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Abstract: The objective of this study is to evaluate operational methods for creating a particular
type of urban vegetation map—one focused on vegetation over rooftops (VOR), specifically trees that
extend over urban residential buildings. A key constraint was the use of passive remote sensing data
only. To achieve this, we (1) conduct a review of the urban remote sensing vegetation classification
literature, and we then (2) discuss methods to derive a detailed map of VOR for a study area in
Calgary, Alberta, Canada from a late season, high-resolution airborne orthomosaic based on an
integration of Geographic Object-Based Image Analysis (GEOBIA), pre-classification filtering of
image-objects using Volunteered Geographic Information (VGI), and a machine learning classifier.
Pre-classification filtering lowered the computational burden of classification by reducing the number
of input objects by 14%. Accuracy assessment results show that, despite the presence of senescing
vegetation with low vegetation index values and deep shadows, classification using a small number
of image-object spectral attributes as classification features (n = 9) had similar overall accuracy (88.5%)
to a much more complex classification (91.8%) comprising a comprehensive set of spectral, texture,
and spatial attributes as classification features (n = 86). This research provides an example of the very
specific questions answerable about precise urban locations using a combination of high-resolution
passive imagery and freely available VGI data. It highlights the benefits of pre-classification filtering
and the judicious selection of features from image-object attributes to reduce processing load without
sacrificing classification accuracy.
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1. Introduction

1.1. Background

The presence of vegetation materially impacts the lives of urban dwellers. Research efforts
into the effects of urban vegetation come from diverse fields beyond arboriculture and forestry,
such as energy, ecology, and economics [1]. Many unobtrusive beneficial effects of urban trees have
been demonstrated, such as reducing sulphur dioxide [2], lowering urban surface temperatures [3],
and increasing rainfall interception [4] (see [1,5] for comprehensive reviews). However, not all effects
are beneficial, or unobtrusive. For example, Nyberg and Johansson [6] recently illustrated a method for
identifying the degree to which a population at risk (e.g., in need of daily care) would be isolated due
to road closures by storm-felled trees. Maps of vegetation underpin these types of research projects.
Vegetation maps are also important for urban forest management, such as in setting benchmarks for
tree planting initiatives [7], monitoring vegetation health over time, and preparing climate change
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vulnerability assessments and adaptation strategies [8,9]. While urban trees are increasingly impacted
by climate change, they are also potential agents for its mitigation; however, where urban trees may
prove most important is in their use helping cities adapt for climate change [10].

Often, vegetation maps are also needed as inputs for other studies in the field of urban
geography, such as photovoltaic potential estimation [11] and rooftop temperature analysis [12,13].
To accurately predict rooftop kinetic temperatures with a thermal infrared (TIR) sensor, the presence
of vegetation must be accurately accounted for in order to create emissivity-corrected kinetic heat
maps [14,15]. For example, the MyHEAT commercial program (www.myheat.ca) has created emissivity
corrected urban heat-loss maps for over 1.7 million Canadian homes. In support of that program,
the goal of this study is to evaluate operational methods to create detailed maps of vegetation over
rooftops (VOR)—specifically trees that extend over urban residential buildings—from high-resolution
multispectral imagery, which can then be used to further refine rooftop emissivity corrections for
high-resolution TIR imagery.

Other applications of these maps include identification of VOR in areas where buildings are
susceptible to damage from falling trees (e.g., due to wind storms or heavy, late season snow storms
such as the one that struck Calgary, Alberta, Canada in September 2014 resulting in 26 million kilograms
of fallen tree debris [16]). This approach can also be generalized and used by the insurance industry
to identify and monitor other urban infrastructure at risk of damage or disruption due to falling
vegetation, such as light-rail transit tracks, overhead power and telecommunication lines, or roads
needed for emergency access/egress.

To create VOR maps, we describe the use of Geographic Object-Based Image Analysis
(GEOBIA), pre-classification filtering of image-objects using Volunteered Geographic Information
(VGI)—specifically the OpenStreetMap (OSM) database—and a machine learning classifier. Given the
complex nature of high-resolution urban scenes and the limited utility of vegetation indices for
differentiating senescing vegetation (which exists in our scene) from non-vegetation, we hypothesize
that the wide range of attributes able to be generated for GEOBIA image-objects will be important
for the successful identification of VOR. We test this hypothesis by comparing the accuracy of a
classification of image-objects based on a comprehensive set of spectral, texture, and spatial attributes
(n = 86) against a classification based only on a subset of the spectral attributes, specifically the mean
digital number (DN) value from each band (n = 9).

To better understand the role of remote sensing in mapping urban vegetation we briefly review
the remote sensing literature that has been published since the mid-1980s, with a focus on studies that
(1) use multispectral imagery and (2) in which vegetation mapping was a primary goal. The following
subsections discuss the common types of vegetation maps produced (Section 1.2) and identify the
most common types of classification algorithms applied (Section 1.3).

1.2. Types of Urban Vegetation Maps

Urban vegetation maps are used in a wide variety of fields. Different applications have different
requirements and the maps used to meet those requirements can be characterized by their level of
detail. The simplest, presence/absence masks, are binary thematic maps that only define a given pixel
or region as vegetation or not. Pu and Landry [17] applied thresholds to a Normalized Difference
Vegetation Index (NDVI) image and optimized their rule criteria by maximizing accuracy as evaluated
against reference data. In a study based on multitemporal, multispectral imagery, Tigges et al. [18]
classified pixels as vegetation if, in any of 5 congruent NDVI bands computed from images captured
on different dates over a single year, their values met a specified criteria.

Thematic maps are often established using classification schemes that are mutually exclusive,
exhaustive, and hierarchical [19]. It is the combination of these three properties that allow land-use and
land-cover (LULC) data to be merged into fewer classes [19]. LULC maps focused on urban vegetation
partition vegetation in different ways; frequently by height. For example, Myeong et al. [20] discuss the
use of local surface height data for separating trees and shrubs from grasses and herbaceous vegetation.

www.myheat.ca
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Urban vegetation applications involving biodiversity, habitat, and ecosystem modelling can
require high-resolution spatial information and fine-grained thematic information. Consequently,
vegetation may be classified by habitat type [21] or, in the case of individual tree-level classification,
by genus [18] or species [22]. In a 2014 review of methods for inventorying urban forests at the
single tree level, Nielsen et al. [23] reported that field surveys were used in favour of remote sensing
approaches in most of their reviewed articles and ultimately recommended the continued use of field
studies until remote sensing techniques were further developed.

In addition to user needs, the level of detail in an urban vegetation map typically corresponds
to the resolution of the imagery on which it was based. Though we note that dealing with massive
volumes of data that result from large, city-wide, coverage with VHR imagery is also a factor that
can influence the selection of a classification approach. While large datasets may make processor or
memory intensive methods untenable, such large datasets also enable the use of recently developed
data- and geo-object-driven classification approaches [24].

