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Abstract: This paper proposes the use of Stacked Random Forests (SRF) for the classification of
Polarimetric Synthetic Aperture Radar images. SRF apply several Random Forest instances in a
sequence where each individual uses the class estimate of its predecessor as an additional feature.
To this aim, the internal node tests are designed to work not only directly on the complex-valued image
data, but also on spatially varying probability distributions and thus allow a seamless integration of
RFs within the stacking framework. Experimental results show that the classification performance is
consistently improved by the proposed approach, i.e., the achieved accuracy is increased by 4% and
7% for one fully- and one dual-polarimetric dataset. This increase only comes at the cost of a linear
increased training and prediction time, which is rather limited as the method converges quickly.
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1. Introduction

As active air- or space-borne sensor Synthetic Aperture Radar (SAR) transmits microwaves
and records the backscattered echo. It is independent of daylight, only marginally influenced by
weather conditions, and is able to penetrate clouds, dust, and to some degree and, depending on
the used wavelength, even vegetation. Those unique properties render it complementary to optical
and hyperspectral sensors. Polarimetric SAR (PolSAR) uses different polarisations during emission
and reception leading to multi-channel images such as the one shown on the left of Figure 1 (a small
detail of a larger seen acquired by the E-SAR sensor of the German Aerospace Center (DLR) (see
Section 4.1)). The change of polarization in orientation as well as degree depends on several surface
properties including moisture, roughness, as well as object geometry. Consequently, the recorded data
contains valuable cues about physical processes as well as semantic object classes on the illuminated
ground. Nowadays, there are many modern sensors that acquire PolSAR data, i.e., images that contain
complex-valued vectors in each pixel (see Section 2).

The increasing amount of these data makes manual interpretation infeasible and justifies the
need for methods of automatic analysis of PolSAR images. One of the most important examples
of typical applications is the creation of semantic maps, i.e., the assignment of a semantic label to
each pixel within the image(s) (an example is shown on the right of Figure 1 with semantic classes
as introduced in Section 4.1). If the goal is fully automatic interpretation, this task is addressed by
supervised machine learning methods that aim to change the internal parameters of a generic model
in such a way that the system provides (on average) the correct label when given a training sample,
i.e., a sample for which the true class is known. On the one hand, there are several works that approach
this problem by modelling the relationship between the data and the class by probabilistic distributions
(or mixtures thereof) (e.g., [1–3]) On the other hand, there are discriminative approaches as they have
been shown to be easier trained and more robust as generative models. These methods usually extract
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(often hand-crafted and class-specific) image features, which focus on class-relevant aspects of the
data and apply typical classifiers such as Support Vector Machines (SVMs, e.g., in [4]), Multi-Layer
Perceptrons (MLPs, e.g., in [5]), or Random Forests (RFs, e.g., in [6]). This feature extraction step is
highly non-trivial. It involves hand-crafting and preselecting operators that are discriminative for a
specific classification task and thus requires expert knowledge. While there is a large set of features
available that capture polarimetric (e.g., [7]) or textural (e.g., [8]) information, it is still an ongoing field
of research as to which combination leads to the best results.

Figure 1. We propose stacking of Random Forests for the pixel-wise classification of PolSAR data,
which gradually increases the correctness of the label map as well as the certainty of the classifier in its
decisions. From left to right: detail of a PolSAR image; certainty of the RF illustrated as margin of the
class posterior of the first (left side) and the last (right side) level; obtained classification maps at the first
(left side) and the last (right side) level; reference data (colors denote different classes, see Figure 3b).

A few approaches avoid the extraction of real-valued features by adapting the involved classifier
to work directly on the complex-valued PolSAR data, e.g., by using complex-valued MLPs [9] or
SVMs with kernels defined over the complex-domain [10]. Other methods rely on quasi-exhaustive
feature sets that at least potentially contain all information necessary to solve a given classification
problem. As the high dimensionality of those feature sets is usually problematic for most modern
classifiers, a common preprocessing step is to reduce the set by dimensionality reduction techniques
such as principal component analysis [11], independent component analysis [12], or linear discriminant
analysis [13]. Other methods apply classifiers that are able to handle high-dimensional and partially
undescriptive feature sets. One example are Random Forests (RFs), which are not prone to the curse of
dimensionality due to their inbuilt feature selection. A recent review of RFs in the context of classifying
remotely sensed data in general and PolSAR images in particular can be found e.g., in [14].

