If ((Nd.depth % 4) == 2)
42 split by the x coordinate backward (right extraordinary)
43 Else
44 split by the y coordinate backward (top extraordinary)
45 End If
46 TS< (Nd.start_index + (4*B), Nd.start_index + (4*B) + µ, Nd.depth+1)
47 TS>(Nd.start_index + (4*B) + µ, Nd.end_index, Nd.depth+1)
48 STACK.push (TS< and TS>)
49 End if
50 End while
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6. Experimentation

6.1. Experimental Setup

All experiments were performed on an EMR Amazon cluster of five ‘m3.xlarge’ nodes, which
have a high-frequency 4vCPU Intel Xeon processor, 15 GB of main memory, 2 × 40 GBSSD storage
running a Linux operating system, Hadoop2.7.2, and Java 8 [41]. We used synthetic datasets with a
uniform distribution in 1 M× 1 M units of area. Each object in the datasets is a rectangle. The synthetic
datasets consist of several files with different sizes (1, 2, 4, 8, and 16 GB) that were generated using
the SpatialHadoop built-in uniform generator [24]. Additionally, we used real datasets, representing
non-uniformly distributed and skewed data, that was extracted from OpenStreetMap, specifically a
Buildings data file that had 115 M records of buildings, a Cities data file that had 171 K records of the
boundaries of postal code areas (mostly cities), and a Sports data file that had 1.8 M records of sporting
areas [12]. Table 3 shows a detailed description of the real datasets.
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Table 3. Real spatial datasets.

Name Data Size Records No. Average Record Size Description

Buildings 28.2 GB 115 M 263 bytes Boundaries of all buildings
Cities 1.4 GB 171 K 8.585 KB Boundaries of postal code areas (mostly cities)
Sports 590 MB 1.8 M 343 bytes Boundaries of sporting areas

6.2. Experimental Results

An experimental study comparing the performances of different SpatialHadoop indexing
algorithms and the 2DPR-Tree is presented. The experiments show that spatial query processing is
very reliant on the size and nature of the dataset, and the indexes demonstrate diverging performance
with the alternative dataset types.

Figure 4a shows the graphical representation of the Cities dataset that has been partitioned and
indexed into 14 partitions by the 2DPR-Tree using Algorithm 2. Figure 4b–f shows its representation
with the other partitioning techniques. It is noted that the spatial locality in the Hilbert and Z-curve
techniques is not always well preserved as they generate a high degree of overlap between partitions.
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Figure 4. The Cities dataset indexed with different SpatialHadoop indexing techniques: (a) Cities
indexed with the 2DPR-Tree; (b) Cities indexed with the KD-Tree; (c) Cities indexed with the Quadtree;
(d) Cities indexed with the Hilbert-Curve; (e) Cities indexed with the Z-Curve; (f) Cities indexed with
the STR and STR+.

From applying the different partitioning techniques to the uniformly distributed synthetic datasets,
an interesting finding is that although all partitioning techniques should partition the input dataset
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into the same specific number of partitions as mentioned in Section 3, the Quadtree, STR, and
STR+ techniques have divided the input datasets into a different number of partitions that are much
bigger than desired (Table 4). Table 5 shows that Quadtree divided the Sports, Cities, and Buildings
datasets into 25, 34, and 705 partitions, respectively, when the desired number of partitions are 6,
14, and 252 partitions. On the other hand, the 2DPR-Tree, KD-Tree, Z-curve, and Hilbert techniques
adhered to the desired number of partitions.

Figure 5 shows the performance measures that assess the indexing time for uniformly distributed
synthetic datasets using different techniques. All techniques have approximately the same indexing
time for the datasets that are 1, 2, and 4 GB in size. The KD-Tree and Quadtree have the best
indexing time for the 8 GB dataset and the 2DPR-Tree has the best indexing time for the 16 GB dataset.
For real datasets, Figure 6 shows that 2DPR-Tree has the better indexing time for the datasets of Cities
and Buildings.

Table 4. Partition number generated by indexing techniques in the synthetic datasets.