1.3. Classification Algorithms

Supervised classification approaches, in which information is known about the ground classes
before classification (typically referred to as training data), tend to be more common than unsupervised
approaches for urban vegetation mapping. Jensen [25] notes that the ground class reference information
is generally obtained through fieldwork, interpretation of maps and imagery, and personal experience.
Recent studies have also incorporated other data sources, such as Google Street View [18] and
Volunteered Geographic Information (VGI) [26].

A powerful and commonly used classifier for multispectral analysis is the maximum likelihood
classifier [27,28]. This classifier is premised upon an assumption of normally distributed data and,
in some cases, an a priori knowledge of class proportions [29]. Also common is the k-Nearest
Neighbour (kNN) classifier [29], which makes no assumptions about data or class distributions [30].
Other approaches include rule-based classifiers, in which rules are established using domain
knowledge [31,32] and Decision Trees (DTs), which can be used to express rules established by a
domain expert, or can be learned from labelled reference data using an algorithm such as CART [33].
In this context, DTs are considered a machine learning technique. For example, Zhang and Hu [34]
achieved similar overall accuracy using a machine learning DT (86%) and a knowledge-based DT
(85%) for classification of tree species based on multispectral imagery. Similarly, random forest is an
ensemble technique in which many DTs are trained, and their results combined [33]. Feng et al. [35]
describe using a random forest classifier to achieve a highly accurate classification of urban vegetation
using ultra high-resolution visible imagery from an unmanned aerial vehicle.

Support Vector Machines (SVMs) are another machine learning classifier that have a number
of favourable properties that can be used for urban vegetation mapping [36]. Most importantly,
SVMs require relatively small amounts of training data [37], and trained SVM models are recognized
as being good at generalizing to unseen data (i.e., are robust against overfitting) [38].

Traditionally, the supervised classification algorithms previously discussed were used to classify
the pixels composing remote sensing imagery. However, the increase in spatial resolution of MSS
imagery since the 1980s has come with new challenges. With high-resolution urban imagery,
high frequency patterns resulting from the complex arrangement of different land-cover types
(and their shadows) become visible [39–41], often confusing traditional pixel-based classifiers [24].
To overcome this issue, image analyses can be performed on groups of (spatially/spectrally related)
pixels rather than individual pixels. This concept led to the development of Geographic Object-Based
Image Analysis (GEOBIA) [42]. GEOBIA is a sub-discipline of Geographic Information Science
concerned with the development of methods for partitioning images into meaningful groups of pixels,
often with a semi/automated segmentation algorithm, and assessing the properties of the resulting
groups [42]. Most of the algorithms discussed herein can be used to classify these meaningful groups
of pixels, called image-objects, in the same way they are used to classify individual pixels. Specifically,
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a wide range of GEOBIA-derived attributes can be computed for each image-object, that may be
statistical (e.g., based on spectral attributes such as the mean value of the pixels composing each
image-object for a given band) or based on the topology of the component pixels (e.g., texture attributes
such as the spatial-variability within an image-object, or spatial attributes such as the length of
the image-object’s border). Additionally, some software packages allow the spatial context of the
image-object attributes to be considered (e.g., the proximity or topology between image-objects).
However, in practice, a ubiquitous set of useful attributes is not well defined (as they tend to be
scene/application specific); furthermore, the attributes that can be computed often vary between
software packages. Even with these caveats, in general, a subset of the newly created image-object
attributes becomes the features on which further classification is based.

From this brief literature review we have recognised that there is considerable overlap between
techniques applied for urban vegetation mapping and the mapping of forests. In fact, many approaches
used for vegetation mapping in urban areas were first used to map forests. Focusing on recent trends,
readers are referred to [43,44] for reviews of tree crown detection and delineation methods from passive
and active remote sensing imagery, respectively. For further information, including a review of tree
species classifications from multispectral, hyperspectral, LiDAR, synthetic aperture radar, and TIR
remote sensing imagery, we refer readers to [45]. Active remote sensing (specifically LiDAR that is
often fused with multispectral imagery) dominates the high-resolution urban vegetation mapping
literature. Relatively little research has been published with a passive-only focus on high-resolution
urban vegetation mapping, and in our review, we found no works in which the classification or
mapping of vegetation over rooftops (specifically trees that extend over urban residential buildings—not
green roofs) was the explicit aim of the work. Consequently, this is the first of its kind, even though (as
previously mentioned) there are a number of potential applications.

Vegetation mapping and classification has been a major component of remote sensing since
its inception. Increasingly high spatial resolution sensors have allowed considerable work on
the complex problem of urban vegetation mapping. This continuing trend has recently enabled
researchers to ask specific questions about vegetation at precise spatial locations (e.g., “what species
is this tree?”, “does vegetation extend over that rooftop?”). Despite the advances in passive sensor
technology, operational-quality results for these demanding problems still typically require the use
of expensive-to-collect active sensor data, or in-situ approaches other than remote sensing. We note,
that as recently as 2014, field surveys were still being recommended over remote sensing for urban
tree inventories at the single tree level [23] suggesting that more work in the field of high resolution
urban vegetation mapping is required.

With the goal of operationally creating detailed urban maps of vegetation over rooftops, the next
sections report on the study area and data sets used (Sections 2.1 and 2.2); how we integrated GEOBIA,
machine learning, and VGI to achieve this goal (Sections 2.3–2.11); the study results (Sections 3.1
and 3.2); and lessons learned from this work (Sections 4.1–4.3).

2. Data and Methods

2.1. Study Area

The City of Calgary, Alberta, Canada has an extensive urban forest canopy, much of which is
mature due to the long history of urban tree management [46]. Common genera include spruce (Picea),
poplar (Populus), ash (Fraxinus), elm (Ulmus), chokecherry (Prunus), apple (Malus), oak (Quercus),
pine (Pinus), hawthorn (Crataegus), birch (Betula), and maple (Acer) [47]. From this mature city canopy,
a 25 km2 study area was initially identified and all communities completely within the area were
selected. However, to reduce unnecessary processing, industrial areas, parks, and communities with
fewer than 30 residential buildings were excluded. This resulted in a 23.4 km2 study area (Figure 1)
composed of 26 communities. Our preference for a site with a high tree canopy density led to a



ISPRS Int. J. Geo-Inf. 2018, 7, 462 5 of 25

centrally located study area which included some of the oldest communities in the City (annexation
dates range from 1907 to 1956 [48]).
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Figure 1. Study area (yellow) located in the City of Calgary, Alberta, Canada, overlaid on a true-colour
composite of a four band (RGBi) orthoimage.

2.2. Datasets

The primary remote sensing data source used was a digital airborne orthomosaic composed of
the visible (RGB) and near-infrared (NIR) wavelengths (i.e., RGBi). This orthomosaic was acquired
over Calgary on 23 September 2012 in the early afternoon (between 1:00 and 3:00 p.m.), at a spatial
resolution of 25 cm with a Vexcel UltraCamX from a nominal flying height of 3500 m above ground
level. After being resampled with cubic-convolution, data were provided to us (from the University of
Calgary Digital Library) at a 0.5 m spatial resolution and 8-bit (per channel) radiometric resolution.
Most vegetation in the study area appears green when the orthomosaic is viewed as a true colour
image, i.e., with the red, green, and blue (RGB) data bands mapped to the red, green, and blue
display components, respectively. However, the Fall acquisition also resulted in the presence of large
amounts of senescent vegetation coloured in yellows, oranges, reds, and purples when viewed as a
true colour image.