In [15], hundreds of real-valued features are computed based on a given PolSAR image and used
as input for an RF which uses only the most descriptive ones to solve the specific classification task.
In [16], this approach is extended by the extraction of thousands of simple features. Boosted decision
stumps select a relevant feature subset and apply it for the task of land cover classification from optical
images. While those methods are less likely to be biased towards specific classification tasks, the large
amount of features consumes a huge amount of memory and computation time.

Feature learning techniques avoid the precomputation of features by including feature extraction
into the optimization problem of the classifier. A well known example are Convolutional Networks
(ConvNets), which—in the case of PolSAR data—are either applied to simple real-valued features
(e.g., [17]), or adapted to the complex domain (e.g., [18,19]). Another example of modern feature
learning approaches are RFs that are tailored towards the labelling of images: while standard RFs
are—as all multi-purpose classifiers—defined over the space of n-dimensional vectors, i.e., Rn,
these specific RF variants are applied to image or feature patches (i.e., elements of Rw×w×c with
patch size w and c channels) [15,20,21]. Recently, these RFs have been adapted to work directly on the
complex-valued data of PolSAR images by defining the internal node tests over the space of image
patches containing Hermitian matrices [22].
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RFs are a specific instance of Ensemble Learning, i.e., the general approach to create multiple
(suboptimal) classifiers and to combine their output instead of striving to create a single optimal model.
RFs consist of multiple (mostly binary) decision trees that are independently trained and used for
prediction. Each of the trees will provide its own estimate of the target variable, e.g., a class label or
class posterior. Those individual estimates are subsequently fused, mostly by simple majority vote
(in the case of a single label) or averaging (in the case of a posterior distribution).

In this work, we extend the work in [22] by applying a second Ensemble technique: Stacking
(sometimes also called blending, stacked generalization [23], stacked regression [24], or super
learning [25]). Stacking usually consists of two steps: the first stage involves the training of multiple
base learners (the socalled Tier-1 models) similar to the individual decision trees within the RF
framework. However, in contrast to RFs, their individual output is not fused by simple averaging.
Instead, they are used as input feature to another classifier (the socalled Tier-2 model) during the
second stage. On the one hand, the Tier-2 model applies a more sophisticated fusion rule than simple
averaging by learning when to ignore which of the Tier-1 models. On the other hand, consistent errors
of the Tier-1 models might actually provide descriptive information about the true class, which can
subsequently be exploited by the Tier-2 model. Stacking, originally proposed in 1992 [23], has been
shown to be an asymptotically optimal learning model [25] and was the winning method of the Netflix
Grand Prize in 2009 [26]. The work of [15] uses a two stage framework very similar to stacking: the first
stage applies an RF to low-level image features for pixel-wise image labeling. The outcome of this
stage is used together with the original image data for a semantic segmentation process. The second
stage applies an RF for a segment-wise classification and uses spectral (e.g., textural properties of the
segments), geometric (e.g., shape properties of the segments), as well as semantic features—the latter
defined as the class distribution within a segment as estimated by the RF of the first stage.

We slightly differ from the original formulation of stacking in two major points: first, we do not
train multiple Tier-1 models, but only train one single RFs, in particular, the RF variant proposed
in [22], as it can directly be applied to PolSAR data and is sufficiently efficient as well as accurate.
As a probabilistic model, it provides a class posterior as output, which contains a high level of semantic
information. This class posterior is subsequently used by the Tier-2 model as input additionally to
the original image data. As a Tier-2 model, we use the same RF framework as for the Tier-1 model
with the extension that the internal node tests can either be applied to the PolSAR image data as
before (see Section 3.1), or to the class posterior (see Section 3.3). The second difference is that this
procedure is repeated multiple times, i.e., an RF at the i-th level obtains the original image data as
well as the posterior estimate of the RF at level i − 1. In this way, the posterior is more and more
refined as the RFs learn which previous decisions are consistent with the reference labels of the training
data and which parts still need refinement. The left side of the second column in Figure 1 shows the
uncertainty of the RF at the first level in its classification decision. While red indicates the existence of
a dominant class (i.e., a class with significant higher probability than all other classes), blue illustrates
high uncertainty (i.e., the existence of at least one other class with similar probability to the class with
maximum probability). The ride part of this figure illustrates the uncertainty of the RF in the 9th level
and shows that the final RF is significantly more certain in its decision then the initial RF. The third
column of Figure 1 shows the corresponding label maps of the two RFs. The left side contains many
misclassifications in particular at object boundaries. Many of those errors have been corrected in the
label map on the ride side, which appears much smoother, more consistent, and less noisy (Figure 3
provides larger versions of those images).

