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Abstract: Lunar impact craters are important for studying lunar surface morphology because they
are the most typical morphological units of the Moon. Impact crater descriptive indices can be
used to describe morphological features and thus provide direct evidence for both the current
state and evolution history of the Moon. Current description methods for lunar impact craters are
predominantly qualitative, and mostly focus on their morphological profiles. Less attention is paid
to the detailed morphological features inside and outside of the craters. A well-established and
descriptive index system is required to describe the real morphological features of lunar impact
craters, which are complex in a systematic way, and further improve study, such as heterogeneity
analyses of lunar impact craters. This study employs a detailed lunar surface morphological analysis
to propose a descriptive index system for lunar impact craters, including indices for the description
of individual craters based on their morphological characteristics, spatial structures and basic
composition (i.e., crater rim, crater wall, crater floor, central uplift, and ejecta), and indices for crater
groups, including spatial distribution and statistical characteristics. Based on the proposed descriptive
index system, a description standard for lunar impact craters is designed for categorising and
describing these indices in a structured manner. To test their usability and effectiveness, lunar impact
craters from different locations are manually detected, and corresponding values for different indices
are extracted and organised for a heterogeneity analysis. The results demonstrate that the proposed
index system can effectively depict the basic morphological features and spatial characteristics of
lunar impact craters.
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1. Introduction

The Moon is the most important natural satellite and the closest celestial body to Earth. Because
of its unique position and potential abundant resources, the Moon has become an important research
subject for understanding the origin and evolution of the Earth-Moon system and the Solar System [1].
Studies of lunar morphology have long been a fundamental aspect of lunar exploration [2], as the
morphological characteristics of the lunar surface can not only directly reflect the current state of the
Moon, but also record information which reveal the formation and evolution history of the Moon [3].
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Magma movement inside the Moon ended during the large-scale formation of lunar maria, and the
contribution of other exogenetic processes to lunar morphology is relatively insignificant; this has led
researchers to believe that the lunar surface morphology has been shaped predominantly by high-speed
impacts from external celestial bodies (e.g., [4,5]). All these findings on lunar morphology provide
insight for scientific topics such as exploration of the origin of the Moon and its evolution history.

Among various lunar morphological features, lunar impact craters are one of the most important
geological tectonic units [6]. Due to fewer external forces on the Moon (e.g., wind and water), many craters
are well preserved [7]. As the most typical morphological units on the Moon, lunar impact craters provide
major insight into lunar surface morphology and its forms, structures, and feature distribution [8,9].
In-depth studies on the morphology, classification and evolution of these craters are important for a
greater understanding of the Moon, including the geological age of the lunar surface, the development
and evolution patterns of lunar morphology, the thickness of the lunar regolith, and optimal locations
for soft landing of probes [10]. Through investigating lunar craters and their morphological features,
descriptive index systems can be designed and employed for a better interpretation of these craters.
The establishment of such a system could improve the scientific classification scheme for lunar craters,
and further facilitate studies on lunar crater identification, spatial heterogeneity analysis of lunar crater
morphology, etc.

In 2012, the International Astronomical Union (IAU) published names and associated descriptions
of almost 8600 lunar craters on the United States Geological Survey’s (USGS) official website.
The descriptions include the naming date, the etymology, the coordinates of the crater centre, and the
diameter of the crater [11]. There are also numerous studies conducted directly on lunar craters,
focusing on their type and structure, detection and identification, spatial heterogeneity, formation
mechanisms, and evolution processes. On one hand, several classification systems have been proposed
to differentiate between craters, laying a preliminary foundation for crater description. First, the shape
of impact craters was employed for classification. For example, Oberbeck and Quaide [12] proposed
the Oberbeck & Quaide classification where they categorised craters into four types, referred to as simple
bowl-shaped, uplifted, flat-based, and concentric; Stöffler et al. [13] divided craters into three groups,
including complex craters, simple craters, and impact basins; and He et al. [14] concluded seven crater
types, called simple, bowl-shaped, flat-based, central uplifted, concentric, complex, and lunar mare
remnant. Second, other morphological features were introduced to the classification of lunar impact
craters. Baldwin [15] categorised craters into five classes according to the clarity of crater boundaries,
from clearly visible craters to barely visible ones; Fieder [16] proposed his G·Fieder classification scheme
and described 13 types of craters and 23 types of ring structures based on geological characteristics;
and the Nakano classification [17] used spatial patterns and crater scale to determine seven primary
and 13 atypical types of lunar impact craters. Wood and Anderson [18] considered both morphology
and morphometry when they proposed the Wood & Anderson classification, which involved 18 types
of craters according to differences in crater margin profiles, inner crater wall structure, and crater
floor features; these were further divided into five groups based on the degree of erosion [18]. Finally,
Heiken et al. [6] proposed three classes according to crater diameter and development, including
simple bowl-shaped craters, relatively large, still developing craters with central peaks, and giant
ancient craters in which central peaks were converted into multi-ring basins.