To support reference data labeling, we used imagery from a similar date but with higher spatial
resolution. This imagery was acquired 22 September 2012 and was accessed using the historical
imagery feature within Google Earth Pro (version 7.3.1). Spatial resolution is not reported by Google
Earth Pro and display resampling hampers its easy estimation; however, based on objects visible
within the scene, it appears to be at a nominal spatial resolution of 0.2 m.

We also obtained supporting vector data from two sources: (1) OpenStreetMap (OSM)—an online
VGI database, and (2) the City of Calgary’s Digital Aerial Survey (DAS) dataset. The OSM data was
extracted for the study area on 31 March 2018 using the ArcGIS (version 10.3.1) OSM toolbox. OSM data
are attributed using one or more tags, where each tag consists of a key-value pair. Keys generally
identify feature types or describe categorical data, and values provide the associated specifics for the
key. For example, an element representing a road feature may have the tags “highway = residential”
and “maxspeed = 50”.

Building (footprint) polygons were obtained from the City’s DAS dataset. These polygons were
manually traced from 1:5000 scale colour aerial photos and have a spatial accuracy of (+/−)15 cm [49].
Image collection for the DAS dataset originally began in 1991 and is updated annually, but in
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an incremental fashion. As such, while the polygons used in this study were extracted from the
2012 version of the DAS dataset, the origin date for any given polygon is known only to be between
1991 and 2012. We note that only polygons representing single family homes and low-elevation
multi-family homes (i.e., duplexes, but not condominiums) were used for the study (n = 14,375).

Prior to analysis, we transformed the datasets to a common projected coordinate reference system
using ArcGIS. All data were re-projected to NAD83/3TM (central meridian of 114◦ W), a common
coordinate reference system used for mapping urban areas in Alberta, Canada.

2.3. Overview of Methodology

The main steps in the generation of maps of vegetation over rooftops (VOR) for this study involve:
(1) geometric correction of building footprint polygons to obtain rooftop polygons (Section 2.4),
(2) creation of image-objects and calculation of associated attributes from the RGBi imagery and
several derivatives (Sections 2.5–2.7), (3) removal of irrelevant image-objects through filtering based
on VGI data (Section 2.8), (4) creating training and test data (reference data) by manually labelling
randomly selected image-objects based on the RGBi imagery and higher resolution Google Earth Pro
imagery (Section 2.9), (5) training models to classify the main image-object dataset (and assessing their
accuracy) using the reference data subset (Section 2.10), and (6) combining the rooftop polygons and
classified image-objects to obtain a map of VOR (Section 2.11). Figure 2 presents a flow chart detailing
this methodology.
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2.4. Geometric Correction to Generate Rooftop Polygons

In the Calgary orthomosaic, there is notable relief displacement between the rooftops and the
building footprints and the direction and magnitude of the displacement are visually variable over the
study area. As the DAS building polygons represent footprints, they had to be geometrically corrected
to match the positions of the rooftops in the orthomosaic. We adjusted the polygons rather than the
imagery to avoid additional resampling of the orthomosaic.

The geometric correction was performed with the ArcGIS Spatial Adjustment tool using a
projective transformation (the class that relates two overlapping images [50]). We selected control
points (n = 294) on rooftops of single-family homes and low-elevation multi-family homes to limit the
range of building heights used for control points.

The average root-mean-square error of the residuals was 0.55 m (i.e., 1 pixel). The remaining
residual error includes effects from variable building heights, any errors in the location or shape of
the source polygons, and the uncertainty in accurately locating the corners of building in the 0.5 m
spatial resolution imagery. In the following sections, the polygons obtained by geometrically correcting
the DAS building footprints to better visually match rooftops in the orthomosaic are referred to as
rooftop polygons.

2.5. Image Pre-Processing

We created five new raster images derived from the original RGBi imagery for a total of nine
raster bands. The intention was to provide alternate representations of the data in which differentiation
between vegetation (including senescing vegetation) and rooftops would be improved, relative to the
RGBi bands alone.

The first of the new images was a Modified Soil-Adjusted Vegetation Index (MSAVI), which we
included for its ability to distinguish between vegetation and non-vegetation (i.e., rooftops).
The MSAVI is based on the Soil-Adjusted Vegetation Index (SAVI) which incorporates a correction
factor to account for soil brightness [51]. Soil adjustments are simply corrections for background
brightness, regardless of the material (e.g., soil, rock, non-photosynthetic vegetation, etc.). The optimal
value for the SAVI adjustment factor was found to vary with the amount of vegetation present and this
lead to the development of the MSAVI in which the correction factor is self-adjusting [52]. There are two
versions of the index: MSAVI1, which uses an empirical expression to define the soil adjustment factor,
and MSAVI2, in which the soil adjustment factor is derived inductively [52]. We selected MSAVI2, as it
is simpler to compute than the empirically derived version:

MSAVI2 =
2ρNIR + 1−

√
(2ρNIR + 1)2 − 8(ρNIR − ρred)

2
, (1)

where ρNIR is the reflectance in the NIR band and ρred is the reflectance in the red band [52].
ENVI (version 5.3.1) was used for all MSAVI2 calculations. First, we performed a relative

atmospheric correction on the red and NIR bands of the RGBi imagery with the Internal Average
Relative Reflectance Correction tool. The bands were then linearly scaled to the range 0–1 using the
largest value across both bands. We computed the index using the Band Math tool and linearly scaled
result to the range of byte data (0–255) for consistency with the other data bands.

Inspired by the intent of the Tasseled Cap yellowness index, i.e., the third Tasseled Cap component
for the Landsat MSS [53]—despite it ultimately be used as a haze diagnostic rather than senescence
indicator [54]—we computed the four principal components (PC) of the RGBi imagery with the
idea that one or more of the PC bands may benefit the differentiation of senescing vegetation from
non-vegetation classes.

The first principal component (PC1) contained most of the variability in the input dataset with
decreasing amounts accounted for by each subsequent component. Specifically, PC1 accounted for
most of the variance in the RGBi imagery at 82.9%. PC2 accounted for 16.0% and PC3 and PC4 account
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for less than 1% each. Typically, the higher PC images are very ‘noisy’; however, in this case PC3 and
PC4 visually revealed valuable roof/vegetation information. Table 1 presents the total and cumulative
variances as well as the factor loadings, which describe the contributions of each input band to each
output principal component. PC1 contains approximately equal amounts of information from the
visible bands and a small amount from the NIR band. PC2 primarily contains information from
the NIR band, PC3 primarily contains information from the red and blue bands, and PC4 primarily
contains information from the green band. Figure 3 presents examples of the RGBi and derived bands
for a portion of the study area.
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Table 1. Individual and cumulative variance accounted for by the principal components of the RGBi
imagery, and the RGBi factor loadings for each principal component.