The following Section 2 briefly repeats the basics of PolSAR images as needed to follow the
explanations of the polarimetric node tests of the RF introduced in [22] and briefly explained in
Section 3.1. Section 3.3 discusses the proposed stacking techniques, in particular it introduces the
family of node test functions designed to analyse the spatial structure of the posterior estimates.
Section 4 evaluates the proposed method on two very different PolSAR datasets and discusses the
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influence of stacking on the classification result. Section 5 concludes the paper by summarizing its
main findings and providing an outlook to future work.

2. PolSAR Data

Synthetic Aperture Radar (SAR) records amplitude and phase of an emitted microwave that
was backscattered on the ground. Polarimetric SAR uses microwaves in different polarizations and
measures the scattering matrix S [27], which, for the case of linear polarization, is given by Equation (1),
where H and V denote horizontal and vertical polarization, respectively:

S =

[
SHH SHV
SVH SVV

]
. (1)

In the mono-static case, the cross-polarimetric components are identical (up to noise) and the
scattering matrix can be represented as three-dimensional target vector s:

s = [SHH ,
√

2SHV , SVV ]
T . (2)

The echo of multiple scatterers within a single resolution cell causes local interference of the
individual echoes, which leads to a fluctuation of the measured intensity, i.e., the so-called speckle
effect. For a sufficiently large number of scatterers in a resolution cell, the target vectors are distributed
according to a complex-variate zero-mean Gaussian distribution [28], which is fully described by its
covariance matrix Σ = E[ss†] = C (where (·)† denotes conjugate transpose). The expectation E[·] is
usually approximated as (weighted) spatial average within a small local window.

Polarimetric Distances

The Random Forests used in this paper (see Section 3) rely neither on predefined statistical models
nor on predefined features but are directly applied to the local covariance matrices. The node tests
perform pixel-wise comparisons that are based on a distance measure d(A, B). In case of PolSAR
images, this distance is defined over the space of Hermitian matrices A = (aij) and B = (bij) (with
1 ≤ i, j ≤ k, where k is the number of polarimetric channels).

One of the most common examples is the Wishart distance dW (Equation (3), where | · |, Tr(·),
and (·)−1 denote matrix determinant, trace, and inverse, respectively), i.e., the (normalized) logarithm
of the probability density function of the Wishart distribution [29], which is based on the fact that
the sample covariance matrices of complex-Normal distributed target vectors follow this distribution.
This measure is not a distance metric as it is not symmetric, not subadditive, and the minimum value
dW(A, A) is not constant but depends on A. Symmetry can be enforced by averaging the distance
values with swapped arguments (Equation (4), [30]). Other measures are based on stochastic tests that
aim to determine whether the two matrices are drawn from identical distributions. Examples are the
Bartlet distance dB (Equation (5), [31,32]), the revised Wishart distance dRW (Equation (6), [32]), and its
symmetric version dRWS (Equation (7)).