On the other hand, many previous studies have analysed specific morphological features of
lunar impact craters directly, which can be represented by independent indices, such as size and scale
(e.g., [19–21]), crater shape (e.g., [22–25]), depth-to-diameter ratio (e.g., [26–29]), form of the ejecta layer
(e.g., [30–33]), and the morphological relationships between different craters (e.g., [34–36]), to provide
critical information for intuitive recognition of lunar craters. Based on these morphological features,
further research on lunar crater formation and chronology has also been conducted. For example,
Florensky et al. [37] argued that there should be a correlation between the structure and size of impact
craters and, based on this assumption, the temporal and spatial sequences of crater formation were
analysed; Head III et al. [38] revealed the formation processes of craters through their temporal and
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spatial distributions; Michael and Neukum [39] attempted to derive ages for lunar surfaces using a
crater size-frequency distribution; and Zhao et al. [40] studied the formation ages of lunar craters
in Sinus Iridum using their diameter and frequency distribution. Moreover, Bart [41] argued that
radiation patterns and the overlapping relationships of impact craters can be used to deduce the relative
age of craters, and attempted heterogeneity analyses on crater morphology and gravel deposition
based on this hypothesis [42].

In summary, there are a considerable number of studies on the morphological features of lunar
impact craters and their related descriptive indices. However, some areas require further investigation,
detailed as follows:

(1) Although there are several classification schemes for lunar impact craters, there is no common
and standardised index system that can group different craters according to their morphological
features. Currently, morphological descriptions are predominantly qualitative, and standardised,
quantitative descriptive indices are rarely used, resulting in rather subjective crater classification.

(2) Restricted by the complexity of crater morphology and structure, the diversity of crater types and
experimental methods and data, current research mainly focuses on describing the shape and
profile of lunar craters. There are relatively few descriptions focusing on detailed morphological
features (for example, the number of central peaks and ejecta).

(3) Current descriptive methods are mainly written in an unstructured manner. Further study on how
to organise and present this information in a structured way, and thus enhance the applicability
in different research cases, is required.

According to incomplete statistics, there are more than 33,000 impact craters on the Moon’s
surface [2]. Descriptive indices of the morphological features of these craters should be refined for
better interpretations of lunar craters (e.g., [43,44]) and further refined for other related studies, such as
heterogeneity analyses, and surface and feature dating. Hence, this study proposes a morphological
features-based descriptive index system for lunar impact craters, as well as a structured description
standard. Based on an analysis and summary of lunar impact crater morphological characteristics,
Section 2 proposes a descriptive index system for both individual craters and crater groups. Section 3
presents a descriptive index structure with the aim of enhancing its applicability, before introducing
the description standard. Using a heterogeneity analysis as an example in Section 4, we manually
detect lunar impact craters in different areas and compare corresponding values for different indices.
The conclusions and future implications are presented in Section 5.

2. Morphological Analysis and Descriptive Index System of Lunar Impact Craters

The lunar crater impact process controls their resulting morphological characteristics [45]. Using
the impact mechanism of lunar craters, we examine the formation of basic crater features and their
characteristics. Accordingly, a lunar crater descriptive index system is designed for both individual
crater and crater groups. Methods for the quantitative calculation of indices are provided.

2.1. Descriptive Indices for Individual Craters

Lunar impact crater forms are complex and diverse due to different impact processes and
sequences. Crater identification is the first step in morphology analyses, and boundaries must be
determined before indices extraction and calculation. Typically, an individual impact crater can be
defined as a simple crater, which is more or less bowl-shaped, while a complex crater normally has
a central peak, terraces, and internal rings [46]. In this study, the first step is to design descriptive
indices for individual craters, including the basic geometry, crater rim, crater wall, crater floor, central
uplift, and ejecta. All indices are computed under a normal equal-area, pseudo-cylindrical projection
(the Mollweide projection).
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2.1.1. Basic Geometry and Corresponding Indices