Component
Variance Band Contributions (Factor Loadings)

Total Cumulative Red Green Blue NIR

PC1 82.9% 82.9% 32% 27% 30% 10%
PC2 16.0% 98.9% 0% 2% 12% 86%
PC3 0.9% 99.8% 61% 2% 34% 3%
PC4 0.2% 100.0% 6% 69% 24% 1%

2.6. Segmentation

Prior to segmentation in ENVI FX, we applied a 3 × 3 median filter (edge-preserving) to all nine
input raster datasets (RGBi, MSAVI2, PC1–PC4). The intent of this filtering was to reduce the number
of small image-objects in the segmentation results, while maintaining the edges of larger discrete
image-objects (i.e., rooftop objects).

ENVI FX performs a segmentation operation in two steps: (1) segmentation and (2) merging,
each of which can use one or more bands as input. We note that operationally, segmentation is
based on a watershed algorithm that operates on a single band to group pixels into an initial set of
segments [55]. However, to use multiple input bands from which a single watershed image is created,
ENVI FX implements two options: (1) the Edge Method results in a gradient image (via the Sobel edge
detector) that is best suited for segmentation of discrete objects; and (2) the Intensity Method computes
an across-band average that is better suited for segmentation of continuous fields [55]. After the
watershed segmentation, the merging process combines adjacent segments based on a measure of their
spectral similarity and shared border length [56]. Merging is an iterative process and produces a set of
image-objects that are visually more meaningful than the input set of segments. ENVI FX provides
two options for computing the measure of spectral similarity and shared border length (Full Lambda
Schedule and Fast Lambda) that implement similar distance functions [56].

Based on visual assessments of trial segmentations, we determined that the MSAVI2, PC2, and PC3
bands were the most suitable inputs for both segmentation and merging. Specifically, we used the Edge
Method for segmenting and the Full Lambda Schedule method for merging. In this case, the relevant
hyperparameter values were heuristically optimized based on visual assessment (Scale Level = 91 and
Merge Level = 36).

Some studies have used vector data directly in the segmentation process [57]. In this case the OSM
data for Calgary was too coarse to be useful. It is, however, expected that recent developments in very
deep convolutional neural networks will lead to a great increase in the fine scale features present in
OSM. See [58] for a recent example of building footprint generation at a very large scale (i.e., the entire
contiguous United States) with deep convolutional neural networks.

2.7. Attribute Calculation

ENVI FX can generate 8 attributes based on the DN values of each image-object in each input band
and an additional 14 attributes based on the shape of each image-object (Table 2). To fully evaluate this
functionality, we computed all attributes for each of the 9 bands resulting in a total of 86 attributes for
each image-object. In the following sections, the term “features” refers to the subset of image-object
attributes used for classification.
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Table 2. Attributes computed by ENVI FX for image-objects.

Attribute Type 1 Description/Equation 3,4

Mean Spectral Mean of values
Maximum Spectral Maximum of values
Minimum Spectral Minimum of values

Standard deviation Spectral Standard deviation of values
Range Texture 2 Average of kernel range values
Mean Texture 2 Average of kernel mean values

Variance Texture 2 Average of kernel variance values
Entropy Texture 2 Average of kernel entropy values, where

Entropy = −
Ng

∑
i=0

P(i) ∗ ln P(i) (2)

Area Spatial Total area within object less area within any holes
Length Spatial Length of object perimeter and perimeters of any holes

Compactness Spatial Compactness =
√

4∗area∗π
outer contour length (3)

Convexity Spatial Convexity =
length o f convex hull

Length (4)

Solidity Spatial Solidity = Area
area o f convex hull (5)

Roundness Spatial Roundness = 4∗Area
π∗Major length2 (6)

Form factor Spatial Form f actor = 4∗π∗Area
total perimeter2 (7)

Elongation Spatial Elongation =
Major length
Minor length (8)

Rectangular fit Spatial Rectangular f it = Area
Major length∗Minor length (9)

Main direction Spatial Angle subtended by major axis and x-axis (degrees)
Major length Spatial Major axis length for an oriented bounding box
Minor length Spatial Minor axis length for an oriented bounding box

Holes Spatial Number of holes
Hole solid ratio Spatial Hole solid ratio = Area

outer contour area (10)
1 ENVI FX groups image-object attributes into three categories: spectral, texture, and spatial. Spectral and texture
attributes are computed for each band for each image-object. Spatial attributes are computed only once for
each image-object. 2 Each texture attribute is computed in two steps: (1) for each pixel in the image-object the
attribute is computed with a centered kernel and (2) the resulting values are averaged. Based on visual assessment,
we used an 11 × 11 kernel for texture calculations. 3 Attribute descriptions and equations reproduced from ENVI
documentation [59]. 4 Ng is the number of unique grey values in the kernel and P(i) is the probability of the ith
pixel value [60].

2.8. Pre-Classification Filtering

We used OSM data as ancillary data to exclude image-objects that could be confidently defined as
irrelevant classes (i.e., any classes not required to produce the VOR map). For example, any image-objects
located away from residential buildings could theoretically be excluded. In practice, we excluded
image-objects that (1) represent roads (based on the observation that residential buildings have a
minimum, non-zero setback from roads) and (2) fall within an area with a LULC class unlikely to
contain residential buildings (e.g., school grounds). The specific OSM element types used are presented
with the results in Section 3.1. Generally, filtering was achieved by using ArcGIS to establish a selection
of image-objects, using one or more applications of the Select by Location and Select by Attribute tools,
then removing the selected image-objects from the dataset.

2.9. Sampling and Response Design

We used image-objects as the primitive units for both classifier training and accuracy assessment.
Simple random sampling was used to select 0.25% of the total number of image-objects for use as
reference data, as recommended by Thanh Noi and Kappas [61]. The reference image-objects were
manually labelled according to our classification scheme. Our scheme was informed by a review of
the reference data samples and was established to meet the three criteria noted by Congalton and
Green [19], namely that it be (i) mutually exclusive, (ii) exhaustive, and (iii) hierarchical. The properties
of being mutually exclusive and having hierarchy are important to allow the classes to be merged into
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a simple vegetation mask. Consequently, we created nine detailed classes that can be merged into two
simplified classes to generate a final veg/non-veg mask (Table 3).

Table 3. The classification scheme used is hierarchical with nine detailed classes that can be merged
into two simplified classes. At each level, the classes are mutually exclusive and exhaustive. Each class
label is assigned a short identifier for clarity, which is shown in parentheses before the class name.

