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Abstract: Intelligent recognition of traffic police command gestures increases authenticity and
interactivity in virtual urban scenes. To actualize real-time traffic gesture recognition, a novel
spatiotemporal convolution neural network (ST-CNN) model is presented. We utilized Kinect 2.0 to
construct a traffic police command gesture skeleton (TPCGS) dataset collected from 10 volunteers.
Subsequently, convolution operations on the locational change of each skeletal point were performed
to extract temporal features, analyze the relative positions of skeletal points, and extract spatial
features. After temporal and spatial features based on the three-dimensional positional information
of traffic police skeleton points were extracted, the ST-CNN model classified positional information
into eight types of Chinese traffic police gestures. The test accuracy of the ST-CNN model was 96.67%.
In addition, a virtual urban traffic scene in which real-time command tests were carried out was set
up, and a real-time test accuracy rate of 93.0% was achieved. The proposed ST-CNN model ensured
a high level of accuracy and robustness. The ST-CNN model recognized traffic command gestures,
and such recognition was found to control vehicles in virtual traffic environments, which enriches
the interactive mode of the virtual city scene. Traffic command gesture recognition contributes to
smart city construction.

Keywords: traffic command gesture recognition; VGE; spatiotemporal CNN; HCI

1. Introduction

People now have a strong dependence on traffic, and requirements with respect to such traffic
have recently been put forward. The concept of smart traffic aids in governmental decision-making
and management and reduces traffic accidents [1]. In traffic systems, traffic command gestures help to
alleviate traffic jams. The virtual traffic command gestures experience system proposed in this paper is
helpful. The intelligent recognition of traffic command gestures can promote traffic safety awareness.
Users experience the traffic police command process in the virtual environment. When users actually
walk or drive on roads, they are able to identify traffic police’s actions accurately, so as to prevent
traffic accidents.

An intelligent traffic command gesture recognition system cannot work without a virtual
geographic environment (VGE). VGEs provide open virtual environments that correspond to the
real world so as to assist in computer-aided geographic experiments. Four subenvironments
include (1) the data environment, (2) the modeling and simulation environment, (3) the interactive
environment, and (4) the collaborative environment [2]. At present, people pay more attention to
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the first two environments, with a great deal of in-model building, scene loading, and numerical
simulation for urban traffic simulation. Song et al. [3] proposed a graphics processing unit
(GPU)-based mesoscopic simulation framework to handle large-scale dynamic traffic assignment
problems. In this study, a 3D interactive environment is the focus. This interactive environment is
designed to provide interactive channels between users and the VGE to facilitate the convenient
participation of public users and to convey a sense of satisfaction [2]. There have been studies in this
area. Yang et al. [4] presented a method to reflect the rapidly changing behaviors of the traffic flow
simulation process and inserted virtual vehicles into real data. To better meet the urban scene objectives
of traffic-managing systems, virtual reality human—computer interaction (HCI) techniques are applied.
With the development of HCI technology, more natural interactive products are in demand. Gestures,
being interactive, deliver more natural, creative, and intuitive methods of communicating with our
computers [5]. The traffic police gesture recognition proposed in this paper adds interactivity to virtual
urban scenes and makes them more user-friendly.

Human action recognition is fundamental in traffic gesture estimation. The study of traffic police
action recognition is mainly divided into two categories: accelerator-based and vision-sensor-based.
Wang et al. [6] used two three-axis accelerometers to provide arm movements and hand positions
of the gravity vector signal and designed a hierarchical classifier to identify traffic police actions.
Accelerator-based hand gesture recognition has high data stability and less noise, but the user is
required to carry the equipment. Le et al. [7] proposed a real-time traffic gesture recognition test
platform system based on support vector machine (SVM) training data. In their method, traffic police
command gestures are captured in the form of a depth image based on a visual sensor, and the human
skeleton is then constructed by a kinematic model. Vision-based gesture recognition is more suitable
for stationary applications and often requires a specific camera set-up and calibration [8].

Research on traffic police action recognition, an important method of human—computer interaction,
has made progress; however, it is difficult to accurately recognize actions because of complex
backgrounds, occlusions, viewpoint variations, etc. [9]. Target tracking and motion recognition
technology based on deep learning have developed at an unprecedented rate. Human action
recognition based on video streaming has also been improved and updated [10-12]. Deep learning
simulates the operational mechanisms of a human brain, extracts features, and exhibits efficient and
accurate classification, detection, and segmentation. The main goal of this study was to improve the
traditional interactive mode of VGEs. The main algorithm innovation is a novel spatiotemporal
convolution neural network model in order to recognize traffic command gestures. The main
contributions of this paper include three parts: a traffic police command gesture skeleton (TPCGS)
dataset, a spatiotemporal convolution neural network (ST-CNN) model, and a real-time interactive
urban intersection scene.