Polarimetric covariances are Hermitian matrices that form a Riemannian manifold. The shortest
path between two points on this manifold can be computed by the geodesic distance dG (Equation (8),
where || · ||F is the Frobenius norm, [33]). Another example is the log-Euclidean distance dLE
(Equation (9), [34]), which is less computationally expensive but still invariant with respect to
similarity transformations:
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dW(A, B) = ln(|B|) + Tr(B−1A), (3)

dWS(A, B) =
ln(|AB|) + Tr(AB−1 + BA−1)

2
, (4)

dBa(A, B) = ln
|A + B|2
|A||B| , (5)

dRW(A, B) = ln
(
|B|
|A|

)
+ Tr(B−1A), (6)

dRWS(A, B), =
Tr
(
AB−1 + BA−1)

2
, (7)

dG(A, B) = || ln(A−
1
2 BA−

1
2 )||F, (8)

dLE(A, B) = || ln(A)− ln(B)||F. (9)

3. Stacked Random Forests

Random Forest (RF, [35,36]) are ensembles of multiple, usually binary decision trees. Single
decision trees have many advantages as, for example, being applicable to different kinds of data,
having high interpretability, and—despite being based on rather simple algorithms—performing well
on many different classification as well as regression tasks. Their disadvantages, however, let them fall
out of favor, mainly due to their high variance and their tendency to easily overfit the data. RFs aim at
keeping the advantages, while avoiding those limitations.

The core idea is to apply a random process during the training procedure of the individual trees.
This leads to similarly accurate trees that will agree on the correct estimate of the target variable
(e.g., class label) for most samples. However, since they will also be slightly different, their mistakes
will not be consistent. In this case, a certain fraction of the trees will agree on the right answer, while the
others disagree about the wrong answers. Consequently, the correct answer obtains the majority of
all votes on average. For an in-depth discussion of Decision Trees, Random Forests, and Ensemble
Learning, the interested reader is referred to e.g., [15,20].

The following Section 3.1 provides a brief explanation of random decision trees as defined in [22],
while the stacking procedure is discussed in Section 3.3.

3.1. Tree Creation and Training

A tree in an RF is a graph consisting of a single root node as well as multiple internal and terminal
nodes (leafs). In a supervised framework, trees are created based on a training set D = {(x, y)i}i=1,...,N of
N samples x with known value of the corresponding target variable y, e.g., a class label (i.e., y = y ∈ N).

The training data is resampled into T bags Dt ⊂ D (1 ≤ t ≤ T) for each of the T trees within
the RF (Bagging, [37]). The corresponding data enters each tree at the root node. Each internal node
applies a binary test to every sample and propagates it either to the left or right child node depending
on the test outcome. If certain stopping criteria are met (e.g., reaching the maximum tree height),
this recursive procedure stops and a terminal node is created. This leaf then estimates the value of the
target variable based on the samples that reached it.

If an RF serves as general purpose classifier, the samples x are usually assumed to be a real-valued
feature vector, i.e., x ∈ Rn. In this case, node tests are mostly defined as axis-align splits, i.e., “xi < θ?,”
where xi is the i-th component of x and the threshold θ is determined by a variety of methods (see,
e.g., [38] for an overview).

For images more sophisticated, node tests have been proposed that are defined on image patches
and analyse the local spatial structure [21,39] by computing distances between (e.g., color) intensities
between random pairs of pixels. This idea is applied to PolSAR images in [22], where image patches
contain Hermitian matrices, i.e., x ∈ Cw×w×k×k (with w as the spatial patch size and k is the number
of channels of the PolSAR image). Each node test samples either one, two, or four regions Rr ⊂ x
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(r = 1, ..., 4) of size w̃r × w̃r inside a patch x (where w̃r < w ). An operator φ : Cw̃×w̃×k×k →
Ck×k selects one covariance matrix from each region, e.g., by taking the center value or the region
element with minimal/maximal span. These matrices are subsequently compared to each other by
Equations (10)–(12) by means of a distance measure d between Hermitian matrices (see Section 2
for examples):

1-point projection1: d(CR1 , C̃) < θ, (10)

2-point projection: d(CR1 , CR2) < θ, (11)

4-point projection: d(CR1 , CR2)− d(CR3 , CR4) < θ. (12)

Each internal node creates multiple such tests by randomly selecting the number of regions, region
position and size, the operator, as well as the distance measure. All of the resulting split candidates
are evaluated by the drop of impurity ∆I (measured by the Gini impurity (Equation (14)) of the
corresponding local class posteriors), i.e., the information gain obtained by splitting the current set of
samples Dn ⊂ Dt ⊂ D into two subsets subsets DnL , DnR (with DnL ∪ DnR = Dn and DnL ∩ DnR = ∅)
for the left and right child node nL, nR with PL/R = |DnL/R |/|Dn|:

∆I = I(P(y|Dn))− pL · I(P(y|DnL))− pR · I(P(y|DnR)), (13)

I(P(y)) = 1− ∑
c∈C

P(c)2. (14)

3.2. Prediction

During prediction, each query sample starts at the root node of every tree. Every internal node
applies the node tests defined during tree creation and, depending on the test outcome, the sample
is shifted to the left or right child node. It will reach exactly one terminal node nt(x) in every tree t,
which stores the class posterior P(y|nt(x)) as estimated during tree training. The final class posterior
P(y|x) of the Random Forest is obtained by averaging the estimates of the individual trees:

P(y|x) = 1
T

T

∑
t=1

P(y|nt(x)). (15)

3.3. Stacking

The basic principle of stacking as used in this work is illustrated in Figure 2. At the first level
(i.e., the 0-level), an RF is trained as described in Section 3.1. It has only access on the image data,
i.e., on the sample covariance matrices in each pixel, as well as to the reference data. Once this RF is
created and trained, it is applied to the training data and predicts the class posterior for each sample,
i.e., for each pixel within the image. This completes the first level.
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Image

Reference

PosteriorRF
Level 0

PosteriorRF
Level 1

PosteriorRF
Level L

PosteriorRF
Level L-1

Result

Figure 2. The proposed stacking framework trains an RF at level 0 based on the image data and the
reference data, while subsequent RFs use the estimated class posterior as additional feature. This allows
a continuous refinement of the class decision and thus leads to more accurate semantic maps.

An RF in a level l (with 0 < l ≤ L) has access to the image data and the reference data, but also to
the class posterior as estimated by the RF at level l − 1. This enables it to refine the class decisions and
possibly correct errors made by the RF of the previous level. In the case of the correct label, it will learn
to trust the decision of its predecessor if the data (and the posterior) have certain properties. In the case
of an incorrect label, it will aim to learn how to correct it. One intuitive example of this effect are pixels
showing double bounce backscattering. Due to the geometric structure of buildings, double bounce
happens very frequently within urban areas. It does rarely happen at roads, fields, or shrublands (with
few possible exceptions, e.g., power poles on the agricultural fields, etc.). However, it also happens
frequently within a forest due to the stems of the trees. The RF of the first stage might have learnt
that double bounce scattering is a strong indication of urban areas and consequently labels a forest
pixel as belonging to a city. The RF in the next stage now has the chance to correct that by recognizing
that isolated double bounce pixels labelled as city but surrounded by forest are rarely correct but
mostly belong to the forest class. Thus, the combination of spectral and semantic information leads to
an improvement.

In order to enable the RF to analyze the local class posterior estimate, similar node tests as defined
in Section 3.1 for PolSAR data have to be designed for patches of class posteriors, i.e., where each pixel
in the sample x contains a probability distribution P(c) ∈ [0, 1]|C| describing that this pixel belongs
to a class c ∈ C. As before (see Section 3.1, Equations (10)–(12)), each node test randomly samples
several regions within a patch and selects one of the pixels based on an operator (for example, by
taking the center value or the region element with minimal/maximal margin defined in Equation (25)).
These probability distributions are then compared by a proper distance measure d. Distances that
are directly defined over real-valued vectors in general or probability distributions in particular are
suitable, such as histogram intersection dHI (Equation (16)), the city-block distance dCB (Equation (17)),
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the Euclidean distance dEu (Equation (18)), the Kullback–Leibler divergence dKL (Equation (19)),
the Bhattacharyya distance dBh (Equation (20)), and the Matusita distance dMa (Equation (21)):

dHI(P, Q) = ∑
c∈C

min(P(c), Q(C)), (16)

dCB(P, Q) = ∑
c∈C
|P(c)−Q(c)|, (17)

dEu(P, Q) =
√

∑
c∈C

(P(c)−Q(c))2, (18)

dKL(P, Q) = ∑
c∈C

P(c) log
(

P(c)
Q(c)

)
, (19)

dBh(P, Q) = − log

(
∑
c∈C

√
P(c) ·Q(c)

)
, (20)

dMa(P, Q) =

√√√√∑
c∈C

(√
P(c)−

√
Q(c)