Detailed Classes Simplified Classes

(V.1) Healthy vegetation
(V) Vegetation(V.2) Senescing vegetation

(V.3) Shadowed vegetation

(N.4) Light grey rooftops

(N) Non-vegetation

(N.5) Dark grey rooftops
(N.6) Red and brown rooftops
(N.7) Concrete
(N.8) Other impervious bright
(N.9) Other impervious dark

For many of the image-objects, the RGBi and MSAVI2 imagery was sufficient for a confident
evaluation of the appropriate class label. For more challenging image-objects, we also considered
the higher resolution Google Earth Pro imagery. We note that in VHR imagery of urban areas,
shadows become unique objects. As such, there are three detailed vegetation classes: (i) healthy
vegetation, (ii) senescing vegetation, and (iii) shadowed vegetation. Also, due to the complex and
heterogeneous nature of this detailed urban scene, we note that some rare scene-objects in the reference
data were only seen a couple of times. For example, the following scene-objects were represented
in the sampled reference image-objects: tennis court surface (n = 1), yellow school buses (n = 1),
and construction materials/building under construction (n = 6). In such cases, these image-objects
were appropriately labelled as bright impervious surfaces or dark impervious surfaces. Some of
the (randomly selected) reference image-objects also represented multiple land cover classes (i.e.,
mixed-objects). Where mixed-objects were the result of under-segmentation, they were labelled with the
majority class. Mixed-objects that represented a mixture of land cover classes but appeared uniform
were also observed (e.g., sparse vegetation overhanging a paved road). In these cases, classification was
based on an estimate of the dominant class.

2.10. Classification and Accuracy Assessment

For the classification of the image-objects into the nine detailed vegetation and non-vegetation
classes, we randomly split the reference data into two portions: a training portion used for model
selection and a testing portion used for accuracy assessment. The split was stratified to maintain class
proportions in both groups. The sample sizes of the training and testing groups are listed in Section 3.
In this study, classification consisted of two steps: (1) model selection, which involved iteratively training
many classifiers with different hyperparameters to identify the most suitable hyperparameter values
(i.e., hyperparameter tuning), and (2) prediction, which used the selected model to predict class labels
for unknown image-objects. Classifier training is performed many times but requires much less
computation than prediction because it considers only a (relatively) small training sample of the total
number of image-objects. Prediction is more computationally expensive, as it is performed on every
image-object; however, it is only done once.

ENVI’s built-in classification tools combine classifier training and prediction into a single step.
This makes ENVI inefficient for model selection as each classifier training iteration would also include
an unnecessary prediction step. To overcome this limitation, we used Scikit-learn (0.19.1) [62], an open
source machine learning library for Python, as it allows training and prediction to be performed
separately. Scikit-learn includes implementations of various algorithms for supervised classification
(including SVM), unsupervised classification (i.e., clustering), and regression.
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SVM models usually map feature vectors to higher dimensional feature space, by means of a
kernel function, before computing the optimal hyperplane that separates the classes [63]. Radial Basis
Function (RBF) and linear kernels are common. An SVM model with an RBF kernel has two
hyperparameters: C, which controls the cost of misclassification in the model, and γ, which controls
the width of the kernel (i.e., the spread of the underlying gaussian function). As the linear kernel is
just a specific case of the RBF kernel (i.e., where γ → ∞ ) [64], we did not consider a linear kernel
separately. Therefore, following [65], we tuned the model hyperparameters using a simple exhaustive
grid search of exponentially increasing values (C = 2−1, 20, . . . , 29 and γ = 2−6, 2−5, . . . , 23) and 5-fold
cross-validation. The selected hyperparameters were the pair that yielded the highest overall average
cross-validation accuracy (based on the training portion of the reference data).

To allow our hypothesis (that a wide range of attributes is important for the successful
identification of VOR) to be tested, we evaluate the performance of one model, trained on a
comprehensive set of 86 attributes, against a second model, trained on a set of 9 attributes derived
only from image-object spectral means. Model selection was performed independently for each model
(hereafter referred to as M86 and M9—see Section 3.2.1 for details), then we predicted the detailed
classes for the remaining image-objects, finally comparing their classification results.

To understand classification accuracies in the context of VOR, we assessed the predicted classes
of test image-objects that overlapped the rooftop polygons. Image-objects were included in the
assessment if they intersected rooftop polygons by an area of at least 0.25 m2 (i.e., equivalent to the
area of 1 pixel). In addition to this over-rooftop assessment we conducted a full-scene assessment that
considered all test image-objects. This additional assessment allowed characterization of over-rooftop
accuracy in the context of the accuracy of the entire scene.

For each model, we generated confusion matrices for both the detailed and simplified classes and
computed standard accuracy measures and their variances (i.e., overall accuracy, producer’s accuracies,
and user’s accuracies). Accuracy assessment calculations were performed using the online thematic
Map Accuracy Tools by Salk et al. [66] (see Section 3.2).

To test our hypothesis, we compared the classes predicted for the test image objects by M86 and
M9 (considering the simplified classes). We note that the samples were not independent because we
used the same single set of test data to evaluate each model. Accordingly, we used McNemar’s test [67]
of marginal homogeneity, which is suitable for use with correlated samples. With McNemar’s test,
the null hypothesis is that the accuracies are equivalent. The McNemar statistic, Z2, has (for large
samples) a chi-squared distribution with one degree of freedom and is computed as follows [67,68]:

Z2 =
( f12 − f21)

2

f12 + f21
, (11)

where fij is the number of samples correct in set i and incorrect in set j.

2.11. Map Preparation

To obtain the final VOR map, we used ArcGIS to dissolve the boundaries between adjoining
vegetation polygons and intersected the results with the geometrically corrected rooftop polygons
(Section 2.4). The resulting map and its LULC accuracies were qualitatively assessed and reported in
Section 3.2.

3. Results

3.1. Segmentation, Pre-Classification Filtering, and Reference Data Selection

Segmentation, using the Edge Method and the Full Lambda Schedule (see Section 2.6),
yielded 624,684 image-objects in our 23.4 km2 study area. We subsequently filtered these image-objects
to exclude roads and those falling within LULC areas not expected to contain residential buildings.
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To select road image-objects for removal, we identified nine tags that collectively describe the
majority of OSM polyline elements that represent roads (listed in Table 4). We then selected all
image-objects intersecting these OSM polyline elements. Due to the presence (in some areas) of
vegetation overhanging roads, vegetation image-objects were also present in the selection. It was
important to remove vegetation from this selection to avoid filtering out any image-objects that may be
vegetation over rooftops. Based on heuristic evaluation, we deselected image-objects with mean DN
values in PC2 or PC3 less than 120. We found that these criteria were highly successful for removing
vegetation image-objects, though many road image-objects were also removed from the selection.

Table 4. Tags (key = value pairs) for OpenStreetMap (OSM) polyline elements that correspond to city
roads and OSM polygon elements unlikely to contain rooftops or vegetation over rooftops (VOR).

Tags for Representing Roads Tags Representing Areas Absent of Rooftops/VOR

Key Value Key Value Key Value

highway = motorway leisure = park natural = wood
motorway_link golf_course water

secondary sports_centre scrub
secondary_link pitch landuse = retail

tertiary shop = mall recreation_ground
tertiary_link amenity = parking industrial

service school military
residential clinic cemetery

unclassified 1 waterway = riverbank brownfield
1 Visual inspection revealed that the “highway = unclassified” elements were mostly roads.