Individual lunar impact craters are typically circular depression structures and are widely found
on the surface of the Moon. They are formed by random impacts of high-speed meteoroids, followed
by vigorous excavation of surface soil. The formation process can be mainly divided into three
stages: compression and excavation, morphological change, and, finally, shape formation (shown in
Figure 1). During impact, the meteoroid penetrates the ground surface to a depth several times its
radius, and shock compression waves together with rarefaction waves lead to immediate excavation
and crater formation. Shock compression waves firstly cause vigorous compression of rocks near the
point of impact, immediately after which the rocks enter a re-shaping stage, which is largely related to
rarefaction waves. The release of pressure causes the upward and outward projection of a large amount
of debris. This is accompanied by the formation of a transient crater, the depth of which reaches the
maximum crater depth. Subsequently, another stage of re-shaping begins. This stage is associated
with gravity, rock mechanics, crater size, and other factors [47]. Some debris thrown upwards fall back
into the crater, and some loose debris deposited at the crater edge slide back or collapse into the crater
under gravity. The crater is finally formed when it becomes relatively stable.
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Based on the formation process of impact craters, fundamental geometric indices for individual
impact craters are designed, including crater diameter, depth, volume, circularity, posture ratio,
sphericity, and depth-diameter ratio. These indices can be deduced directly from the shape and
boundary conditions of impact craters, and to further determine other indices, namely surface diameter,
transient diameter, maximum depth, and impact crater depth. It should be noted that, for easy
calculation and expression, the ‘pithead’ is determined as the best-fit ellipse of the crater rim, so that
some indices can be calculated accordingly. All indices used to express basic geometry are shown in
Table 1 and Figure 2.
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Table 1. Indices for description of the basic geometry.

Index Definition Calculation Method Significance of Index Legend Description

Diameter

CDiameter Diameter of impact crater It can be calculated using the diameter of a circle possessing the
same area as that of the pithead [49]

Reflects the generic diameter of
the crater

Surface diameter
Diameter of the plane with an
average elevation where the

impact occurs

Da =
√

4Area/π
Area is the area of impact crater [50,51]

Reflects the diameter of the crater
in the final state

Figure 2a

Transient diameter
Diameter of crater formed by particle

flow in the shock wave at the
beginning impact

Ds = R + Cc − CI
R is the diameter of the impact crater; CI is the outer ring of the
curvature on the pithead; Cc is the inner ring of the curvature

on the pithead [50,51]

Reflects the diameter of the crater
at the moment of impact

Depth

Maximum crater depth
Distance from the highest point of
the crater to the bottom of material

on the bottom of the crater

Ha ≈ 1.83 Da
0.10

Da is the surface diameter [50,51]
Reflects the depth of the crater
immediately after an impact

Figure 2b

Impact crater depth
Distance from the highest point of
the crater to the top of material on

the bottom of the crater

HTC ≈ 0.6 Ha
Ha is the maximum of depth of impact crater [50,51]

Reflects the final depth of
the crater

Volume Volume of impact crater bounded by
the crater bottom and walls

V = (S +
√

S ∗ S′ + S′)Ha÷ 3
S is the area of the pithead
S′ is the area of the bottom

Ha is the maximum of depth of the impact crater [50,51]

Reflects the size of the volume of
the crater

Circularity The degree of the shape of an impact
crater that approximate to a circle

C = P/(2*
√

(π*A))
P is the perimeter of the crater, A is the area of the crater

Reflects the complexity of the
boundary of the crater

Posture ratio
The ratio between the width (W) and

the length (L) of the minimum
bounding rectangle

C = W/L
L is the length of the minimum bounding rectangle; W is the

width of the minimum bounding rectangle
Reflects the rigidity of the crater

Figure 2c

Sphericity The ratio between inscribed circle
radius RI and excircle radius RC

S = RI/RC
RI is the radius of inscribed circle; RC is the radius of excircle.

Reflects the closeness degree of
the impact crater to a circle

Depth-diameter ratio The ratio between the depth (D) to
the diameter length (DL) of the crater.

D/DL
D is the depth of the crater; DL is the diameter length

Reflects the degree of
development of the crater
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ratio and Sphericity.

2.1.2. Crater Rim and Corresponding Indices

As impact energies are normally very high, impact events will lead to vigorous excavation
processes. There will be uplift in the impacted area and inner materials will be deposited around
the uplifted area to form a raised boundary, i.e., the crater rim. When the crater has just formed, the
crater rim is relatively smooth and clean but, due to a long period of erosion, secondary impacts,
and exogenetic processes, the crater rim becomes discontinuous, jagged, and fragmented (Figure 3).
Therefore, the rims of large craters are always embedded with other impact craters of either simple or
complex shape.
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Figure 3. Crater rim shapes (from NASA, [52]).

The degree of completeness of a crater rim typically depends on its formation age. The slopes of
crater rims differ on the inside and outside. The inner slopes are typically 35◦, and range from 25◦ to
50◦. The outside slopes are relatively gentle, typically 5◦, ranging from 3◦ to 5◦ [2].

To describe the characteristics of crater rims, the following indices were designed (Table 2,
Figures 4 and 5): pithead diameter, pithead area, width of the crater rim, accumulation form of the
crater rim, slope of the crater rim, etc. Because the shape of the crater rim is irregular, the long and
short axes of the smallest bounding rectangle are taken as the long and short axes of the pithead.
Due to the randomness of slope, they are classified statistically by intervals.