This paper proposes a virtual police gesture command system that consists of two parts, a virtual
geographic interactive environment and a gesture recognition algorithm. The gesture recognition
algorithm is used to judge the user’s action. The movement of the traffic police model and the
manner in which traffic is run is controlled. In order to improve the accuracy and robustness of
the gesture recognition algorithm, this paper provides the TPCGS dataset of Chinese traffic police
command gestures, which was completed by 10 volunteers. The dataset records the consecutive frames’
action trajectories of multiple skeletal points, which will be highlighted in Section 3. Furthermore,
a novel ST-CNN algorithm is presented that investigates a different architecture based on spatial
and temporal convolution kernels. The ST-CNN model is trained based on the TPCGS dataset,
which contains six skeletal points’ locational information. As has been noted, temporal features can
be obtained by recording the skeleton position in consecutive frames, extracting spatial features by
recording 3D skeleton locational information, and analyzing relative positions of multiple skeletal
points. Based on this, eight standard traffic police command actions are efficiently recognized. Section 4
details the ST-CNN architecture. The ST-CNN model is applied to the intersection of a virtual urban
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traffic scene. Section 5 mainly describes the experimental process. The virtual police gesture command
system is shown in Figure 1.

Figure 1. The virtual city traffic scene is constructed, and the intersection modeling is emphasized.
(a) is a part of the virtual urban scene. The traffic police command gesture recognition system is set up
to facilitate real-time human—computer interaction (HCI). Communication between the traffic scene
and the identification system is achieved. A volunteer is making traffic police command gestures in the
real environment in (b), which is mapped to the virtual scene in (c).

The key contributions of this study can be summarized as follows:

1. We built a virtual traffic interaction environment with virtual reality technology. Users can have
interactions between their actions and the objects in the virtual traffic environment through
a communication interface, experiencing and interacting with “real traffic crossroads.”

2. We created a TPCGS dataset. The dataset uses depth trajectory data based on skeleton points.
Compared with the video stream, the depth trajectory data features are more precise. The dataset
provides a new means of identifying traffic police command gestures.

3.  The ST-CNN model performs convolution operations on 3D position data well and has strong
portability. A convolution kernel extracts temporal features of the skeleton point positional
information from consecutive frames and extracts spatial features from the relationship between
multiple skeleton points.

2. Related Work

Gestures are expressive body motions involving physical movements of the fingers, hands, arms,
head, face, or body with the intent of (1) conveying meaningful information or (2) interacting with the
environment [13]. Study purposes and objectives are different, and the postures of different parts of
the body are identified. Based on depth images, Raheja et al. [14] focused on the detection of palm and
fingertip positions. Liu et al. [15] focused on skin color detection and employed a K-nearest neighbor
algorithm to recognize hand pose and obtain corresponding semantic information. Wang et al. [16]
innovatively applied genetic algorithms to the recognition of finger and arm movement direction.
The main research object of Wang et al. [17] was the body; they tracked the trajectory of the human
body and achieved gait recognition. In order to construct a virtual traffic interaction environment,
we wanted to simulate traffic police command gestures, so the motion trajectory of the human arm
was determined as the main research object.

Feature extraction of motion trajectory is a key step in traffic police command gesture recognition.
Feature extraction methods of action recognition include human geometric characteristics [18] and
motion features [19]. After feature extraction, researchers usually use common pattern recognition
algorithms, such as the hidden Markov model (HMM) and support vector machine (SVM), to classify
them. Jie Yang et al. [20] developed a method to model actions using a hidden Markov model (HMM)
representation. However, HMM is based on probability statistics. The HMM model’s computational
requirements for training the transition matrix and confusion matrix are too large to simulate complex
actions. Schuldt et al. [21] constructed video representations in terms of local space-time features
and integrated such representations with SVM classification schemes for recognition. Mathematical



ISPRS Int. ]. Geo-Inf. 2018, 7,37 40f 14

models of human behavior recognition based on probability statistics are unable to practically simulate
complex behavior. Deep learning provides new ideas for human behavior recognition, including
convolution neural networks (CNNs) and recurrent neural networks.