Next, we identified 18 tags describing OSM polygon elements not likely to contain residential
buildings (listed in Table 4). We then selected image-objects intersecting these OSM polygon elements
and excluded them from the dataset. After pre-classification filtering, our study area contained
537,508 image-objects, representing a 14% reduction. The average size of the filtered image-objects is
106 pixels (26.5 m2) with a standard deviation of 346 pixels (86.5 m2). Figure 4 shows a portion of the
study area after pre-classification filtering.
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Figure 4. OpenStreetMap (OSM) data and image-objects (after pre-classification filtering) shown
overlaid on a true-color image. Also shown are OSM polylines representing roads (red) and an OSM
polygon representing a school ground (pink). Some image-objects intersecting road polylines were not
filtered as they have the potential to represent vegetation over rooftops.
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With simple random sampling, we selected 0.25% of the filtered image-objects to be reference
data (n = 1344). After manually labelling the reference data, they were randomly split into training
and test portions using a 50/50 ratio (stratified to retain the same proportional class distribution as
shown in Table 5).

Table 5. Quantities of training image-objects and test image-objects by class (with related numbers
of pixels). These reference data were obtained by simple random sampling of the image-objects
rather than point-based sampling to avoid introducing sampling bias (as image-objects are of variable
size). Reference data was randomly split into training and test portions (50% each), stratified by class.
A subset of the test data was then extracted for evaluation of vegetation overhanging rooftops.

Detailed Class Label
Total No. of

Reference Objects
(# Pixels)

No. of Training
Objects

(# Pixels)

No. of Test
Objects

(# Pixels)

No. of
Over-Rooftop Test

Objects
(# Pixels)

(V.1) Healthy vegetation 557
(43,709)

278
(20,737)

279
(22,972)

43
(3819)

(V.2) Senescing vegetation 237
(23,327)

119
(12,212)

118
(11,115)

14
(1500)

(V.3) Shadowed vegetation 97
(8451)

49
(4516)

48
(3935)

7
(762)

(N.4) Light grey rooftops 54
(15,213)

27
(6794)

27
(8419)

15
(5063)

(N.5) Dark grey rooftops 51
(21,031)

26
(9768)

25
(11,263)

13
(6705)

(N.6) Red and brown rooftops 25
(3384)

12
(1417)

13
(1967)

5
(1067)

(N.7) Concrete 121
(7943)

60
(4110)

61
(3833)

11
(811)

(N.8) Other impervious bright 128
(16,277)

64
(8433)

64
(7844)

8
(1077)

(N.9) Other impervious dark 74
(5713)

37
(2935)

37
(2778)

6
(619)

Total 1344
(145,048)

672
(74,126)

672
(70,922)

122
(21,423)

3.2. Model Selection, Classification Accuracy, and Hypothesis Testing

3.2.1. Model Selection

We selected two sets of classification features to compare: (i) all 86 available attributes computed
for each image-object and (ii) for each of the 9 bands, only the mean of the DN values within each
image-object. A separate SVM model selection was performed for each of the two sets of features,
designated M86 (all attributes as features; n = 86) and M9 (mean DN values as features; n = 9).
Model selection was performed using the training image-objects. Radial Basis Function (RBF) kernels
were used for both models. For both models we found the optimum C to be 28. The optimum γ was
2−5 for M86 and 2−4 for M9.

Figure 5 shows two sample areas with examples of detailed classes predicted by M86 and M9 as
well as the simplified classes for M86. White regions represent polygons that were not classified by
the model, either because they were excluded during pre-classification filtering or because they were
reference polygons. The results from M86 and M9 clearly had similar structure; however, they differed
from each other in small ways and both included classification errors.
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Figure 5. Classified image-objects for two example areas: Area 1 (left) and Area 2 (right). (a,b) show
true-colour ortho-composites. (c,d) show detailed model M86 classes. (e,f) show detailed model M9
classes. (g,h) show simplified M86 classes. V = Vegetation (veg.) and N = Non-veg. V.1 = Healthy
veg.; V.2 = Senescing veg.; V.3 = Shadowed veg.; N.4 = Light grey rooftops; N.5 = Dark grey rooftops;
N.6 = Red and brown rooftops; N.7 = Concrete; N.8 = Other impervious bright; and N.9 = Other
impervious dark. White areas are training, testing, or excluded polygons.
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The classification accuracy assessments and the McNemar test were based on evaluation of
predicted classes for the test portion of the reference data (n = 672 for the full-scene assessment
and n = 122 for the over-rooftop assessment). Confusion matrices were computed for the detailed
classes (Tables 6 and 7) and the simplified classes (Tables 8 and 9) and provide a detailed accounting
of misclassifications. Due to the smaller number of applicable test image-objects, the over-rooftop
assessment was only performed on the simplified classes.

Table 6. Confusion matrix and derived accuracy measures for model M86’s predictions of detailed
classes for the test data. V.# refer to vegetation classes and N.# refer to non-vegetation classes.

M86—Detailed: Reference Class Labels—Full-Scene

Predicted Class Labels V.1 V.2 V.3 N.4 N.5 N.6 N.7 N.8 N.9

(V.1) Healthy vegetation 232 33 4 0 1 0 1 1 7
(V.2) Senescing vegetation 26 82 0 0 0 0 0 5 5
(V.3) Shadowed vegetation 7 0 41 0 0 0 0 0 0
(N.4) Light grey rooftops 0 0 0 12 1 0 8 5 1
(N.5) Dark grey rooftops 1 2 0 0 12 1 1 1 7
(N.6) Red and brown rooftops 2 2 0 0 2 4 1 1 1
(N.7) Concrete 4 5 0 1 4 0 30 15 2
(N.8) Other impervious bright 7 5 0 9 0 4 6 30 3
(N.9) Other impervious dark 6 5 2 0 4 3 2 2 13

Producer’s Accuracy 81% 61% 87% 55% 50% 33% 61% 50% 33%
Producer’s Accuracy Variance 4% 7% 9% 18% 17% 24% 12% 11% 13%
User’s Accuracy 83% 69% 85% 44% 48% 31% 49% 47% 35%
User’s Accuracy Variance 4% 8% 10% 19% 20% 26% 13% 12% 16%

Overall Accuracy 67.9%
Overall Accuracy Variance 3.3%

Table 7. Confusion matrix and derived accuracy measures for model M9’s predictions of detailed
classes for the test data. V.# refer to vegetation classes and N.# refer to non-vegetation classes.