ISPRS Int. J. Geo-Inf. 2018, 7, 5 7 of 22

Table 2. Indices for description of the crater rim.

Index Definition Calculation Method Significance of Index Legend Description

Pithead diameter

Long diameter The longest diameter
through the pithead MBR method

Reflects the flattening of
the pithead.

Figure 4
Short diameter The shortest diameter

through the pithead MBR method

Width of the rim
The difference between the
outer ring radius (CI) and
the inner ring radius (CC)

CW = CI − CC
CI is the slope variability line outside the

pithead ring
CC for the slope variability line inside

the pithead ring

Reflects the degree of the
erosion of the rim.

Figure 5Pithead area The area
surrounded by the rim

Using Arcgis Calculate Geometry
(https://www.arcgis.com/)

Reflects the size of
the pithead

Accumulation form of the rim Deposit formation on
unilateral rim - Reflects the development of

the rim

Slope of the crater rim
The angle between the rim

and the horizontal direction
of the pithead

Statistical grading (0~5◦, 5◦~15◦, >25◦)
Reflects the initial direction
of the impact crater at the

moment of impact

https://www.arcgis.com/
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In Table 2, the minimum bounding rectangle (MBR) calculation contains the following steps.
The object and its boundary are rotated by 15◦ increments until they reached a maximum angle, i.e.,
90◦, with respect to their original position. For each rotation, the area of its bounding rectangle is
recorded, and the one with the smallest area is regarded as the smallest bounding rectangle, whose
axes can be treated as the long and short axes of the object.

2.1.3. Crater Wall and Corresponding Indices

The crater wall is formed during early-stage debris deposition, followed by embedding processes
due to secondary or later impacts, and is overlaid with loose material from unstable terraces. In general,
small impact craters often display smooth walls with steady slopes, and the walls of impact craters
formed during remote periods and with diameters of 5–20 km often experience gradual collapse [2].
The walls of the crater often comprise trapezoidal or irregular terraces (Figure 6).

Descriptive indices for the crater wall are as follows: inner slope of the crater wall, outer slope
of the crater wall, average slope of the crater wall, and roughness (Table 3 and Figure 7). The outer
crater wall is typically connected with the plain and experiences less erosion, so is relatively gentle.
Due to collapse of deposited materials, the inner wall suffers more erosion and is relatively steep.
The average slope is calculated from the average value of crater wall slopes. With the help of digital
elevation model (DEM) data and the slope function in ArcGIS, different slope indices can be obtained
to describe the crater walls.
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Figure 6. The inner crater wall of Copernicus (from NASA, [52]).

Table 3. Indices for description of the crater wall.

Index Definition Calculation
Method Significance of Index Legend

Description

Average slope
The value of the

mean slope of the
crater wall

Using Arcgis Slope Reflects the steepness
of the crater wall

Figure 7

Inner slope
The value of the

slope for the steep
side

Using Arcgis Slope
Reflects the degree of
steepness of the crater
wall inside the crater

Outer slope

The value of the
slope for the side
connected to the

plain

Using Arcgis Slope
Reflects the steepness

of the crater wall
connected to the plain

Roughness
Number of steps
on the crater wall

from bottom to top
Using Arcgis Slope

Reflects the degree of
degradation of the

crater wall
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2.1.4. Crater Floor and Corresponding Indices

The crater floor is the base of the depression formed by impact. Smooth crater floors are typically
found in impact craters with relatively small diameters. On some crater floors, there are often
small, scattered domes or loose material from the crater walls. The central part of the crater floor is
significantly uplifted in many large impact craters (Figure 8), and impact craters with a diameter of
5–40 km often have eddy-shaped floors [2]. For large-scale multi-ring basins, nodule-shaped deposits
are often generated during transformation and development of the central peak.
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Figure 8. Crater floor shapes (from NASA, [52]).

The following descriptive indices are designed to describe crater floor characteristics: floor
diameter, floor area, floor slope, floor roughness, floor circularity, posture ratio of the floor, floor
sphericity, and overlap of crater floor and crater boundary (see Table 4 and Figure 9). Among these
indices, the roughness of the floor can be used to reflect the erosion degree of the surface, its subsidence
and uplift, and can be obtained using the slope function in ArcGIS. The overlap of the crater floor
and crater boundary can be used to test whether their principle directions are identical. From their
dislocation relationship, the impact direction of the first impact and the sequence of superimposed
impacts can be deduced.

Table 4. Indices for description of the crater floor.