Recently, several human activity recognition methods based on the CNN have been proposed.
The CNN is a deep learning model in which trainable convolution filters extract picture features and
neighborhood pooling operations to reduce the amount of data and avoid over-fitting, resulting in
a hierarchy of increasingly complex features. It has been shown that, when trained with appropriate
regularization, a CNN can achieve superior performance on picture recognition tasks than most
machine learning methods. In addition, CNN has been shown to be invariant to certain variations,
such as angle, lighting, and surrounding clutter [22]. Jiang et al. [23] proposed a deep convolution
neural network (DCNN) method to learn the picture features of the signal sequences of accelerometers
and gyroscopes to achieve human activity recognition. The DCNN model showed a performance of
97.59%, 97.83%, and 99.93% using standard UCI, USC, and SHO datasets, respectively. Yang et al. [24]
achieved human activity recognition by extracting convolution features from multichannel time series
data. Their CNN model, compared with a SVM, showed improved performance on the Opportunity
Human Activity Recognition Challenge and other benchmark datasets. Ronao et al. [25] utilized a 1D
convolution neural network to separately recognize a six-axis accelerometer and gyroscope triaxial
sensor data. The model could achieve a 94.79% accuracy based on an activity dataset provided by
30 volunteers. Afterwards, they added fast Fourier transformation to the model, and the accuracy
increased to 95.75%. Lee et al. [26] proposed a one-dimensional CNN to recognize human activities
that included walking, running, and staying still. The accuracy rate of the 1D CNN-based method
was as high as 92.71%, which is superior to the that of the random forest algorithm. These series of
1D CNN models provided us with a new idea; thus, our traffic police command gesture recognition
solution is proposed here.

3. Virtual Urban Traffic Environment

The data of an actual three-dimensional urban space framework have increasingly become
an important foundation of urban construction and development [27]. The virtual urban traffic scene
in this study was built based on the geographical data of Qingdao, as shown in Figure 2. We visualized
the terrain data and the surface model data to build a virtual traffic geographic environment, especially
detailed with respect to traffic crossings and traffic police. In this system, an interface was reserved
for traffic crossing and was used to communicate between the user action recognition system and the
VGE. The users interacted with vehicles in the virtual scene by making traffic gestures and hence were
able to learn about the traffic in the VGE.

Figure 2. Our virtual traffic geographic environment scene.

4. The TPCGS Dataset

The TPCGS dataset was constructed in order to efficiently and accurately recognize gestures.
The TPCGS dataset is comprised of skeleton point positional information, which was obtained via
a Kinect 2.0 sensor. It covers all eight kinds of Chinese traffic police command gestures.
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Kinect skeletal tracking was created by Microsoft to obtain depth images and subsequently
position and track human joint points, as shown in the middle picture in Figure 3. The Kinect
sensor can be used as a virtual environment (VE) interface for viewpoint control, and Kinect skeleton
recognition performs well in terms of accuracy and latency [28]. The Kinect 2.0 sensor can detect
up to 20 human skeleton joints. Kinect has built-in support for joint tracking, which is beneficial in
converting actual hand gestures into sequences of XYZ coordinates [29]. Its depth image resolution
is 512 x 424 pixels, and the frame speed is 30 fps. The suitable measurement range was 0.5-4.5 m,
and we collected data within a normal range of 1.5 m. We assume the human is facing the Kinect 2.0
sensor. From a kinematic point of view, each joint of a human body has different degrees of freedom,
resulting in different contributions of gestures to human movements. For the characteristics of different
postures, extraction of the region of interest can reduce the computational complexity of the whole
system, thus increasing recognition speed. Through observation, it was found that the trunk part of the
body is always upright, and the lower limbs transmit little effective information. Traffic police mainly
use upper limb movements to convey information while directing traffic, involving arm movements
and rotation of the head, so we abandoned the lower part of the key skeletal point data. Because the
Kinect 2.0 sensor cannot recognize the rotation of the head, this dataset only examines the positional
data of the left shoulder, left elbow, left wrist, right shoulder, right elbow, and right wrist. Therefore,
in the traffic police gesture recognition algorithm, the number of joints was reduced to 6: the right
hand joint, left hand joint, left elbow joint, right elbow joint, right shoulder joint, and left shoulder
joint, as shown in Figure 3. Thus, the eigenvectors of a gesture at a given point can be expressed as

An = {Pi}i6:1/ (Pi = (XiIYj/Zi))/ D

where P; = (xj,y;,2i) is the vector of n x 1. The gesture feature vector is 18 dimensional, where n
represents the gesture feature vector in the first n frame of an image. The dataset shows both temporal
continuity and spatiality. Based on the Kinect 2.0 advanced human joint recognition and tracking
technology, the positional signals of skeletal points were obtained. Compared with the scenic picture,
signal data were more suitable for use as input data with the ST-CNN model; data quantity of the
input signals was greatly reduced, and training and testing times were decreased.