M9—Detailed: Reference Class Labels—Full-Scene

Predicted Class Labels V.1 V.2 V.3 N.4 N.5 N.6 N.7 N.8 N.9

(V.1) Healthy vegetation 243 21 3 0 0 0 6 0 6
(V.2) Senescing vegetation 27 82 0 0 0 0 2 3 4
(V.3) Shadowed vegetation 3 0 45 0 0 0 0 0 0
(N.4) Light grey rooftops 1 0 0 12 0 0 6 7 1
(N.5) Dark grey rooftops 4 0 0 0 10 0 1 3 7

(N.6) Red and brown rooftops 1 1 0 0 0 4 0 6 1
(N.7) Concrete 5 4 0 4 3 0 29 15 1

(N.8) Other impervious bright 4 11 0 11 1 2 6 28 1
(N.9) Other impervious dark 11 2 1 0 4 2 2 3 12

Producer’s Accuracy 81% 68% 92% 44% 56% 50% 56% 43% 36%
Producer’s Accuracy Variance 4% 7% 7% 16% 21% 32% 12% 10% 14%
User’s Accuracy 87% 69% 94% 44% 40% 31% 48% 44% 32%
User’s Accuracy Variance 4% 8% 7% 19% 20% 26% 13% 12% 15%

Overall Accuracy 69.2%
Overall Accuracy Variance 3.1%
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Table 8. Confusion matrices and derived accuracy measures for model M86’s predictions of test data
classes (after simplification). Full-scene values are presented on the left while the values on the right
include only those polygons overhanging rooftops.

M86—Simplified:
Reference Class Labels

Full-Scene Over Rooftops Only

Predicted Class Labels V N V N

(V) Vegetation 425 20 57 7
(N) Non-vegetation 41 186 3 55
Producer’s Accuracy 91% 90% 95% 89%
Producer’s Accuracy Variance 2% 4% 5% 7%
User’s Accuracy 96% 82% 89% 95%
User’s Accuracy Variance 2% 5% 8% 6%

Overall Accuracy 90.9% 91.8%
Overall Accuracy Variance 2.1% 4.9%

Table 9. Confusion matrices and derived accuracy measures for model M9’s predictions of test data
classes (after simplification). Full-scene values are presented on the left while the values on the right
include only those polygons overhanging rooftops.

M9—Simplified:
Reference Class Labels

Full-Scene Over Rooftops Only

Predicted Class Labels V N V N

(V) Vegetation 424 21 57 7
(N) Non-vegetation 45 182 7 51
Producer’s Accuracy 90% 90% 89% 88%
Producer’s Accuracy Variance 2% 4% 7% 8%
User’s Accuracy 95% 80% 89% 88%
User’s Accuracy Variance 2% 5% 8% 8%

Overall Accuracy 90.2% 88.5%
Overall Accuracy Variance 2.2% 5.7%

3.2.2. Detailed and Simplified Class Accuracies

Predictions from both models showed confusion between the detailed vegetation classes
(healthy, senescing, and shadowed)—primarily between healthy (V.1) and senescing (V.2) vegetation.
Healthy vegetation had higher producer’s accuracy (81% for both M86 and M9) than senescing
vegetation (61% for M86 and 68% for M9). Healthy vegetation also had higher user’s accuracy (83%
for M86 and 87% for M9) than senescing vegetation (69% for both M86 and M9). There was also
considerable confusion between concrete (N.7) and other bright impervious surfaces (N.8). Similarly,
there was notable confusion between the non-rooftop impervious surfaces (N.7, N.8, and N.9) and the
vegetation classes (V.1, V.2, and V.3); however, little misclassification occurred between the vegetation
and rooftop classes (N.4, N.5, and N.6). Accordingly, the accuracy metrics were generally better for
both M86 and M9 after merging into the simplified vegetation (V) and non-vegetation (N) classes.
In nearly every case, the producer’s and user’s accuracy were higher for the simplified classes than the
detailed classes. Accuracy variances also decreased, particularly for the non-vegetation classes.

3.2.3. Over-Rooftop and Full-Scene Accuracies

A comparison of the overall, producer’s, and user’s accuracies from the over-rooftop assessment
and full-scene assessment did not reveal any trend (though accuracy variances were larger for the
over-rooftop assessment). The over-rooftop producer’s and user’s accuracies were from 7% lower to
13% higher than the full-scene accuracies. For the M86 model, the producer’s accuracy for vegetation
and the user’s accuracy for non-vegetation were higher in the over-rooftop assessment, while for the
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M9 model, only user’s accuracy for non-vegetation was higher. The M86 overall accuracy was 0.9%
higher for the over-rooftop assessment and the M9 overall accuracy was 1.7% lower.

3.2.4. Hypothesis Testing

The correspondence between correctly/incorrectly predicted labels by the M86 and M9 models
was tested using the McNemar test. We found that the accuracy of the predictions by the M86 and
M9 models did not differ significantly. This was true for both the over-rooftop assessment (Z2 = 1.14;
p-value = 0.29) and the full-scene assessment (Z2 = 0.49; p-value = 0.48). As such, we were unable to
reject the null hypothesis that a wide range of attributes is important for the successful identification
of VOR.

3.2.5. VOR Qualitative Assessment

Figure 6 presents a sample of the VOR map shown over a false colour composite (RGB = NIR, red,
green). Upon visual assessment, the VOR map appears to successfully mask most of the vegetation
over residential rooftops in the study area. Errors of commission appear more common than errors of
omission. One example of a commission error, of which multiple instances were observed, is that of
dark grey rooftops (N.5) are often classified as deeply shadowed vegetation (V.3). This was observed
both for whole rooftops and partial rooftops, such as areas in the shadow of another part of the roof.
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Figure 6. Example of vegetation over rooftop (VOR) map based on the M86 model results, with VOR
shown as green hatched polygons. Polygons are shown over a false colour composite (RGB = NIR,
red, green).

Another observation is related to the area along the mask boundaries. In Figure 6,
vegetation appears to extend out from under the solid mask, which, at first, puts the positional
accuracy of the mask boundaries in question. However, examination of the top panel of Figure 6
reveals vegetation along the inside of the boundary that is darker than the vegetation further from the
edge, implying that, like the pixels on the other side of the mask, these pixels represent a combination
of the reflectance from the vegetation and the rooftop.
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4. Discussion

4.1. Accuracy Assessment

We followed the recommendations of Radoux and Bogaert [69] for the object-based accuracy
assessment of wall-to-wall maps, which included calculating overall, producer’s, and user’s accuracies.
The accuracy of the classification was based on reference image-objects that were labelled using the
source RGBi imagery (0.5 m) supplemented with a higher resolution RGB image (0.2 m), a practice
that, while faster and allowing many more image-objects to be used for training and testing, may have
been less accurate than labelling based on field visits. As noted by Stehman [70], labelling errors in the
reference data reduce the quality of the accuracy assessment.

Based on McNemar’s test of marginal homogeneity, the prediction accuracy of the models was
not significantly different. However, the aim of the VOR maps is to ensure vegetation is excluded
when determining rooftop emissivity corrections for high-resolution TIR imagery. This means that
there is a need to be confident that, if a location is identified as not vegetation on the map, vegetation is
indeed not present at the associated position on the ground. As such, it is the user’s accuracies that are
the most relevant.