Index Definition Calculation Method Significance of
Index

Legend
Description

Floor diameter

Long diameter The longest diameter
through the floor Using MER method Reflects the

flattening of
the floor

Figure 9a

Short diameter The shortest diameter
through the floor Using MER method

Floor area

The area that is
enclosed by the slope

variability line in
the floor

Using Arcgis Calculate
Geometry

Reflects the size
of the floor

Floor slope Slope of the floor Using Arcgis Slope
Reflects the
steepness of

the floor
Figure 9b

Floor roughness Ladder number of
the floor Using Arcgis Slope

Reflects the
degree of erosion

of the floor

Floor circularity

The degree of the
shape of the floor of an

impact crater that
approximate to a circle

C = P/(2*
√

(π*A))
P is the perimeter of
the floor of the crater,

A is the area of the
floor of the crater

Reflects the
complexity of the

boundary of
the floor

Posture ratio of the floor

The ratio between the
width (W) and the

length (L) of the
minimum

bounding rectangle

C = W/L
L is the length of the
minimum bounding
rectangle; W is the

width of the minimum
bounding rectangle

Reflects the
rigidity of
the floor

Floor sphericity

The ratio between
inscribed circle radius

RI and excircle
radius RC

S = RI/RC
RI is the radius of

inscribed circle; RC is
the radius of excircle

Reflect the
closeness of the
floor to a circle

Overlap of crater floor and crater
boundary

Whether the main
directions of crater

floor and crater
boundary are the same

Dislocation
relationship→ impact

direction

Reflect the
direction of
the impact
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2.1.5. Central Peak and Corresponding Indices

Central peaks of craters (as shown in Figure 10) are developed during later stages of crater
formation and are predominantly found at the geometric centre of crater floors in impact craters with a
diameter of 35 km or above. Some peaks, however, may be located beside the centre. Their heights are
typically close to or slightly lower than their ring-shaped crater walls. The appearance of central peaks
can be regarded as a geological mass balance related to a previous collapse, so collapses are always
noted on the periphery of impact craters with central peaks [53].
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Figure 10. Central peak shapes (from NASA, [52]).

According to Ouyang [32], central peaks are typically formed in impact craters of 15 to 150 km
diameter. When the crater diameter approaches 80 km, the height and volume of the central peak
increase, and multiple central peaks may develop simultaneously at a certain point. When the diameter
of the impact crater exceeds 80 km, the central peak height and volume decrease at different rates,
possibly resulting in a central ring. For craters with diameters of 150–250 km, transformation often
occurs, and they normally form multi-ring basins.

Based on the above characteristics, the descriptive indices for central peaks are shown in Table 5
and Figure 11, and include central peak height, diameter of the ring of the central peak, base diameter
of the central peak, base area of the central peak, and number of peak rings in the central peak. Here,
the pithead diameter (Drc) can be employed to help calculate some indices, such as central peak height
and base area of the central peak, according to previous statistical data [53].
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Table 5. Indices for description of the central peaks.

Index Definition Calculation Method Significance of Index Legend
Description

Central peak height Height of the
central peak

H ≈ 0.006 Drc
1.28

Drc is the pithead diameter
of the crater [53]

Reflects height of the
central peak

Figure 11

Diameter of the
adjacent peak ring

The distance between
the adjacent peak rings

Dij = Di/2 + Dj/2
Di, Dj are the base

diameters of the two
adjacent central peaks

Reflects the size of the
peak ring of the

central peak

Base diameter
The diameter of the

contour of the central
peak base

Dcp = 0.259 Drc − 2.5
Drc is the pithead diameter
of the crater, and the unit

of 2.5 is Km [53]

Reflects the size of the
development profile of
the central peak base

Base area
The area enclosed by

the contour of the
central peak base

Using Arcgis
Calculate Geometry

Reflects the size of the
central peak base

Number of peak
rings in the
central peak

The number of peaks
in the central peak -

Reflects the degree of
the development of the

central peak
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2.1.6. Ejecta and Corresponding Indices

The energy of impacting high-speed meteoroids causes rocks in the crater to melt, and the high
impact speed results in the molten rock accumulating inwards and spattering outwards. The molten
rocks are deposited inside or outside the crater in different forms after cooling and are referred to
as ejecta.

Therefore, the descriptive indices of ejecta mainly include width, thickness, and volume [54,55].
Indices for flow characteristics and coverage of ejecta can also be designed to describe other
morphological features of impact crater ejecta (Table 6 and Figure 12).



ISPRS Int. J. Geo-Inf. 2018, 7, 5 13 of 22

Table 6. Indices for description of ejecta.