Original image Kinect skeletal tracking Key skeletal points image

Figure 3. The acquisition process of key skeleton point positions from Kinect 2.0.

The TPCGS dataset contains the following information: volunteer ID, traffic police action name,
normalized frame interval, and the 3D position information of 6 skeletal points. The dataset was
collected from 10 graduate students between 20 and 30 years of age. The male to female ratio of
volunteers was 1:1. The range of volunteer height was from 158 to 180 cm. Each volunteer made
8 standard traffic police gestures positioned 1.5 m away from the sensor. Ultimately, the TPCGS dataset
contains 155,000 frame data, 70% of which are training samples and 30% are test samples.



ISPRS Int. ]. Geo-Inf. 2018, 7,37 6 of 14

5. A Novel Spatiotemporal Convolution Neural Network Model

After the TPCGS dataset with attributes of time and spatial domains was obtained, using the
ST-CNN model proposed here, the spatiotemporal characteristics could be fully analyzed, and the
gestures of traffic police could be recognized.

The model input is the signal data of skeleton positions. The output is the traffic police command
gestures. The network architecture consists of a convolution layer, a pooling layer, a convolution layer,
a fully connected layer, and an output layer. In addition, we added a dropout function that randomly
sampled the parameters of the weight layer according to probability, and updated the target network
to avoid overfitting. The main algorithm pipeline is shown in Figure 4.

Figure 4. Spatiotemporal convolutional neural network algorithm pipeline.

e Convolution Layer

A neural network is the mathematical model of a biological nerve. Its basic unit is a neuron,
and the structure of the neuron is shown in Figure 5. p1, p2, p3 ... , pn are the inputs of the neuron,
and [ represents the current layer. The neuron sums the weighted input w, plus the offset b. After that,
it calculates a function f, which is

noog- p _
pi=f piwl b = f (wll,wlzwi) 2: +b! :f(wlTPl ! +bl). (2)

The last part is the vector form of this formula. P is the input vector, W is the weight vector, and b
is the offset value scalar. f(.) is called the activation function.

p1 . wi |
p2‘ w2

p3@ w3 "‘ B “‘ - "a-

on@ wn_| b

Figure 5. Neuronal structure.
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The first convolution layer extracts features from input signals. The filter of k x k to convolute
skeletal position signals of n frames is used to generate feature maps. To adequately access information,
the sliding window moves at a speed of stride (stride = 1). The horizontal movement extracts spatial
information, and the vertical movement extracts time information. The feature extraction process is
illustrated in the convolution layer in Figure 4. In this study, the parameters were chosen as k = 3 and
n = 30; the function tanh was chosen as the activation function.

e Pooling Layer

For the pooling layer, there are p input maps. There are p output maps, but each output map
is smaller.

ph = f(Bidown (pl~") + b)) ®)

where down(-) represents a sub-sampling function. The output map is reduced by p times in two
dimensions (row and column). Each output map corresponds to a multiplicative bias f and an additive
bias b. f(-) is the activation function.

The second layer is the down-sampling layer. The purpose of this layer is to ignore the relative
positional changes such as the tilt and rotation of the target. Meanwhile, it reduces the computational
load. The general operation includes max pooling, average pooling, and global average pooling.
To best preserve the features of images, we choose the max pooling function in which the size of the
down-sampling kernelisp x p (p =2).

e  Dropout Layer

Dropout loses hidden layer neurons each time. This is equivalent to training on different neural
networks. Thus, the dependence between neurons is reduced. Therefore, neural networks can learn
more diverse and more robust features. To prevent the neural network from over-fitting and improve
generalization, the dropout layer was set up with a dropout rate of 0.5.

e  Fully Connected Layer

The softmax function was applied as a fully connected layer before the output layer. The softmax
function maps the output of multiple neurons into (0,1) intervals, which expresses the probability of
each activity. The activity with the highest probability is then set as the predicted activity and the
activity label is outputted to the final node (in red), as shown in the fully connected layer in Figure 4.

P(i) = _ewp(0lx) <f P(i) = 1) (4)

T erp(0fx) \S

where 6; and x are column vectors, and the 67 x may be replaced by function f;(x). The softmax
function sets the range of P(i) between [0,1]. In the output layer, the model divides the pictures into
eight classes that represent eight traffic command gestures.

