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Abstract: Air quality has had a significant impact on public health, the environment and eventually
on the economy of countries for decades. Effectively mitigating air pollution in urban areas
necessitates accurate air quality exposure information. Recent advancements in sensor technology
and the increasing popularity of volunteered geographic information (VGI) open up new possibilities
for air quality exposure assessment in cities. However, citizens and their sensors are put in areas
deemed to be subjectively of interest (e.g., where citizens live, school of their kids or working spaces),
and this leads to missed opportunities when it comes to optimal air quality exposure assessment.
In addition, while the current literature on VGI has extensively discussed data quality and citizen
engagement issues, few works, if any, offer techniques to fine-tune VGI contributions for an optimal
air quality exposure assessment. This article presents and tests an approach to minimise land use
regression prediction errors on citizen-contributed data. The approach was evaluated using a dataset
(N = 116 sensors) from the city of Stuttgart, Germany. The comparison between the existing network
design and the combination of locations selected by the optimisation method has shown a drop in
spatial mean prediction error by 52%. The ideas presented in this article are useful for the systematic
deployment of VGI air quality sensors, and can aid in the creation of higher resolution, more realistic
maps for air quality monitoring in cities.

Keywords: air quality monitoring; sensor location optimisation; crowdsourcing; citizen engagement;
volunteered geographic information; land use regression; spatial simulated annealing

1. Introduction

Air pollution is currently a global fret, which can be linked to the extensive population growth
and urbanisation, together with their aftereffect in traffic, industrialisation and energy consumption [1].
Human health is closely linked to the air we breathe [2], as evidence from recent studies for the adverse
health effects has shown [3,4]. A recent report of the World Health Organization (WHO) suggests that
92% of the world’s population lives in places that exceed the recommended annual mean concentrations
of Particulate Matter (PM2.5) [5]. Because of the growing health effects of chronic exposure to ambient
air pollution, policy makers and scientists are showing an increased interest in monitoring air pollution
at a higher spatial resolution. Various recent studies from spatial epidemiology and public health
have set out a specific interest in traffic based pollution [6–8], particularly in Stuttgart, Germany [9].
Generally, air pollution monitoring is done by environmental or governmental organisations using a
network of fixed monitoring stations. Typical regulatory decisions are taken based on long duration
temporal trends and statistics [10], considering conditions related to hotspots estimated based on
real-time data, if available. Interpreting the pathways from the generation of emission, dispersion

ISPRS Int. J. Geo-Inf. 2018, 7, 468; doi:10.3390/ijgi7120468 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
https://orcid.org/0000-0002-1450-5435
https://orcid.org/0000-0001-8049-7069
https://orcid.org/0000-0001-5087-8776
https://orcid.org/0000-0003-2904-1028
http://www.mdpi.com/2220-9964/7/12/468?type=check_update&version=1
http://dx.doi.org/10.3390/ijgi7120468
http://www.mdpi.com/journal/ijgi


ISPRS Int. J. Geo-Inf. 2018, 7, 468 2 of 35

and chemical transformation of pollutants in ambient air pollution concentrations is very challenging
due to its high spatiotemporal variability [11]. In the recent years, land use regression (LUR) has
been widely used in various health and epidemiological studies to estimate air pollution at a finer
spatial scale in the urban areas [12–14]. However, due to economic reasons, the number of air quality
monitoring stations in cities is usually sparse and limited, and this considerably limits an accurate
assessment of the intraurban variability of air pollution.

Citizens and environmental agencies are exploring the potential of small, low-cost air quality
monitoring sensors to enable detailed real-time information on air quality in the city [15–17]. Several
low-cost sensor deployments have been conducted in recent years extending from citizens investigating
air quality in the houses and surrounding areas, to networks of sensors to measure community-level
air quality, to a vast network of sensors covering the cities [15,18]. However, the datasets provided by
low-cost sensor networks are arguably of less accurate [19–21]. Despite such a limitation, the demand
for sensor technology is high, driven by widespread concerns about the air pollution as well as an
interest in reducing the personal exposure [22]. While crowdsourcing approaches for air quality data
gathering and related technologies are escalating, research to inform the translation of low-cost air
quality sensor data into real applications remains limited. The term “low-cost” might be interpreted
differently depending on the end users and the specific purpose of the study. For instance, U.S EPA Tier
3 instruments can be low cost (2000–3000 USD) for regulatory authorities but not for general citizens
who are willing to participate in the data collection process [23]. Therefore, in our study, we refer to
low-cost sensors as devices which cost less than 200 Euros (and can thus be used by individuals or
communities for air quality monitoring).

To capture the spatial variability in detail, accuracy of data will profoundly be relating to “where”
the data are collected. To better understand exposure in microenvironments, it is crucial to take into
account the spatial coverage of air pollution monitoring networks. Inappropriate location selection
may lead to over- or underestimation of pollution originated from various emission sources in the city.
When considering low-cost sensors to gather air quality data, previous studies suggest that, generally,
the datasets generated with the help of citizen or community participation approaches inherit serious
data gaps and the measurements collected are from irregularly spread sensors [21]. Since the process of
air pollution monitoring to capture spatial variability involves specific cost and time [24], it is desirable
to optimise the monitoring locations. Hence, to overcome the data gaps and irregular spatial spread of
sensors to make data collection more efficient, there is a need for methods that can help in extending
wide-spread and optimal location identification.

Participatory data approaches can be helpful to enable detailed air quality data collection,
but exploiting the datasets generated from these low-cost devices requires tools and techniques for
data cleaning and processing. The vast amount of dynamic, varied, detailed, and interrelated datasets
from citizen participatory approaches could be enhanced by preparing the protocols and infrastructure
that enables scientifically sound data collection [25]. The systematic deployment of low-cost sensors for
urban air quality monitoring can be useful for air quality data collection. With the potential of low-cost
air quality monitoring sensors to increase the spatial coverage [26], along with its application to foster
participation [22], it is desirable to systematically identify the optimal placement of monitoring stations
to make the best use of advanced sensor technology and citizen engagement efforts.

