Next Article in Journal
An Open-Boundary Locally Weighted Dynamic Time Warping Method for Cropland Mapping
Next Article in Special Issue
Generative Street Addresses from Satellite Imagery
Previous Article in Journal
Forecasting Transplanted Rice Yield at the Farm Scale Using Moderate-Resolution Satellite Imagery and the AquaCrop Model: A Case Study of a Rice Seed Production Community in Thailand
Previous Article in Special Issue
A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessFeature PaperArticle
ISPRS Int. J. Geo-Inf. 2018, 7(2), 74; https://doi.org/10.3390/ijgi7020074

Classification of PolSAR Images by Stacked Random Forests

Computer Vision & Remote Sensing, Technische Universität Berlin, Berlin 10587, Germany
*
Author to whom correspondence should be addressed.
Received: 30 January 2018 / Revised: 16 February 2018 / Accepted: 18 February 2018 / Published: 23 February 2018
(This article belongs to the Special Issue Machine Learning for Geospatial Data Analysis)
View Full-Text   |   Download PDF [44702 KB, uploaded 23 February 2018]   |  

Abstract

This paper proposes the use of Stacked Random Forests (SRF) for the classification of Polarimetric Synthetic Aperture Radar images. SRF apply several Random Forest instances in a sequence where each individual uses the class estimate of its predecessor as an additional feature. To this aim, the internal node tests are designed to work not only directly on the complex-valued image data, but also on spatially varying probability distributions and thus allow a seamless integration of RFs within the stacking framework. Experimental results show that the classification performance is consistently improved by the proposed approach, i.e., the achieved accuracy is increased by 4 % and 7 % for one fully- and one dual-polarimetric dataset. This increase only comes at the cost of a linear increased training and prediction time, which is rather limited as the method converges quickly. View Full-Text
Keywords: random forests; stacking; ensemble learning; classification; PolSAR random forests; stacking; ensemble learning; classification; PolSAR
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Hänsch, R.; Hellwich, O. Classification of PolSAR Images by Stacked Random Forests. ISPRS Int. J. Geo-Inf. 2018, 7, 74.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top