)2
. (21)

Of course, it is also possible to compute simple properties of the posteriors and compare them.
Examples are the dominant c1 and second strongest c2 class, which can be tested for identity by dC
(Equation (24), where I(·, ·) is the Kronecker delta). Other examples are the margin (Equation (25)),
i.e., the distance between the probability of the two strongest classes, the entropy (Equation (26)),
or the Gini index (Equation (27)) of the posterior, as well as the probability of misclassification
(Equation (28)). These real-valued characteristics can be simply compared by the signed distance dS
(Equation (29)) between them:

ψc1 = arg max
c∈C

P(c), (22)

ψc2 = arg max
c∈C\c1

P(c), (23)

dC(P, Q) = I(ψ(P), ψ(Q)), (24)

ψM = P(c1)− P(c2), (25)

ψH = − ∑
c∈C

P(c) log(P(c)), (26)

ψG = 1− ∑
c∈C

P(c)2, (27)

ψMC = 1−max
c∈C

P(c), (28)

dS(P, Q) = ψ(P)− ψ(Q). (29)

While node tests as discussed in Section 3.1 allow the analysis of local spectral and textural
properties within the image space, the usage of the distance measures above allow the node tests to
analyse the local structure of the label space within a probabilistic framework. In this way, not only
the final classification decision of the RF of the previous level can be taken into account, but also its
certainty into the label as well as their spatial distributions. Thus, the resulting RFs are able to analyse
spectral, spatial, as well as semantic information to a high degree.

Each node generates multiple split candidates by randomly selecting which feature should be
taken into account as well as how many and which regions should be considered and which distance
measures should be used. From all the generated tests, the one with the highest drop of impurity
(Equation (13)) is selected and applied in order to propagate the current samples further up the trees.

In order to avoid overfitting of the stacked RFs, incomplete training data is used at each
level. Instead, a certain amount of samples is randomly drawn from the training area of each class.
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The semantic features, however, i.e., the class posterior are computed for the whole training regions so
that they are available for the RFs at higher levels.

4. Experiments

4.1. Data

Two very different datasets are used to evaluate the proposed method. A color representation
of the first dataset is shown in Figure 3a. It is a fully polarimetric image of 1390 × 6640 pixels
acquired over Oberpfaffenhofen, Germany by the E-SAR sensor (DLR, L-band) with a resolution of
approximately 1.5 m. The area contains man made as well as natural structures. The annotation was
acquired manually and consists of five different classes: City (red), Road (blue), Forest (dark green),
Shrubland (light green), and Field (yellow) (see Figure 3b).

A dual-polarimetric image (i.e., SHH and SVV) of 6240× 3953 pixels acquired over central Berlin,
Germany, by TerraSAR-X (DLR, X-band, spotlight mode) with a resolution of approximately 1 m
serves as a second dataset. Figure 6a shows the corresponding color representation. It shows a dense
urban area but also contains a river and a large park area. It is manually labelled into six different
categories, which are illustrated in Figure 6b, namely Building (red), Road (cyan), Railway (yellow),
Forest (dark green), Lawn (light green), and Water (blue).

The following experiments are carried out on both datasets individually by dividing the image
into five different parts. While the training data (20,000 pixels) are randomly sampled from four stripes,
the fifth stripe is used for testing only and thus provides an unbiased estimate of the balanced accuracy,
i.e., the average detection rate per class, which is well suited for imbalanced data sets and allows an
easy interpretation of the results. The final balanced accuracy estimate ba is estimated as average over
all folds. All quantitative as well as qualitative results in the following Section 4.2 are estimated on the
test data of the individual folds.
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(a) (b)

(c) (d)

Figure 3. Input data and results of the Oberpfaffenhofen dataset. (a) Image Data (E-SAR, DLR, L-Band);
(b) Reference Data: City (red), Road (blue), Forest (dark green), Shrubland (light green), Field (yellow),
unlabelled pixels in white; (c) Classification map obtained by the RF at Level 0; (d) Classification map
obtained by the RF at Level 9.