The present study aimed to develop a method which can help in systematically identifying
the optimal locations of citizen sensors for air pollution monitoring. The method was tested using
citizen-contributed data from the city of Stuttgart, Germany as a scenario. The primary objective of
the optimisation method included the identification of the most advantageous spread and optimal
monitoring site locations that minimise mean prediction error for land use regression (LUR) estimations
of air quality parameters for the study area. LUR is a method for spatial exposure assessment. It helps
to model pollutant concentrations (e.g., particulate matter and nitrogen dioxide) at any location using
various environmental characteristics of the surrounding area (e.g., traffic intensity, elevation, and
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land use type). The spatial simulated annealing (SSA) algorithm was used to run the objective function
for finding the optimal monitoring network design.

The main contributions of this study can be summarised as follows:

1. We extended the optimisation method proposed by Gupta et al. [27] by incorporating wide-spread
distribution aspects (in addition to LUR’s predictor error aspects) into the placement of low-cost
citizen sensors for air quality monitoring.

2. We demonstrated the applicability of the proposed optimisation method in two practical scenarios:
starting a new volunteered geographic information (VGI)-based air quality monitoring campaign;
and finding out where to place new sensors to extend the existing VGI-based air quality
monitoring network from the city of Stuttgart, Germany.

While existing works on analysing the quality of VGI mostly aim at examining the degree to
which a fact contributed by a volunteer is likely to be true (see, e.g., Goodchild and Li [28]), this work
approached the question of quality of VGI from a slightly different angle. By trying to find the
spatial distribution of volunteers which can minimise the global prediction error of the air pollution
monitoring network, this work intended to inform the coordination of VGI efforts for air pollution
monitoring at the city level. As such, the method proposed can be classified as belonging to the fourth
type of VGI validation process identified in [29], namely “measure of fitness by way of completeness”
(not the amount of points, but the promise of detail or spatial extent). There are a couple of methods
in the literature to tackle the VGI quality aspects of positional accuracy, thematic accuracy, and
topological consistency, but a general lack of methods addressing other aspects such completeness,
temporal accuracy, or vagueness, as a recent review by Senaratne et al. [30] reminded. Criteria such
as road density or errors of omission/commission are used as surrogates for completeness in some
studies [31,32], but completeness in this study was approximated using the combination of two criteria:
spatial spread and minimal prediction error of the air pollution monitoring network.

The rest of the paper is organised as follows. In Section 2, we present a brief overview of the
previously done work on the topic. Section 3 describes the study area and the data used in the study.
A new methodology for optimisation is described in Section 4. In Section 5, we present the results
and discuss the objective function used in the proposed optimisation method. Section 6 presents the
discussion regarding the developed optimisation method. We draw the conclusion in Section 7.

2. Related Work

The deployment of the network of air quality monitoring stations is of vital importance for
various air quality monitoring methods. Various air quality methods and their regulation exist in
the literature, and the adoption of crowdsourced air quality data for filling data gaps has also been a
topic of discussion in recent years (see, e.g., [33]), especially for the vision of the smart city and citizen
engagement. This section briefly discusses previous related work on the topics of crowdsourced data
integration approaches and air pollution monitoring.

2.1. Citizen Participation/VGI

The effect of pollution on city residents requires a monitoring network that can provide a
representative view of the experiences across the population while considering the wide distributions
of pollution levels and local socioeconomic conditions across the monitoring sites. Low-cost sensors
can be helpful in advancing air pollution monitoring by gathering a massive amount of spatiotemporal
air quality data. Various low-cost air pollution sensors have already been successfully integrated
into long-term deployments to access fine-grained air pollution information [17]. In practice, these
data sources can help in facilitating ongoing indications of changes in air quality, rather than absolute
measurements [34]. The applicability of low-cost sensors for future air pollution monitoring is
well recognised in the literature [16,20,22]. Extending the application of these sensors by involving
citizens or communities for environmental data collection has increased in the recent past [22,35].
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Through volunteered geographic information (VGI) or crowdsourcing data methods, a large number of
individuals may be engaged to collect data about phenomena impacting the city life. In general (and as
indicated by Lisjak et al. [36]), the involvement of citizens not only provides an opportunity to close data
gaps but also brings the policy-making process closer to people. Citizens are willing to get involved
in air pollution monitoring studies and get aware of the ambient environment [22,37]. With the help
of citizen participation, hundreds of low-cost sensors can be dispersed in an urban environment that
can facilitate data collection simultaneously. These gathered data can promote the development of
improved models that can explain the pollutant variability within the urban environment.

Education and involvement of communities for air quality monitoring is not only crucial for
improving public health but also for building awareness about the sources of air pollution, exposure
causes and impact of other pollutants on health. Engaging citizens may also support in deploying the
network of low-cost air quality monitoring sensors that can be of significant potential for improving
the spatial coverage of pollutant’s variability in urban space and can foster citizen participation [22].
Despite these advantages, while utilising these alternative data sources, attention is needed to
undertake valid capturing and representation of the data. The design of the air quality monitoring
network is of vital importance for extracting precise and detailed spatial variability information of air
pollution in the city. Most of the datasets generated with the help of citizen or community participation
approaches suffer from serious data related gaps and the measurements collected are usually from
irregularly spread sensors, which may represent the air quality for only a small number of areas [21].
The irregular distribution of air quality data acts as a barrier in utilising such observations for air
quality mapping applications for the cities. Another important consideration while monitoring detailed
air quality in the city involves the selection of monitoring sites and the number of sensors involved
in an air quality monitoring network. The number of sensors involved and their locations can affect
the expected outcome of the air quality modelling approaches that utilise the data specific modelling
approaches [24,38–40].

The selection of monitoring site is challenging because of various parameters such as local land
use type, emission source, electricity connections, installation requirements of the equipment and aim
of the study. Increasing the number of sensors in the monitoring network also increases the costs
and efforts for data process and information generation. Systematic location and size selection for
sensor network deployment can be a useful consideration to gather the optimal volume of data with
the proper spread as per the fitness of purpose. It is neither practically possible to gather air quality
measurements at all locations in a city nor is it required. Few carefully chosen locations that can fit the
purpose of the study with the specified number of sensors in the network can be helpful in representing
the air quality for the city in detail. The necessity of formulating the requirements for low-cost sensor
network deployment for the specific purpose and at a specific location is essential. Clements et al. [22]
recommended the identification of the research question as one of the key consideration for planning
the deployment of the citizen participation based air quality sensor networks. Their discussion suggests
that the research question and pollutant(s) of interest should govern the size and locations of the air
quality sensor network. For instance, if the aim of the study were to reliability measure air quality in a
city over a large area (which is the primary focus of our study), sensor locations are important, but
so are the data redundancy aspect, pollutant variation and sensor density within the network [22].
For the systematic deployment of the low-cost air pollution monitoring sensor network, we could
combine the crowdsourced data location selection with scientific models and their variables, to achieve
better spatial coverage.