File Size (GB)
Partitions NO

1 GB 2 GB 4 GB 8 GB 16 GB

2DPR-Tree 10 20 39 77 154
KD-Tree 10 20 39 77 154
Quadtree 16 64 64 256 256
Z-curve 10 20 39 77 154
Hilbert 10 20 39 77 154

STR & STR+ 12 20 42 81 156

Table 5. Partition number generated by indexing techniques in the real datasets.

Real Dataset
Partitions NO

Sports Cities Buildings

2DPR-Tree 6 14 252
KD-Tree 6 14 252
Quadtree 25 34 705
Z-curve 6 14 252
Hilbert 6 14 252

STR & STR+ 6 18 252
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The range and kNN queries, as presented in the paper by Ahmed Eldawy and Mohamed
Mokbel [12], were performed on the partitioned data to quantify and examine the performance
of the diverse partitioning strategies. For the range query, the rectangular area A is revolved over
arbitrary records from the input dataset. The measure of A is balanced with the end goal that the
query area is equal to the selection ratio (σ) multiplied by the total area of the working file, as shown
in Equation (1):

A = σ ∗ Area(InMBR) , (1)

where the choice proportion σ ∈ (0, 1] is a parameter we change in our analysis and Area(InMBR) is
the region of the MBR of the working file.

Figure 7a shows the range query processing performance on the indexed synthetic datasets with
a query window area equal to 0.01% of the input dataset area. The performance of the 2DPR-Tree
and KD-Tree is stable and roughly unchanged through different dataset sizes. On the other hand,
the Quadtree, Z-curve, Hilbert, and STR techniques showed varying performances with the change
of the input dataset sizes. Figure 7b shows that changing the query window area to 1% of the input
dataset area did not have an effect on the performance of the different partitioning techniques for the
small size datasets of 1 GB, 2 GB, and 4 GB. For the 8 GB and 16 GB datasets, the range query takes a
long time as it must access a greater number of partitions to obtain the query answer. The 2DPR-Tree
and KD-Tree take 101 and 103 s, respectively, to answer the range query with 1% query window area
on a 16 GB input dataset, which is an excellent result compared to the Quadtree, Z-curve, and Hilbert
methods that take 132.5, 127.5, and 112 s, respectively, to answer the same query.

In order to show the effect of changing the size of the query window area on the performance of
different partitioning techniques, a range query with a query window area equal to the input dataset
area was performed. That query returned all objects in the input dataset and requires the indexing
and partitioning technique to access all dataset partitions to obtain the query answer. By comparing
results from Figure 7b,c, we find that answering a range query with a query window area equal to
the whole input dataset area takes only three times the length of time that it takes to answer a range
query with a query window area equal to 1% of the input dataset area. Therefore, the query window
area does not have a significant effect on the performance of the range query with different indexing
and partitioning techniques. The size of the input dataset, the number of partitions that are generated
by the partitioning techniques, and the number of partitions that need to be accessed to get the result
have the largest effect on the performance of the range query with different partitioning techniques.
As shown in Figure 7b,c, the Quadtree method that divides the 8 GB and 16 GB input datasets into
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256 partitions takes much more time to answer the query than the other techniques that divide the 8
GB and 16 GB input datasets into 77,154 partitions.
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Figure 7. Range query execution time on indexed synthetic datasets: (a) Range query with a
0.0001 query window area; (b) range query with a 0.01 query window area; (c) range query with
a query window area equal to the file area.