Index Definition Calculation Method Significance of
Index

Legend
Description

Ejecta width

The difference between the
radius of the inner ring

and the radius of the outer
ring of continuous ejecta

Rc = 0.86RTC
1.07

RTC is instantaneous impact width [54,55]

Reflects the
sputtering range

of ejecta

Figure 12a
Ejecta thickness Thickness of ejecta in

different crater locations

δ = 0.14Rc
0.74

(
R
Rc

)−3.0±0.5

R is the distance to the impact point; Rc
sputter width [54,55]

Reflects the
deposited

thickness of ejecta

Ejecta volume The volume of ejecta
Vmelt = (3.9890× 10−8)πDTC

3.83Vi
0.33

DTC is the instantaneous diameter of
crater; Vi is the impact speed [54,55]

Reflects the size of
the settlement

of ejecta

Ejecta flow
direction

The distribution of ejecta
around or on one side of

a crater
Six-direction grading method

Reflects the
sputtering

direction of ejecta

Figure 12b
Ejecta

overlying
relation

Overlying relationships
of ejecta of

different lithologies
Not covered, partially covered, covered

Reflects the
stratigraphy of
spattered ejecta

Ejecta area
The area with the

maximum radius of the
ejecta around the crater

Using Arcgis
Reflects the

sputtering range
of ejecta
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Figure 12. Schematic description for some of the indices in Table 6. (a) Ejecta volume; (b) Ejecta
flow direction.

2.2. Descriptive Indices for Crater Groups

Lunar craters are distributed randomly over the Moon’s surface. There are more than 33,000
impact craters with a diameter greater than 1 km. In general, craters are more densely distributed over
more ancient Moon surfaces, and crater density is small in the lunar maria [54].

To describe the group features of lunar impact craters, descriptive indices can be classified
according to their statistical and spatial distribution characteristics (Table 7). Statistical characteristic
indices include waviness, difference of slope, difference of height, roughness, slope, circularity,
diameter, depth, and depth-diameter ratio. Each of the latter six indices can be separated into eight
sub-indices, including average value, maximum value, minimum value, standard deviation, median,
mode, kurtosis, and skewness, to represent static figures of the above characteristics. The spatial
distribution indices are illustrated by degree of fragmentation, degree of aggregation, density,
and Moran’s Index.
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I =
n

∑ i ∑ jwi,j

∑ i ∑ jwi,j(xi − x)(xj − x)

∑ i(xi − x)2 (1)

Table 7. Indices for description of crater groups (indices in red can be separated into eight sub-indices,
see Section 2.2).

Index Definition Calculation
Method Significance of Index

Statistical
characteristics

Waviness

Difference between the altitude of the
highest point and the altitude of

lowest point in the area that cover the
crater groups

Using Arcgis Reflects the degree of ups and
downs of the crater groups

Slope difference
Difference between maximum slope

and minimum slope of the
crater groups

Using Arcgis Reflects the degree of
inclination of the crater groups

Height difference
The difference between the highest
point and the lowest point of the

crater groups
Using Arcgis

Reflects the degree that the
crater groups crashed

by excavation

Roughness The roughness of the crater groups Using Arcgis
Reflects the degree of
development of the

crater groups

Slope The slope of the crater groups Using Arcgis Reflects the steepness of the
crater groups

Circularity The circularity of the crater groups Using Arcgis Reflects the closeness degree
of the crater groups to circles

Diameter The diameter of the crater groups Using Arcgis Reflects the size of the
crater groups

Depth The depth of the crater groups Using Arcgis Reflects the depth of the
crater groups

Depth-diameter
ratio

The ratio between depth to the
diameter length of the crater groups Depth/Diameter

Reflects the degree of
development of the

crater groups

Spatial
distribution

characteristics

Fragmentation
The ratio between the number of
patch (Ni) to the total area of the

crater groups (Ai)

Ci = Ni/Ai
Ni is the number of

patch; Ai is the
total area of the
group craters

Reflects the heterogeneity of
craters, and the collision and

broken degree of the
crater groups

Aggregation

The difference between the constant 1
and the ratio of the complexity index

(C) to its maximum possible
value (Cmax)

RC = 1 − C/Cmax
C is the complexity
index; Cmax is the
possible value of

the maximum
complexity index.

Reflects the non-randomness
or degree of aggregation of the

crater groups

Density The number of craters per unit area ARCGIS Reflects the intensity of the
crater groups

Moran’s index
Whether attribute values are in
random, discrete or centralized

distribution pattern
Formula (1) [56] Reflects the distribution

pattern of the crater groups

3. Structured Representation of Lunar Impact Crater Descriptive Indices

For different types or components of lunar impact craters, the descriptive indices may differ.
Organising these indices in a structured way is fundamental for the convenient use of these descriptive
indices, e.g., computer processing and calculation, querying and searching, and knowledge sharing of
lunar information.