2.2. Air Quality Monitoring Methods

Geospatial tools have become useful for modelling air pollution in recent years. To represent
the intraurban variability of pollutants, various exposure assessment methods are proposed [8,10].
Approaches include interpolation of fixed-site monitoring stations, dispersion modelling, remote
sensing, land use regression (LUR), proximity and various other deterministic methods [41].
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Each method has their inherent limitations that may restrict their application for developing detailed
air pollution maps for the cities. For instance, the dispersion models that simulate pollutants dispersion
and reaction in the atmosphere are often infeasible at higher spatial resolution for larger areas [42].
The interpolation of pollution data collected by regulatory air quality monitoring stations can help
in regional patterns identification, but the networks are very sparsely arranged to collect informed
data, hence limiting their application for detailed air pollution modelling [38]. Over the years, LUR
modelling has demonstrated better or equivalent performance to other geostatistical and dispersion
methods and is therefore being considered for application in various epidemiological exposure
studies [38]. However, the scarcity of sensor data may impact the outcome of LUR models. To address
the sparsity and scarcity challenges, robust and compact systems that can be wide-spread are desired
to capture the spatiotemporal variations of air pollutants [43].

Usually, the measurement of air pollution in urban space is possible with the help of a network of
air quality monitoring sites. In practice, EU states are required to comply with the directive, framework
and legal requirement for assessment and management of ambient air quality as described in the
Air Quality Directive 2008/50/EC [44]. The methods for monitoring air quality currently involve
the use of fixed monitoring station networks in the European cities. Monitoring of air pollutants
is primarily performed using analytical instrumentation, such as optical and chemical analysers.
However, installation of single monitoring stations will neither help effectively in monitoring air
pollution [45] nor will the placement of monitoring stations ad-hoc or in few centrally located areas be
adequate to infer the pollutants’ detailed spatial variability in a city [46]. The air quality maps observed
presently are very scarce as the analysers used in the observation network are complicated, bulky
and expensive, together with a significant amount of resources required to maintain and calibrate
them [47]. These constraints lead to the low number of air quality monitoring stations that are generally
not adequate to capture the small-scale spatial variability of air pollutants in the urban environment.
As said previously, recent advancements related to sensor technologies have resulted in relatively
low-cost and small devices for measuring air quality [48,49]. The emergence of low-cost devices is also
recognised by policymakers and recommended to be embodied in the air quality directives [23,50].
Current air pollution monitoring networks can benefit from the use (and efficient spatial distribution)
of these low-cost sensing devices in the context of volunteered geographic information.

Overall, crowdsourced data/VGI has a significant potential to improve current air pollution
monitoring networks, notably through the provision of new data points to expand their spatial
coverage. The spatial arrangement of sensors usually influence how well the spatial distribution of air
pollutants and their impact can be captured [39]. Although various approaches have been proposed to
identify the optimal locations for air pollution monitoring sensor placement [51], few studies focus
on general location selection aspect for deployment of low-cost sensors [52,53]. To our knowledge,
no previous studies have considered the application of an optimisation method to enable systematic
location selection for robust LUR estimations during the crowdsourcing of air pollution data for cities.

3. Material

3.1. Study Area

The proposed method was applied for the city of Stuttgart (48.7758◦ N, 9.1829◦ E) situated
in the the state of Baden-Württemberg, Germany. The city of Stuttgart is also the capital
of Baden-Württemberg state (population: 11 million; size: 36,000 square kilometers) and the
Administrative Region of Stuttgart (population: 4 million; size: 11,000 km2). It is located at the
centre of the very densely populated southwestern Stuttgart Region (population: 2.7 million; size:
3700 km2), close to both the Black Forest and the Swabian Jura. It covers an area of 207.35 km2

and lies in a bowl-shaped valley about 270 m above the sea level on the back of the Neckar River.
The city centre is situated in a lush valley, ringed with vineyards and forests, and the river and has a
population of 628,032 (as of 31 December 2016) [54]. Air pollution is a severe concern in the city due to
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its topographic conditions and industrialisation. Few German newspapers also call the city of Stuttgart
“the German capital of air pollution” [55]. In 2016, the city authorities issued an alert, the first-ever
warning in Germany concerning air pollution [56]. Currently, city environmental protection authorities
are utilising four monitoring stations to gather data about air quality in the city [57]. Measurements
from three out of four stations are available as open data. Figure 1 shows the locations of stations
whose data are openly available on Umwelt Bundesamt portal [58]. Figure 2 presents the study area
with the crowdsourcing sensor network.
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Figure 1. Three official monitoring stations in the city of Stuttgart (Source: Umwelt Bundesamt).

3.2. Data

The sources of data that are used for this study can be divided into two categories, as detailed in
the following section.

3.2.1. Citizen-Generated Air Pollution Data

Four official monitoring stations alone would not be enough to fully assess the amplitude of the
air pollution issue in Stuttgart, as well as the effectiveness of measures taken to mitigate it. Fortunately,
the city of Stuttgart has a dense network of citizen-driven low-cost air pollution monitoring sensors
developed by OK labs [59]. Ground measurements of PM10 and PM2.5 from low-cost sensors are
available as open data for various locations [60]. Initially, the data of 594 (the dataset does not allow
for statements on the actual number of VGI contributors) sensors were downloaded for the first week
of 2018 (1–7 January 2018). Further data cleaning for removing sensors with no values in the specified
period and the pollutant of interest led to a final total of 116 monitoring sensors, which were used
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in this study. The measurements are collected using SDS011 sensors, with the measurement unit of
µg/m3 [61].
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Figure 2. Study area: City of Stuttgart and the existing citizen-driven air quality network (Base
map: Google).