Figure 8a,b shows the range query processing performance on the Sports and Cities datasets with
different query window areas. Quadtree has the best time performance for the range queries with
small query window areas equal to 0.01% and 1% of the input dataset area. However, for the range
queries with larger query window areas equal to 10% and 50% of the input dataset area, the Quadtree
performance rapidly decreased. This is because when the query window area is increased, the number
of partitions that is required to be processed to answer the range query is increased, especially for
the Quadtree as it partitions the input datasets into a greater number of partitions than the other
techniques. On the other hand, the 2DPR-Tree has the best time performance for the range query with
query window areas equal to 10% and 50% of the input dataset area, as the 2DPR-Tree divides the
input dataset into the desired number of partitions and the spatial proximity of the input shapes is
always well preserved. The results shown in Figure 8c confirm our earlier claims as the 2DPR-Tree and
the KD-Tree answer the range query with a query window area equal to 50% of the Buildings dataset
area in 111 and 120 s, respectively, and Quadtree takes approximately twice the time to answer the
same query.
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For the kNN query, query locations are arbitrarily chosen from points sampled from the input
dataset. Figure 9a–d shows the kNN query performance over the indexed synthetic datasets as
the input file size is increased from 1 to 16 GB and k varied from 1–1000. In the uniformly
distributed synthetic data, all algorithms have roughly the same performance with different k values.
The 2DPR-Tree and KD-Tree techniques, respectively, have the best query execution time for the
synthetic datasets.
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Figure 10a shows the kNN query performance on the Sports dataset as k is varied from 1 to 10,000.
Quadtree outperforms the other techniques in performing the kNN queries as it divides the Sports
dataset into 25 smaller partitions, in contrast with the other techniques that divide the Sports dataset
into six larger partitions. The partition access time of Quadtree is therefore much lower than that of
the other techniques, and the kNN query requires a smaller number of partitions to be accessed to get
the query result. However, the 2DPR-Tree performs best at the level of techniques that are committed
to the desired number of partitions, which is calculated in the initial stage of the partitioning phase
and should be fixed for all partitioning techniques. Figure 10b shows the 2DPR-Tree has the best
performance for the kNN queries on the Cities dataset with different k values. For the Buildings
dataset, Figure 10c shows that Quadtree outperforms the other techniques. However, the KD-Tree
has the best kNN query execution time for k equal to 1, 10, and 100 points and the 2DPR-Tree has the
best kNN query execution time for k equal to 1000 and 10,000 points, among the techniques that are
committed to the desired number of partitions.
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7. Conclusions

In this paper, we presented the 2DPR-Tree as a new partitioning technique in SpatialHadoop.
An extensive experimental study was performed to compare the proposed 2DPR-Tree with
state-of-the-art SpatialHadoop techniques. Various techniques were experimentally evaluated
using different types of datasets (synthetic and real) with different distributions (uniformly and
non-uniformly distributed data). The Quadtree, STR, and STR+ techniques were not restricted with
the desired number of partitions, so they required much more time to build the index. The proposed
2DPR-Tree outperforms other techniques in indexing time for a 16 GB synthetic dataset and for the
Cities and Buildings real datasets. For the range query, the performance of the 2DPR-Tree and KD-Tree
was stable and roughly unchanged throughout use of the different synthetic datasets. On the other
hand, the Quadtree, Z-curve, Hilbert, and STR showed varying performances with the changing of
the synthetic dataset sizes. For the real datasets, Quadtree performed best for the range queries with
small query window areas equal to 0.01% and 1% of the input dataset area. However, for range queries
with larger query window areas equal to 10% and 50% of the input dataset area, the performance of
this method rapidly decreased. On the other hand, the 2DPR-Tree performed best for range queries
with large query window areas. The 2DPR-Tree and KD-Tree answer the range query with a query
window area equal to 50% of the Buildings dataset area in 111 and 120 s, respectively, and Quadtree
takes approximately twice the amount of time to answer the same query. For the kNN query, all
partitioning techniques have roughly the same performance with different k values for the synthetic
datasets. For real datasets, Quadtree outperforms other techniques as it divides the input datasets
into a large number of small partitions, in contrast with the other techniques that are restricted to a
specific number of larger partitions. Therefore, the partition access time of Quadtree is much lower
than that of the other techniques. In addition, the kNN query requires a small number of partitions to
be accessed to achieve the result. However, the 2DPR-Tree performs best for the kNN queries with
high k values among the techniques that are committed to the desired number of partitions. Therefore,
the proposed 2DPR-Tree is significantly better than the other partitioning techniques. As part of our
future work, we will develop new multi-dimensional spatial data types on SpatialHadoop, and a new
indexing technique for these data types will be developed with the goal of further enhancing query
response time and query result accuracy.
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