The structured expression of descriptive indices in this study involves a data organisation method
based on the analysis of geometric elements and the spatial distribution of crater groups. This structured
organisation method has two parts: metadata organisation and index content organisation.
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3.1. Metadata Organisation of Descriptive Indices

This part describes the metadata of a descriptive index document or file. It includes (1) keywords,
which are used to create an impact crater directory and enable rapid searching and classification of
crater indices; (2) version numbers, which denote the version of the index data file; (3) document
introduction, which briefly describes the index data file; (4) information related to file creation,
modification, and distribution, which contains the corresponding (creation/modification/distribution)
personnel, time, and venue; (5) information related to file storage and access; and (6) contact
information (e.g., person or department). The UML (unified modelling language) diagram for impact
crater metadata is shown in Figure 13.
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3.2. Content Organisation of Descriptive Indices

The composition of impact crater elements and the classification of craters are considered
when designing the content organisation for descriptive indices. The index content is organised
by considering components from top to bottom, from groups to individuals, and from individuals to
individuals. The data are organised at three levels: crater basic information, classification information,
and index information. A detailed UML diagram is shown in Figure 14.
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Figure 14. UML for the content organisation of descriptive indices.

3.3. Description Standard for Descriptive Indices

For a structured representation, we establish a description standard for impact craters referred by
the design idea of the Content Standard for Digital Geospatial Metadata (CSDGM) v2.0 by the Federal
Geographic Data Committee (FGDC). This description standard aims to provide a standardised data
presentation method for the descriptive indices of lunar impact craters, to allow researchers to analyse,
summarise, and organise crater indices in a structural way, and to eventually provide a theoretical
basis for crater index studies. The standard can be downloaded from: http://geomodeling.njnu.edu.
cn/DesStandard4Lunar/download.html.

Figure 15a,b shows the XML scheme used to represent the sub-elements of basic geometry of an
individual crater and a crater group, respectively.

ISPRS Int. J. Geo-Inf. 2018, 7, x FOR PEER REVIEW  17 of 24 

 

 
Figure 14. UML for the content organisation of descriptive indices. 

3.3. Description Standard for Descriptive Indices 

For a structured representation, we establish a description standard for impact craters referred 
by the design idea of the Content Standard for Digital Geospatial Metadata (CSDGM) v2.0 by the 
Federal Geographic Data Committee (FGDC). This description standard aims to provide a 
standardised data presentation method for the descriptive indices of lunar impact craters, to allow 
researchers to analyse, summarise, and organise crater indices in a structural way, and to eventually 
provide a theoretical basis for crater index studies. The standard can be downloaded from: 
http://geomodeling.njnu.edu.cn/DesStandard4Lunar/download.html.  

Figure 15a,b shows the XML scheme used to represent the sub-elements of basic geometry of an 
individual crater and a crater group, respectively. 

 
Figure 15. Fragments of the XML scheme for the usage of indices. (a) Basic Geometry; (b) Statistical 
characteristics. 

  

Figure 15. Fragments of the XML scheme for the usage of indices. (a) Basic Geometry; (b)
Statistical characteristics.

http://geomodeling.njnu.edu.cn/DesStandard4Lunar/download.html
http://geomodeling.njnu.edu.cn/DesStandard4Lunar/download.html


ISPRS Int. J. Geo-Inf. 2018, 7, 5 17 of 22

4. Case Study and Application—Heterogeneity Analysis as an Example

4.1. Data Preparation

In this study, DEM data with a resolution of 100 m from Lunar Reconnaissance Orbiter
(LRO) was chosen as the main crater detection data source for further analysis. The projection
of the DEM is EQUIRECTANGULAR_MOON except polar regions. The projection of the DEM is
POLAR_STEREOGRAPHIC_MOON in polar regions.

4.2. Detection of Lunar Impact Craters in Different Areas

4.2.1. Experimental Areas

Experimental areas were selected based on different locations, morphological characteristics,
and geological ages. Accordingly, six typical study areas were selected, as shown in Figure 16.
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Figure 16. Experimental areas for the heterogeneity analysis case study. These areas are located in:
(a) Highland (far side); (b) Highland (near side); (c) Mare Serenitatis; (d) Mare Imbrium; (e) North Pole;
and (f) South Pole.

4.2.2. Detection Methods and Results

Based on 100 m resolution data from LRO, the boundaries of impact craters were manually
extracted with the real boundaries. Here, only impact craters with a diameter of 500 m or more were
identified for analysis, and smaller craters were omitted.

As shown in Figure 17, the green lines represent identified impact craters with a diameter of
500 m or more.