3.2.2. Land Use Regression (LUR) Variables Open Data

A LUR model needs several geographical predictors variables (e.g., land use type, road count,
distance to roads, traffic, and terrain variables for specific buffers around the monitoring stations) as
input. In the modelling process, the air pollutant measurements were considered as the dependent
variable, and geographical predictor variables were considered as the independent variable to establish
a regression model that can help in estimating the air pollution at unmeasured locations. A linear
regression model has an equation of the form:

y = Xβ + ε (1)

where

• y is an n × 1 vector with air pollution observations at low-cost sensor locations for any particular
instance (where, in our case, weekly mean PM concentration was used);

• X is an n × k matrix with observations of k independent variables for the n sensor locations;
• β is a k × 1 vector with unknown parameters; and
• ε is an n × 1 vector of residuals, assumed to be distributed independently and identically.

The values about the predictor variables were extracted from the open data available on the
Internet. The buildings and road datasets were downloaded from Open Street Maps (OSM) and
Geofabrik services [62,63]; population data were downloaded using European Data Portal [64]; altitude
data were downloaded from Bundesamt für Kartographie und Geodäsie open data portal [65]; and the
land use data were downloaded from CORINE Land Cover (CLC) [66].
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4. Method

As mentioned in Section 1, the present study sought to develop an optimisation method that
can take into account fitness-of-purpose as objective for VGI data collection. As Clements et al. [22]
suggested, the identification of the research question before planning the deployment of the VGI based
air quality sensor network can help in useful data collection. The optimisation method presented below
takes the question “what are the set of locations in the city where measurements are required for estimating
air pollution with minimal LUR prediction error?” as the research question. It used Spatial Simulated
Annealing (SSA) to run the objective function.

SSA is a random search algorithm that explicit deals with spatial vicinity. It is the spatial version
of the probabilistic techniques simulated annealing, which was developed by van Groenigen [67] for
spatial soil sampling design optimisation. The SSA technique mimics the cooling of metal phenomenon
to reach global optima, i.e., simulated annealing. In the starting phase of the annealing process, the
locations for sensors can change greatly, with low probability even at not so optimal locations. As the
process cools down with time, changes in locations become smaller, and acceptance of worse designs of
monitoring network becomes less likely. During the optimisation process, the algorithm takes several
hundred or thousands of iterations to identify the optimal configurations. The SSA algorithm is widely
used in sampling design for mapping [67,68]. The SSA algorithm requires an objective function, whose
output value acts as “energy” in the optimisation process. The optimal design identification is made
based on the set of the location which represents the minimal energy of all iterations in SSA. Hence,
the objective functions should be formalised as a single objective optimisation function, pointing at
discrete-valued variables which calculate the energy value.

4.1. Optimisation Objective Function

The optimisation was performed based on some rules and objectives that are used as a function.
The optimisation objective function is usually composed of one or many constraints, which were
calculated using the explanatory variables of a given LUR model in our case. The objective function
was implemented using SSA, where it estimated the objective function value (also called the energy of
annealing) to identify the set of locations which fulfil the given optimisation objectives. The objective
function used in our study considered two aspects:

1. prediction error; and
2. widespread distribution aspect.

4.1.1. Prediction Error Aspect

The first aspect of the objective function was adopted from the previous work done
by Gupta et al. [27] to identify the set of locations for crowdsourcing sensors which collectively can
help in modelling PM concentration with the less spatial mean of prediction error for the study area.
The prediction error is the measure of the accuracy of the model to predict the value of the variable of
interest by using various independent variables. The prediction error aspect of the objective function
considered the covariates of the selected LUR model that can help in estimating the PM concentration
in the study area. The evaluation of the prediction error was done considering the matrix approach for
the least squares estimate of linear regression:

Var(ŷo − yo) = Var(xo β̂− xoβ) = xoVar(β̂− β)x′o = xo(X′X)−1x′oσ2 (2)

where ŷo and yo represent the predicted and measured value of the dependent variable; xo, ..., xn

represents the vector of the set of predictor variables values at the prediction site; x′o represents the
transpose vector; and X and X′ are the matrix and transpose matrix of the predictor variables for the
randomly selected monitoring site.
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σ2 is the residual variance of the regression, which is constant [69] and independent of sampling
locations. Hence, it can be left out of the objective function. The average predicted error of the LUR
model is thus proportional to:

P =
1
|A| ∑

xo∈A
xo(X′X)−1x′o (3)

and that is what we use as objective function.
For a two-dimensional study area A (represented by the number of its grid cells), the prediction

error aspect is computed using n observation sites for a network design D. D is the design of the set of
monitoring locations identified at each iteration of the optimisation process. The optimisation process
starts using a network configuration fed in as input or by randomly selecting monitoring design
Do, consisting of observation points so, ..., sn with corresponding predictor variable vectors xo, ..., xn.
During the optimisation process, the monitoring sites are transformed into a random vector with only
one element different from the initial one, yielding a new monitoring design D1. The optimisation
process computes the prediction error for each Dx (x ∈ [0, ..., n]) utilising each node of the rasterised
study area A, until the minimum value is achieved using xo, ..., xn, which represents the set of predictor
variables values at prediction location in A, with X and X′ being the matrix and transpose matrix of
the predictor variables for the randomly selected monitoring network design Dx (x ∈ [0, ..., n]) in the
optimisation process. For the objective function, the manipulation of the set of locations leads to the
modification of X matrix values. For further details about the above-mentioned objective function, we
suggest referring to the work done by Gupta et al. [27].

4.1.2. Widespread Distribution Aspect

Along with the requirement of the objective function to decrease the mean prediction error for
the study area, the second aspect in the objective function focuses on enforcing the wide-spread
distribution of sensor network in the study area. A wide-spread deployment is necessary because it
can help in providing higher spatial resolution to air pollution data, which in turn better informs the
identification of pollution sources and supports more conclusive studies on the effect of air pollution
on the quality of life in cities [70,71]. A widespread deployment also helps in reducing the uncertainties
associated with the modelled forecasting results.