4.2. Results

Figure 3c shows the label map composed by the individual test sets of all rounds obtained by the
RF at level 0. This RF has only access to the image data itself and, of course, the labels of the training
data during tree creation and training. It achieved a balanced accuracy of 86.8%, which is already
quite acceptable—a similar RF but based on a large set of real-valued pre-computed polarimetric
features achieved 89.4% [22]. However, the label fluctuates in some areas (e.g., within the central
forest area) leading to noisy semantic maps, while other areas are consistently assigned with an
incorrect label. Particular borders between different semantic classes are frequently misclassified.
Figure 4 shows one of the problematic areas in greater detail (the corresponding image and reference
data are shown in Figure 1). Apparently, the RF of this level associates edges within the image as
being either city or road, leading to incorrect class assignments at the boundary between fields, forest,
and shrubland (visible in the semantic maps within the first row of Figure 4). The second and third row
of Figure 4 show the negative entropy and margin of the estimated class posterior and thus illustrate
the degree of certainty of the classifier in its decision ranging from completely uncertain (margin
equals zero, negative entropy equals −1, both shown in blue) to completely certain (margin equals
one, negative entropy equals zero, both shown in dark red). The majority of the forest and field pixels
show a high degree of certainty, while, in particular, the misclassified regions show a high degree
of uncertainty. The remaining rows of Figure 4 illustrate the class posteriors for City, Street, Forest,



ISPRS Int. J. Geo-Inf. 2018, 7, 74 11 of 16

Shrubland, and Field, respectively. The columns of Figure 4 show the progress of the learning through
the individual levels of stacking. For space reasons, only levels 0, 1, 2, 5, and 9 are shown in ascending
order in the corresponding columns. The largest changes occur within the first few levels. Using the
semantic information provided by its predecessors as well as the original image data, each RF at a
higher level is able to correct some of the remaining mistakes and to gain certainty in decisions already
being correct. In particular, RFs of higher levels learnt that edges within the image only correspond to
city or road if other criteria (e.g., certain context properties) are fulfilled as well. The large field area at
the top of the image, which is confused with a big part as field in level 0 is now correctly classified
as field. However, not all errors are corrected. An example is the large field area at the bottom of the
image, which stays falsely classified as shrubland and the RFs gain even more certainty on this false
decision. Nevertheless, overall, the classification improved significantly, which is also illustrated in
Figure 3d, which shows the semantic map obtained by the RF of the last level and thus states the final
output of the proposed method.

Figure 5 summarizes these results in a more quantitative manner by showing the progress of
margin (Figure 5a), entropy (Figure 5b), and classification accuracy (Figure 5c) for the individual
classes (same color coding as in the label maps above) as well as the average over all classes (in black).
The classification accuracy does monotonically increase over all stacking levels starting at 86.8% for
level 0 and ending at 90.7% at level 9. While there is a significant change in accuracy for the first levels,
it starts to saturate quickly after roughly four levels. Interestingly, the different classes show quite
different results. All classes benefit from stacking with streets as the single exception. The street class
loses 1% in accuracy, which drops from 86.3% to 85.3% at level 1 but stays then more or less constant.
All other classes increase in accuracy but not to the same extent, while, for example, the accuracy
of the field class appears to saturate already after level 2, with the forest class continuously slightly
improving even at the last iteration.

Although the accuracy seems to quickly saturate, which means that the correct class obtained the
maximal probability within the estimated posterior, the certainty of the RFs continuously improving as
Figure 5a,b show. The changes, however, are larger at the first stacking levels and decrease significantly
at higher levels. The reason why certainty saturates slower than accuracy is that accuracy only
depends on the estimation of the correct class label. This requires that the correct label obtains a
probability higher than the probability of all other labels. Once this happens, there won’t be any
changes anymore. The certainty, however, can continue to increase until the winning label has
consumed the complete probability mass of the distribution, i.e., has probability one while all other
classes have probability zero.