The M9 model consistently had the same or better user’s accuracies for the detailed non-vegetation
classes than the M86 model. They were, however, both generally poor, with none of the detailed
classes being greater than 50%. This was due in part to confusion between the various non-vegetation
classes. The user’s accuracies for the non-vegetation classes improved to 82% (full-scene) and 95%
(over-rooftops) when aggregated to the simplified classes. The user’s accuracy for the detailed
vegetation classes were generally much higher than the non-vegetation classes and changed less on
aggregation into the simplified classes.

Also of note is that the classification accuracy for the full-scene was generally similar to that for
the subset of image-objects extending over rooftops. This suggests that considering vegetation over
rooftops as a special type of urban vegetation is not necessary for classification purposes (other than
the fact that ‘over rooftops’ represents a spatial subset of the full-scene).

An enhanced segmentation validation may be considered for future projects, though it would
require a more detailed set of reference data (e.g., independent reference polygons not selected from
the segmented image-objects). With such a set of independent reference data, accuracy assessment
methods designed for object extraction [71] could be used. An additional limitation of the accuracy
assessment is the lack of a field assessment of classification and segmentation accuracy due to funding
limitations and the high cost of field validation data. Additionally, future projects will incorporate
rooftop delineation methods directly from the remotely sensed data to eliminate the need for an
external building polygon dataset.

4.2. Feature Selection and Pre-Classification Filtering

We hypothesized that the additional image-object-specific features available when performing
a GEOBIA classification (e.g., ENVI’s texture and spatial attributes) would be important for the
successful identification of vegetation over rooftops (VOR). However, the lack of a statistically
significant difference between the accuracy of the predicted classes by M86 and M9 indicate that
the wide range of additional features beyond spectral means were not necessary for a successful image
classification and preparation of an VOR map. This may be explained in part because the specific size
and shape of individual image-objects implicitly contain useful spatial information that is spectrally
integrated within the mean DN values of each object. As Marceau et al. [72] noted, 90% of the spectral
variability of Grey Level Co-occurrence Texture measures was defined by the kernel size. In this case,
as previously noted by Hay et al. [73] image-object boundaries represent unique object-specific texture
kernels, that contain relevant spatial and spectral information.

Shadows can pose considerable issues for segmentation and classification of trees in high
resolution imagery [34]. An issue of interest for this study results from the fact that the degree
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of light transmittance to the shaded land cover depends on the nature of the occluding object.
Buildings, (solid) fences, and other artificial structures will generally absorb or reflect all the light in the
wavelengths of available data bands. In contrast, trees will tend to transmit some NIR light and much
less visible light, and the degree of transmittance will depend on a number of factors such as the canopy
thickness [74]. This means that, for shaded areas of a given land cover type, computed vegetation
indices will have different values based on the cause of the shadow, which becomes increasingly
complex at very high spatial resolutions. Our imagery also contains senescing vegetation further
limiting the utility of common multispectral vegetation indices. However, the high accuracy of the
final merged vegetation mask indicates that these issues were sufficiently mitigated.

Pre-classification filtering with the VGI data allowed for a reduction in the number of
image-objects to be classified. While no detrimental effect on the classification accuracy was
observed from the removal of these image-objects, further study is required to confirm that the
classification accuracy was not impacted and to identify additional criteria that may be suitable for
pre-classification filtering.

4.3. Fuzzy Vegetation and Heterogeneous Classes

In the context of remote sensing, trees are fuzzy objects [75]. As a result, the boundary defined by
the transition between areas of VOR and areas of rooftop is gradual. Despite this fact, the segmentation
algorithm appears to have found a reasonable compromise in establishing the hard boundary
that represents this transition. For example, the bottom panel of Figure 6 shows that vegetation,
mostly appearing red in the false colour composite (RGB = NIR, red, green), appears to extend a few
pixels out from beneath the vegetation mask in some areas. However, considering the case where the
mask is inverted, we notice that the vegetation tends to appear less dense for the first few pixels inside
the mask (i.e., a portion of the rooftop shows through the vegetation). This visual balance indicates
that the hard boundaries of the vegetation mask are reasonable. However, moving forward, a specific
buffer analysis one pixel wide on either side of the vegetation/rooftop mask boundary combined with
a dynamic threshold based on each buffer’s contents [76] is anticipated to further mitigate this issue,
though doing so is beyond the scope of this paper.

Reasonably well-defined boundaries between VOR and rooftop areas also highlight the
importance of using suitable bands, not only for the classification, but for the initial segmentation.
We note that the use of PC2, which discriminated between green vegetation and rooftops (see Panel (h)
in Figure 3) and PC3, which discriminated between senescing vegetation and rooftops (see Panel (i)
in Figure 3), allowed the segmentation algorithm to establish reasonable boundaries between both
healthy and senescing vegetation and rooftops.

5. Conclusions

The availability of very high spatial resolution imagery and appropriate algorithms for its
classification has allowed researchers to ask specific very questions about urban vegetation, and do
so with high spatial precision. This study examined the specific question of mapping vegetation
(trees) that extends out over rooftops in urban areas using passive high resolution airborne imagery.
We showed that a combination of a GEOBIA (Geographic Object-Based Image Analysis) classification
approach, pre-classification data filtering, and a machine learning classifier were able to generate
accurate vegetation masks from very high-resolution RGBi imagery adequate for VOR mapping,
despite a complex high-resolution urban environment with deep shadows and senescing vegetation.

In contrast to our initial hypothesis, we found that classification of image-objects using M86,
comprising a wide range of spectral, texture, and spatial attributes, did not yield a significantly higher
overall classification accuracy (91.8%) than classification using M9, which was based on a smaller
number of only spectral attributes (88.5%); a finding which we attribute to spatial information being
inherently integrated with the spectral response of well-defined image-objects. The user’s accuracies of
the image-object classification are important measures of the suitability of the models for future use in
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refining rooftop emissivity corrections for high-resolution TIR (thermal infrared) imagery. Our method
resulted in balanced user’s accuracies of 89% for vegetation and 88% for non-vegetation based on the
simpler M9 model.

We used high-resolution airborne RGBi imagery as the primary input for generating the VOR
map, as RGBi imagery is among the most common remote sensing data available from municipalities.
We supplemented this with freely available VGI (Volunteered Geographic Information) data from
OpenStreetMap. Pre-classification filtering with these VGI data allowed for a 14% reduction in
the number of image-objects to be classified without apparent impact on the resulting VOR maps.
Data reduction through filtering remains an important consideration for classification as the increasing
resolution of imagery results in ever larger volumes of data to process.

The use of bands that maximize the separability between the different types of vegetation and
rooftops in the segmentation steps resulted in well positioned boundaries between VOR areas and
rooftops in the final map, despite the gradual nature of the transition between VOR and rooftops.
As another component of this study, we reviewed the role of remote sensing in urban vegetation
mapping and summarized the types of urban vegetation maps generated from these data sources as
well as the classification algorithms used to create such maps.
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