Many low-cost sensors involved in the optimisation process along with uncertainties that can
be caused by the spatial autocorrelation of the predictor variables used for optimisation may lead
to clustered results. Furthermore, the selection of locations with extreme values of predictors in the
optimisation process, while only considering the prediction error aspect, can also lead to clustered
results. It is essential to have a constraint which can limit the clustering and enforce the selection of
disparate locations. Hence, we extended the objective function developed by Gupta et al. [27] to take
into account the wide-spread distribution aspects of sensors in VGI-based monitoring network design.

To integrate the wide-spread aspect in the optimisation objective function, we calculated the
inverse mean shortest distance (IMSD) for the set of locations selected in each iteration of annealing
after calculating the mean prediction error value considering Equation (3) in the optimisation process.
The spread aspect of the objective function can be written as:

IMSD =

[
1
N

N

∑
i

minj−1(Dij)

]−1

(4)

where N is the number of points in the configuration considered for optimisation and minj−1(Dij) is
second minimum distance between the ith point and other points of configuration (as the minimum
value will be 0 for each point distance to itself).

The algorithm for computing the IMSD (Equation (4)) to enforce wide-spread distribution of
sensor locations (as points) can be summarised as:
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1. Input of a number of points (N) with a different spatial configuration as selected in each iteration
of SSA.

2. Compute the distance matrix for all points.
3. Identify the second minimum value in each row of the matrix, as the distance matrix will contain

the first minimum value as 0.
4. Compute the mean of the minimum values from each row and column of the distance matrix.
5. Compute the inverse of the mean value.

After the computation both aspect values using Equations (3) and (4), the values are then added
to get a single objective function value which is further characterised as energy state in the SSA
optimisation process. Furthermore, the optimisation function was made flexible to consider the weight
function to prioritise one of the two aspects (prediction error or spread function) when identifying
optimal locations during the optimisation process. The weights must be equal to or larger than 0 and
sum to 1. The overall equation of the objective function that identifies the set of locations honouring
both aspects of the objective function for the study area can be expressed as:

Energy = (P ·W1) + (IMSD ·W2) (5)

where W1 and W2 are the weights which can be assigned to each aspect the objective function based on
the aim and fitness aspect of the VGI based air pollution monitoring initiatives. LUR prediction error
and spatial spread are both critical for air pollution monitoring. The main idea behind the discussed
objective function with the flexibility to consider weights is to give policymakers (e.g., coordinators of
VGI initiatives) some control over prioritising their goal considering two crucial aspects of air pollution
monitoring campaigns. Minimising the prediction error of the LUR implies confidence in the estimated
values of air pollution at locations that were not observed. On the other side, maximising spatial
spread leads, as mentioned above, to an air quality monitoring network potentially more informative
as to the identification of various unidentified pollution sources in the city.

The overall steps for the optimisation algorithm can be summarised (also see Figure 3) as follows:

1. A LUR model is selected/developed (using the air pollution ground data from low-cost sensors
and predictor variables). If ground data are not available for LUR creation, already existing
LUR models can be selected (arbitrarily or by considering models containing specific predictor
variables which are significant for the study area).

2. Initial monitoring station locations are defined as the input, consisting of N observations, which
can also be feed in as a whole number.

3. The study area A is discretised and the candidate locations are defined based on the resolution
expected for the study area.

4. Random point selection in each iteration starts and calculates the objective function values
using SSA.

5. The design of each previously selected configuration during the optimisation is modified until
the network design is accepted based on the objective function value.

6. A design will be accepted if it reduces the prediction error as well as distribute the sensor in a
wide-spread fashion, depending on the weight assigned to each objective as per Equation (5).

7. The optimisation continues to iterate and find the set of optimal locations until the new energy
value reaches the minimum and is not changing in further iterations based on the energy transition
and other annealing parameters.
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Figure 3. Overall flow of the optimisation process.

All geospatial and statistical operations for the study were carried out in the R statistical
environment [72], using packages sp [73], sf [74] and SpatialTools [75]. For running SSA, we used the
R package spsann [76]. The source code of the optimisation method developed in this study can be
accessed from GitHub [77].

4.2. Optimisation Process

The monitoring of air pollution is highly location-dependent. To tackle the challenges of acquiring
spatially fine-grained air pollution data for cities using VGI based approach, it is crucial to pay
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considerable attention to where the air pollution data must be collected by participants. We tested the
performance of the proposed optimisation method for the city of Stuttgart where a large number of
citizens are collecting air pollution data using low-cost sensors developed by OK labs [59].

In our study, we tested the application of the developed optimisation method for following
different practical scenarios:

1. Starting a new VGI campaign

• How many sensors should be deployed?
• Which locations are significant for deployment?

2. Finding out where to place new VGI sensors to extend the existing network

4.2.1. Optimisation for Starting a New VGI Campaign

Considering the advantages of new low-cost miniature sensor devices that are capable of
monitoring air pollution, we first tested the application of the developed optimisation method for the
aim of initiating a VGI campaign. Initiating a new campaign would mean that no crowdsourced air
pollution data are available, which leads to either relying on the official monitoring station data for
LUR development or starting the process from scratch. Since, for the study area of Stuttgart, only three
monitoring stations (see Figure 1) are measuring the air pollution data (which are not enough to
develop the LUR model), we are of the opinion that it would be wise to start the procedure from
scratch, assuming no air pollution data availability in the study area for developing a LUR model
for the first test case. To initiate the process of identifying optimal locations for the deployment of
new sensor network, we need to follow the steps as discussed in the previous section (Section 4.1).
As suggested, the optimisation method requires the input of explanatory variables of a given LUR
model for identifying the optimal locations. We selected a LUR model of Austria from the ESCAPE
project for PM2.5 [78] as the underlying model for the PM2.5 concentration distribution for the study
area. The selected model can be presented as:

25.44 + 0.11 ∗ BUILDINGS_100− 0.65 ∗ SQRALT (6)

The selection of the Austria LUR model was based on two underlying assumptions. First, the
model utilises square-root of altitude (SQRALT) as one of the explanatory variables. Stuttgart is
characterised by uneven altitudes and has a valley around it. We assumed that the SQRALT could help
in explaining the dynamics of air pollution. The second factor is the availability of data. The building
and altitude data were easily accessible; hence, we decided to use this model for testing the proposed
optimisation method for the city of Stuttgart. It is also important to point out that we have only
used the number (N = 116) and location of the existing crowdsourcing network’s configuration as the
initial monitoring network for the this particular test case. However, it is not mandatory to provide a
configuration; the optimisation method can also select random locations as the initial configuration for
a certain number of sensors if given as input.