We detected the green lines as the boundaries of craters using ArcGIS. Firstly, we generated the
aspect from the DEM, the hillshade generated from the DEM, and the curvature of the DEM. Secondly,
with the curvature of the DEM, the line with the largest curvature in local was chosen as crater rims.
Thirdly, for the craters whose curvature changes were not obvious, we used the aspect of the DEM to
auxiliary judgment. Fourthly, if the curvature and aspect of the DEM were both not obvious, we used
the hillshade of the DEM and slope of the DEM to detect the crater rims. It should be noted that these
experiments demonstrate the capacity and usage of the proposed descriptive indices, and the precision
can be improved with future improvements to the detection method. Figure 18 shows a part of the
results (region D) of the detection methods that are described using the proposed indices, including
Pithead area, Surface diameter, Impact crater depth, Depth-diameter Ratio, and Circularity.
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4.2.3. Usage of the Descriptive Indices and Further Heterogeneity Analyses

Based on the proposed descriptive indices, heterogeneity analyses were performed for each study
area using the statistical characteristic indices, and the results are shown in Tables 8–10. The case
studies only illustrate the practicality of the indices, and the accuracy and precision of statistical results
can be enhanced with more accurate data and precise extraction. The relevant statistical results can be
used for further investigation of the differences between impact craters in different areas of the Moon.

Table 8. Heterogeneity of craters in different experimental areas using the depth-diameter ratio.

Sample Area Number of Craters Min Value Max Value Average Value Standard Deviation

Region A 819 0.02308 0.35149 0.11307 0.05168
Region B 819 0.04566 0.32348 0.15212 0.05224
Region C 141 0.02744 0.20681 0.09379 0.04328
Region D 671 0.02045 0.39219 0.06989 0.04764
Region E 365 0.03890 0.30875 0.11768 0.04194
Region F 417 0.02735 0.25244 0.13519 0.04935

From the above table, it can be seen that the largest average value of depth-diameter ratio is in
Region B, and the smallest average value is in Region D. For standard deviation, the largest value is
in Region B, and the smallest is in Region E. That is to say, the difference of depth-diameter ratio in
Region B is the most obvious.

Table 9. Heterogeneity of craters in different experimental areas using the circularity.

Sample Area Number of Craters Min Value Max Value Average Value Standard Deviation

Region A 819 1.00540 1.93016 1.04264 0.04778
Region B 819 1.00431 1.62624 1.03160 0.04639
Region C 141 1.00027 1.27284 1.01533 0.02536
Region D 671 1.00303 1.51161 1.02453 0.04033
Region E 365 1.00027 1.35002 1.02718 0.02936
Region F 417 1.00089 1.43969 1.02432 0.04130

From the above table, the largest value of circularity is in Region A, and the smallest is in Region C,
in terms of the average value. For standard deviation, the largest value is in Region A, and the smallest
is in Region C. That is to say, the difference of depth-diameter ratio in Region A is the most obvious.

Table 10. Heterogeneity of craters in different experimental areas using the percentage of crater area
and density.

Sample Area Number
of Craters

Total Pithead
Area of Crater
Groups (km2)

Total Region
Area (km2)

Percent of
Crater Area

Density
(Count/km2)

Region A 819 62,871.17 1,408,337.50 4.46% 0.000582
Region B 819 58,848.77 1,472,877.53 4.00% 0.000556
Region C 141 1750.32 320,977.41 0.55% 0.000439
Region D 671 9049.93 896,390.34 1.01% 0.000749
Region E 365 16,100.20 590,822.81 2.73% 0.000618
Region F 417 29,448.67 585,408.36 5.03% 0.000712

From the above table, the largest value of density is in Region D, and the smallest is in Region C,
likely due to heavier impact as compared to other regions.

Although the above heterogeneity analysis is related simply based on these indices at the current
stage, with specific knowledge related to the moon, e.g., the formation ages of the lunar craters,
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and surface materials, a better understanding of the moon can be acquired and new ideas can be
explored in different regions.

5. Conclusions and Future Research

This study proposes a descriptive indices system for lunar craters and their morphology based on
their morphological characteristics and spatial structures. Examples show that the proposed systematic
indices can be used to give a clear description of the geometrical morphology of lunar craters. It will
also provide a basis for in-depth studies on the morphological structure, classification, and evolution
of lunar craters, as well as an insight into related research fields, such as automatic detection of impact
craters (e.g., [57]), estimations of the geological age of the lunar surface, determining the thickness of
the lunar regolith, and correcting landing locations for the soft landing of probes.

However, there are some issues with the proposed descriptive indices system that must be
addressed in the future:

(1) The morphology of impact craters is complicated. The descriptive index system proposed here
cannot cover all crater characteristics; e.g., the complex relationships between different craters.
Future research may be required to make the system more complete.

(2) For some descriptive indices, e.g., ejecta flow directions and accumulation form of the rim, there
are no well-established and quantified calculation methods. In the future, specific calculation
methods may be proposed for improved quantification of these indices.

(3) The combination of individual indices to express the complex morphological lunar surface is still
under exploration. This should be developed to reflect and contribute to research related to the
formation mechanisms of impact craters, their evolution and development, and the performance
of heterogeneity analyses.
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