Figure 6 shows the results of the proposed method on the second dataset. Despite the differences
between both datasets (i.e., air- vs. spaceborne, fully polarimetric vs. dual-polarimetric, rural area
vs. dense inner city area, etc.), the overall behaviour of the method is very similar in both cases.
Classification accuracy (Figure 7c) increases monotonically for the different stacking levels. The RF
at level 0 achieved an accuracy of 62.0% (Figure 6c), while the semantic map of RF at the last level
(Figure 6d) is 68.9% correct. An RF based on real-valued, pre-computed features achieves only
54.3% [22]. All classes benefit from stacking but again to a various degree. While river and railway,
for example, could only gain 2% and 4%, respectively, forest and street improved by 8.5% and
12%, respectively. The largest changes occur at the first levels of stacking, while most classes only
improve marginally with respect to accuracy after level 4. The certainty of the classifier (Figure 7a,b),
however, continuously increases with more stacking levels. The final classification map contains
significantly less label noise and shows smoother object boundaries.
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Figure 4. Detail of the Oberpfaffenhofen dataset (Image and reference data are shown in Figure 1).
The columns illustrate levels 0, 1, 2, 5, and 9 of stacking. From top to bottom: label map (same color
code as in Figure 3b); entropy; margin; class posterior of city, street, forest, shrubland, field.
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Figure 5. Results over the different stacking levels on the Oberpfaffenhofen dataset. Colors denote different
classes (see Figure 3b), black denotes the average over all classes. (a) Margin; (b) Entropy; (c) Accuracy.
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Figure 6. Input data and results of the Berlin dataset. (a) Image Data (TerraSAR-X, DLR, X-Band);
(b) Reference Data: Building (red), Road (cyan), Railway (yellow), Forest (dark green), Lawn (light
green), Water (blue), unlabelled pixels in white; (c) Classification map obtained by the RF at Level 0;
(d) Classification map obtained by the RF at Level 9.
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Figure 7. Results over the different stacking levels on the Berlin dataset. Colors denote different classes
(see Figure 6b), black denotes the average over all classes. (a) Margin; (b) Entropy; (c) Accuracy.
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5. Conclusions

This paper proposes using RFs within the stacking meta-learning framework for the classification
of PolSAR data. It thus combines two ensemble learning strategies, i.e., the well established approach
to average the output of several base learners (the individual trees within the RF) on the one hand,
and, on the other hand, the lesser known but very successful method of stacking, i.e., including the
estimates of the base learners as features for a subsequent model. The usage of the RF allows a
seamless integration of both techniques: it not only provides a probabilistic estimate, i.e., the class
posterior, which serves as optimal semantic feature, but also allows using this new feature without
changing the overall framework simply by designed node tests that are defined over spatial-semantic
probability distributions.

The performance on both datasets and for all classes are consistently improved over the different
stacking levels, i.e., the results of each level are at least as good but mostly better than the results of the
preceding level. The final results are more accurate by a significant margin, contain considerably less
label noise, show smoother object boundaries, and have a higher degree of certainty of the classifier
in its decision. Furthermore, the method itself converges, which makes a manual tuning of the
number of stacking levels obsolete. The largest improvements happen within the first couple of levels,
while performance saturates quickly (e.g., after four levels). This keeps the additional computational
load at a limit and justifies the gain in performance.

It should be noted that this gain in accuracy comes basically for free, i.e., only at the cost of
an increased training and prediction time—both increase (roughly) linear with the number of levels.
However, neither more (e.g., more training samples) nor different (e.g., different sensors) data is needed.
Furthermore, the same framework is used in all levels, i.e., the proposed method does not require
several training and/or preprocessing procedures for different classifiers. Instead, no preprocessing
and no explicit feature computation are performed, but the proposed stacked RF is directly applied to
the local sample covariance matrices of the PolSAR data as well as to the probabilistic class estimates
of previous levels.

Future work will focus on exploiting more information generated by the preceding RFs. The path a
sample takes through each tree can serve as a powerful descriptor of local texture and thus complements
to some extent the spectral and semantic properties used in this work. Furthermore, the estimated label
maps provide not only local, but also more global context, which is currently ignored but can easily be
included by node tests that sample large and more distant regions. Finally, the computational load of
the stacking procedure can be decreased by more efficient node tests and by the fact that RFs in the first
levels do not necessarily need to provide highly accurate estimations.

A second line of future work addresses the applicability of the proposed Stacked Random Forests
to other types of remotely sensed data. This only requires an adaption of the applied node tests to the
different data domains. In general, every image-based classification problem that can be solved by RFs
sufficiently accurate should benefit from the proposed stacking framework.
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