How Many Sensors Should Be Deployed?

When initiating the air pollution monitoring campaign, one important consideration is the
number of sensors desired to start the monitoring campaign. To understand the impact of the size of
the monitoring network on the overall performance, we ran the optimisation method to identify the
effect of the number of monitoring stations on the optimisation objective function.

Which Locations Are Significant?

Another important factor while starting any air pollution monitoring campaign is to identify
locations which are of great significance to the overall process of air pollution monitoring. We also
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utilised the proposed optimisation method to identify the locations which can be significant for
initiating a low-cost sensor deployment in the study area given the selected LUR model.

4.2.2. Optimisation While Placing New VGI Sensors to Extend an Existing Network?

The ideas from the previous sections are useful while planning a new VGI campaign (e.g., a two-day
citizen science project to gather some values about pollutant concentrations in the city), and can
help VGI coordinators decide where to best channel the available resources. This section considers
another scenario, namely that of extending an existing VGI network by adding few new sensors using
a systematic approach.

For this new scenario, we used the already existing VGI sensor data (i.e., the 116 sensors). Since the
initiation of the optimisation process in this case also requires a LUR model, we developed a new LUR
model using data gathered from the existing VGI sensor network (in contrast to what we did in the
previous scenario, where we selected a LUR model arbitrarily). The advantage of developing a new
LUR model is that it provides a more realistic explanation of the air pollution in the city than any
arbitrarily selected model (as we did in the previous test).

In our study, we created a LUR model using the low-cost sensor data by following the steps
suggested in the ESCAPE study [78]. The model uses PM10 concentration as the dependent variable
and the following explanatory variables: square root of altitude (SQRALT), buildings in 500 m buffer
(BUILDINGS_500), industries in 300 m buffer (INDUSTRY_300), major roads length in 1000 m buffer
(MAJORROADLENGTH_1000) and low density residential land in 1000 m buffer (LDRES_1000).
The final model can be represented as:

Pollutant Concentration ∼ SQRALT + BUILDING500 + INDUSTRY300

+MAJORROADLENGTH1000 + LDRES1000
(7)

Optimisation using the objective function from Equation (5) can change the overall design of
the sensor network compared to the already existing network’s design. However, it is not practically
feasible to move existing monitoring sensors from their current location. Thus, we also investigated
the applicability of the proposed optimisation method to identify a set of new locations relevant to
the objectives of a VGI campaign (e.g., if the VGI campaign decides to extend the existing monitoring
network with 20, 40, 60, 80 and 100 more sensors).

5. Results

In this section, we present the results of the tests we performed to understand the significance of
the proposed optimisation method in above mentioned test scenarios.

5.1. Starting a New VGI Campaign

Figure 4 represents the optimal locations identified by the optimisation method, when only
considering the prediction error aspect of the objective function keeping the spread function to 0
(i.e., W2 = 0 in Equation (5)). As can be inferred from the figure, the resulting configuration is clustered,
which can be attributed to the explanatory variables under consideration from the selected LUR model.
After getting the first overview of the significant locations with only prediction error aspect, we further
used the optimisation method with the equal weight (W1 = W2 = 0.5) to also consider the wide-spread
location selection aspect.

Figures 5 and 6 presents the result of the optimisation process and energy states during the
optimisation process utilising the equal weights on both the aspect of objective function discussed
in this study. The outcome of this optimisation process, as can be seen in the figure, acknowledges
the wide-spread aspect. Numerous changes in sensor locations of the monitoring network design
can be noticed with few locations being clustered due to an equal weight of prediction error aspect.
The outcome of the similar weight optimisation process decreased the prediction error aspect from
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0.018700 to 0.0089, as a percentage decrease of 52.41% in prediction error aspect along with wide-spread
configuration. As one can see, the location distributions of Figures 4 and 5 differ considerably within
themselves, and from the original distribution in Figure 2. This visual inspection suggests two things:
First, the method works as expected, since incorporating spread as a criterion in Figure 5 has had
the desired impact on the distribution of the network. Second, given that the difference between
the distribution of locations with and without the use of the method turns out to be substantial,
Figures 4 and 5 remind that randomly placing stations are not enough to get the most out of VGI air
quality monitoring endeavours. Appendix A shows the influence of different weight values on the
resulting configurations for the chosen LUR model.
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ud
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Figure 4. Optimisation outcome without using the spread aspect of the objective function (N = 116).

5.1.1. How Many Sensors Should Be Deployed?

To investigate further the number of sensors required in the monitoring network for deployment
in the city, we ran the optimisation process with 20, 40, 60, 80 and 100 sensors. Figure 7 shows the
influence of the change in monitoring network size on the prediction error aspect value from the
developed optimisation objective function with equal weight on both wide-spread as well as prediction
error aspect (i.e., W1 = W2 = 0.5). In the graph, we can note that the deployment of 60 sensors in
the study area can already help in monitoring air pollution while decreasing the prediction error
aspect substantially. As the figure suggests, different sensor numbers lead to different values for the
overall prediction error aspect. The answer to the question “how many sensors should be deployed” is
therefore dependent on the wishes of the VGI-campaign organisers as to the final overall prediction
error of the collected data. Figure 8 presents various optimal configuration of monitoring network
obtained while running the optimisation method with the different number of monitoring station for
initiating a VGI campaign.
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Figure 5. Optimisation outcome considering the equal weight on both wide-spread as well as prediction
error aspect of the objective function (N = 116).
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Figure 6. Annealing energy transition during the optimisation with objective function laying equal
weight to prediction error aspect and wide-spread aspect (N = 116).
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Figure 7. Influence of number of monitoring sensors on the decreased prediction error aspect of
objective function with equal weights on both the aspects.

5.1.2. Location Significance

After understanding the influence of the number of sensors for deployment, another aspect of
importance is to know the locations which are significantly important for the overall monitoring
network design. Figure 9 presents a collective plot of all the configurations we realised with different
number of sensors for optimisation, which can help in inferring the locations of significance in the
study area for deploying sensors considering a given LUR model. The optimal locations obtained
from various runs of the optimisation method with different numbers of monitoring stations suggests
that few of the locations (encircled by red in Figure 9) are key to the minimisation of the LUR model
prediction error. The results thus demonstrate the potential of the optimisation method to identify
locations which require significant attention and must not be neglected while initiating a new VGI
campaign for air pollution data collection.

5.2. Finding Out Where to Place New VGI Sensors

We utilised the LUR model developed from the existing sensor data to test the optimisation
method’s ability to find optimal locations using the newly developed LUR (Equation (7)). The quality
of the LUR model developed was low (R2 of 0.1442). Nevertheless, we believe that even with low
explanatory power, the developed model was more reliable to represent the air pollution in the study
area than an arbitrarily selected model (Section 4.2.1). The explanatory variables of the developed LUR
model were then used in the optimisation method for determining optimal locations.

Same as for the previous case, the optimisation method was then run to identify optimal locations.
The existing network configuration in Figure 2 was used as the initial configuration for the optimisation
process. The resulting configuration (see Appendix B) acknowledged the spread aspect for identifying
locations that were widely spread as well as decreased the prediction error aspect from 0.01870 to
0.008903, as a percentage decrease of 52.39%.
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Figure 8. Optimal location identified for specific number of sensors to initiate VGI campaign.

Figure 9. Plot collectively representing all the configurations obtained by running objective function
using different numbers of monitoring sensors which can be deployed while initiating a VGI
campaign. The red circled areas represent the set of locations that are key to minimise the LUR
model prediction error.
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Figure 10 shows the influence on the prediction error when the existing monitoring network in
the study area was extended by 20, 40, 60, 80 and 100 sensors. It is apparent in the figure that, with
the addition of more monitoring stations systematically, the prediction error decreased. Figure 11
presents various monitoring network configurations realised during the expansion of the existing
monitoring network by adding the few certain number of sensors. The optimal locations identified in
the optimisation process can be used for further extending the existing VGI sensor network.
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Figure 10. Diagnostic study to capture the impact of extending the number of monitoring sensors into
the existing VGI based monitoring network.
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Figure 11. Optimal locations identified for extending the existing crowd sourcing monitoring network
using proposed objective function.
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6. Discussion

This section reflects on the significance of the study as well as its limitations, and points at
future work.

6.1. Significance

The study demonstrates the application of the optimisation method which can aid in the
systematic deployment of low-cost sensors for detailed air quality monitoring while considering
the scientific models such as LUR. Low-cost sensors can provide data with very high spatial and
temporal resolution, which is not feasible with conventional measurement approaches. The study
provided means to combine low-sensor datasets to a scientifically recognised air pollution modelling
approach to facilitate a better air pollution data collection in the city. The developed optimisation
method builds upon ideas suggested by Gupta et al. [27], to optimise air quality monitoring networks
for VGI campaigns. The significant performance of the proposed optimisation method to decrease the
mean prediction error by 52% along with wide-spread sensor network, demonstrate its applicability to
enable systematic planning for (purposeful) VGI campaigns for air pollution monitoring.

The wide-spread VGI campaign sources can be useful for overcoming the issues connected to
data quality, such as field duplication, data duplication and irregular spread of sensors, as pointed
out by Clements et al. [22] and Budde et al. [37]. The optimisation method also helps answer the
research question that need to be considered for planning deployment of sensor network (LUR in
our case) to drive the data collection process. By defining the objectives before data collection, the
method can be useful for reducing the cost of deployment by limiting the number of sensor nodes
required. The method can also be beneficial to identify locations which are easily accessible for
sensor maintenance and calibration, for example by using population-weighted optimisation [27].
Such extensions can assist in decreasing sensor failure and replacement costs for successful long-term
deployment. If the population weights are considered, the optimisation method can foster construction
of LUR models with network design incorporating area close to population and roads, which can
better characterise the full range of pollutant concentrations close to population [79].

Since the currently available sophisticated monitoring stations are not capable of expressing
the air pollution variability at a detailed spatial scale, the wide-spread and lower prediction error
based low-cost monitoring network can be an alternative for gathering measurements, which can
be detailed and informative. Using alternative data sources also helps in overcoming the sparsity
and scarcity challenges existing in the literature. The resilience of the developed optimisation
objective function to prioritise the wide-spread and prediction-error aspect could be advantageous for
developing a systematic crowdsourcing sensor network whose measurements can be used in versatile
air quality modelling approaches. The spatial spread aspect of the proposed optimisation method
helps in shrinking the effects caused by spatial correlation in LUR residuals (which usually exist,
see Beelen et al. [80]). However, using weighted least squares (WLS) instead of ordinary least square
(OLS) for Equation (3) or considering the kriging prediction error based optimisation as suggested
by van Groenigen [67] would have presented an analogous effect on the spatial spread of optimal
configuration as the spread aspect of the proposed optimisation objective function achieved for
declustering points. The method also inherits the flexibility offered by LUR and SSA, making it more
implementable even in cases where availability of data is limited. The outcome of the optimisation
objective function considering the wide-spread distribution aspect can also help in distributing the
points in different land use type, which can be constructive for developing robust LUR models as
suggested by Wu et al. [79].

The current state of sensor technologies with relatively large measurement uncertainties lead
to concerns regarding engaging the citizens in the data collection process. Observing spikes while
collecting data using VGI approaches may promote behavioural change which can help in preventing
exposure to bad air quality. On the other side, this may also lead to panic situations, possibly negating
any health benefit. Nevertheless, relating the spikes to the geographical variables such as road counts,
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traffic, and other emission sources by using LUR models may help to better inform citizens about their
actions and local area contributions. Furthermore, the low-cost sensors data might not be monetised
for proper air quality applications, but the LUR approach used in the study can act as a tool to process
and visualise the data; the resulting analysis and the corresponding information generated can be
easily monetised.

Overall, the optimisation method can help in defining the locations for systematic VGI campaign
planning, which anticipates the wise use of the participation efforts along with reducing the error
for air pollution modelling. The use of open and easily accessible data for VGI campaign systematic
deployment, make this approach more implementable. Another major benefit of deploying VGI sensors
is their ability to measure real-time data and provide immediate feedback that helps in improving the
air pollution monitoring strategy systematically with the help of the proposed optimisation method.
This also gives the opportunity to serve as a tool to help in building the capacity of participants
to understand air pollution and the influence of geographical variables in the proximity, which
can also explain air pollutant’s variability. The wide-spread distribution aspect in the proposed
optimisation method could also help to identify potential sources of air pollution otherwise unknown
to regulatory authorities.

6.2. Limitation and Outlook

Along with the advantages, the proposed optimisation method also brings some challenges and
limitations. One of the critical limitations for the application of the low-cost sensor data for air pollution
monitoring is the reliability of the measured data. Further challenges include short working time and
calibration challenge [22]. In the study, the quality of the LUR model developed was low (R2 = 0.1442)
which may be due to the quality of data produced by the low-cost devices, and the locations from
where they were collected [79]. Developing new LUR models using inputs from improved VGI sensors
could help better estimate the impact of sensor type on LUR model estimations.

In addition to these limitations related to the use of low-cost sensor data, there are limitations
concerning the proposed optimisation method. To begin with, the selection of LUR model is the first
step to find the optimal location, which means that, if we do not have a LUR model for the study
area, we have to select one from the previous studies by specifying some assumption based rules
for model selection. The selection of a LUR model based on some assumptions may not involve
variables that are convincing enough to explain air pollution in the study area. Another limitation of
the approach concerns the use of a LUR model and the underlying assumptions of multiple linear
regression (e.g., linearity between dependent and independent variables, independent and normal
distribution of error terms may create biases in interpreting the outcomes, which are the typical
limitations for any simplistic regression-based studies). Limitations also exist for the SSA approach;
as it is a stochastic method, every different run of optimisation method may yield different monitoring
network designs. The process of optimisation is also very time-consuming, depending on the input
parameters of annealing, variables used for computing the objective function and the study area size.
While running the optimisation for the study, the process took 6–8 h for one optimisation outcome.

As can be seen from the results, the output of the optimisation ended up being clustered.
This clustering can sometimes be caused by the spatial auto-correlation of the predictor variables, which
lead to all points being close to each other. The reliability of the LUR used for the optimisation may
also contribute to the clustered results. Devising the methods that address these limitations by taking
into account robust LUR, and information on the spatial correlation and interpolation based constraints
can be helpful in improving the design objectives of the study. We have not considered such factors in
our study but future work could consider integrating it. It would also be interesting to investigate
a combination of our method and active learning (see [81]) for the purpose of optimal air quality
network monitoring (e.g., our method helps to identify key locations during the monitoring process,
and these could inform the labelling phase of an active learning approach). Extending the developed
optimisation method to consider the population distribution weights proposed by Gupta et al. [27]
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can also be useful in identifying the locations close to living spaces. A population-based weight can
be useful in two ways. Firstly, identifying locations where the citizens live can make the initiation of
VGI campaign easier. Secondly, it promotes the gathering of air pollution data that represent the real
exposure of the population in the living spaces of the city. For the practical implementation of the
proposed optimisation method for VGI approaches, future work can focus on integrating the optimal
location identification method with citizen observatory based projects (e.g., FLAMENCO Project [82]).
Integration with citizen observatory based projects can be fruitful because the optimisation method
can identify the locations and citizen observatory can identify the participants at the optimal location,
making the overall flow of VGI-campaign initiation easy.

As discussed in previous studies related to low-cost sensors deployment [22,37], the field of
low-cost sensors for environmental monitoring is in transition, and more work is needed to continue
exploring the potential of low-cost sensors for air pollution monitoring. With the help of low-cost
sensor systematic deployment initiatives by using citizen participation approaches, it is possible to
bring forward a whole new system which anticipates the development of open data platforms (e.g.,
OK Labs [60]). These initiatives also help in connecting other systems that utilise air quality data such
as health informatics, housing companies, and sustainable urban planning, thereby helping in enabling
the development of tools and techniques that can improve Quality of Life (QoL) in cities.

7. Conclusions

In this paper, we propose an optimisation method that can help in the systematic deployment of
air pollution monitoring sensors for VGI approaches. A systematic deployment of monitoring stations
in the city is desirable to enable air pollution monitoring with higher accuracy. The optimisation
method suggested takes into account two important aspects, namely, the decreasing of a given
LUR model’s prediction error and the wide-spread distribution of locations in the study area.
The decreased prediction error aspect can help in developing more robust LUR models, and the
wide-spread distribution aspect supports in making the data collection approach more versatile and
informative. The applicability of the optimisation method was demonstrated using two practical test
cases: (1.) initiating a new VGI campaign, and (2.) placing new VGI sensors. In the first test case, the
optimisation method identifies the set of locations using explanatory variables of an already existing
LUR model. This approach is used to initiate a VGI campaign for the cities where no air pollution
data is available to develop the LUR model. In the second test case, a LUR model was developed
using the VGI based air pollution data source. The results of the optimisation method revealed a
significant decrease in prediction error (by 52%) while taking into account the wide-spread distribution.
The method can thus be potentially useful to policymakers for the systematic planning of the size
and location of VGI campaigns. The availability of more accurate and open data, improved low-cost
sensor for reliability and systematic deployment of sensors in VGI campaign may help in refining
the performance of the proposed optimisation method for more robust results. Future work can also
involve integrating the optimisation method with citizen science observatories to identify participants
at the optimal locations identified by the objective function.
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Abbreviations

The following abbreviations are used in this manuscript:

ESCAPE European study of cohorts for air pollution effects
IMSD Inverse mean shortest distance
LUR Land Use Regression
OLS Ordinary Least Squares
PM2.5 Particulate matter (PM) that have a diameter of less than 2.5 micrometers
QoL Quality of Life
SQRALT Square root of altitude
SSA Spatial Simulated Annealing
USEPA United States Environmental Protection Agency
VGI Volunteered Geographic Information
WHO World Health Organisation
WLS Weighted Least square
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Figure A1. Configuration with various weights on prediction error (W1) and wide-spread (W2) aspect
of developed objective function.

Appendix B
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Figure A2. Optimal locations considering prediction error constraint for Stuttgart LUR model
developed using low-cost sensor network data.
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Figure A3. Optimal locations considering prediction error and wide-spread aspect in the objective
function for Stuttgart LUR model developed using low-cost sensor network data.
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