6. Experiments

6.1. Data Preprocessing and Experimental Setup

The gesture recognition algorithm was performed with Python on a PC with a 3.40 GHZ CPU
and an 8 GB memory. The skeletal point data were collected by a Kinect 2.0 sensor. The 10 volunteers
simulated the traffic police command gestures for 6 key skeletal points. Based on the 3D skeleton point
data provided by Kinect 2.0, the input signals of the ST-CNN model were obtained by normalization.
The input signals of the eight gestures were visualized as shown in Figure 6.
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Pull over

Straight

Turn left
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Turn right
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Figure 6. Input signals of the spatiotemporal convolution neural network (ST-CNN) model are
visualized. The signals of eight traffic command actions are listed, respectively. Among them, the signal
of left turn waiting is introduced in detail. Each three rows of signals represent a skeletal point position
change, defined by xyz. Six skeletal points correspond to the right model.
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The TPCGS dataset includes the sequential position information in continuous space. The features
of the spatial dimension and the temporal dimension were extracted continuously by the movement
of the convolution kernel. The ST-CNN model was thus established. The model could be migrated
to other PC devices or mobile devices for real-time recognition of traffic police command gestures,
servicing intelligent transportation and a smart city. We set up the virtual urban scene, as shown
in Figure 1, and the traffic police command scene was the area of focus. The actions of volunteers
were mapped to traffic police actions in the scene that controlled vehicle operations. For urban scene
construction, we focused on the implementation of traffic police gesture interaction.

6.2. Results

In the traffic police gesture recognition module, we obtained a scientific deep learning model
based on TPCGS dataset after continuous experiments and parameter adjustment. The size of the
model was 29.79 M, which is portable and can be connected to the VGE. Users of different heights
(160 cm~—180 cm), ages (20-30), and genders made traffic command gestures and stood 1.5 m from the
sensor. The ST-CNN model recognized gesture semantics in real time, and its accuracy and robustness
were high.

In the course of the experiment, we took convolutional kernels of different sizes into consideration.
Figure 7 shows the effect of changing the filter size on performance. Filter sizes that achieved high
performance on the test set range from 2 x 2 to 8 x 8. It can be concluded from this plot that the
convolutional kernel size is between 3 x 3 and 5 x 5 and that the accuracy of the model is higher.
From the experimental results, a convolution kernel size of 3 x 3 was chosen. Figure 8 shows the
effect of pooling size on performance. Unlike filter size, pooling size does not have much potential to
increase the performance of the over-all classifier. Based on our multiple runs, a setting of 2 x 2 was
best. From the previous best result configuration, the results of tuning the learning rate are shown
in Figure 9. The model learning rate presented in this paper is 0.001. Correspondingly, in the fully
connected layer, a multilayer perceptron with a 1000 node fully connected layer was set up.

v |\
0.98 </ \

0.97 +—
2 0.96 \
0.95

9
<
]
g N
rain
% oo S
0.93 > ° Test
0.92
0.91
0.9 T T T T 1
2 3 4 5 6 7 8

Convolutional kernel size

Figure 7. Effects of changing the ST-CNN model convolutional kernel size.
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Figure 8. Effects of changing the ST-CNN model pooling kernel size.
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Figure 9. Effects of changing the ST-CNN model learning rate.

In the model training stage, the model load and training process lasted 20 min, and a forward
propagation training process lasted 15 s. The experiment was a supervised learning process.
The performance evaluators were the similarity between the experimental results and the label data of
the training process. The results of the training process are shown in Figure 10. The training occurred
50 times. When training the tenth time, the accuracy rate reached 90%. As training times increased,
the accuracy rate increased but at a slower rate. Finally, the training accuracy rate was approximately
97.78%. In total, 70% of the data in the TPCGS dataset was randomly selected as the training data
set, and the remaining 30% was used as the test dataset. The test accuracy rate of the test dataset was
approximately 96.67%.
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Training Accuracy

Figure 10. Train accuracy of the ST-CNN model.

To better demonstrate the experimental results, a real-time experiment was implemented. The user
stood 1.5 m away from the sensor—the same as done in the training. Each frame and the previous
29 frames together formed an input unit, calculated by the ST-CNN model, and an action classification
result, an output unit, was obtained. When the user changed actions, the output unit was unstable.
We entered the reprocessing operation to stabilize the results. Each output unit and the previous
two output units jointly judged the action of the current frame. When the three output units were
inconsistent, the results of the n frame were selected. When the results of the three output units were
consistent with two or more results, consistent results were selected. This estimation method preserved
the continuity of actions, and the statistical results were more stable on time scales. The estimate
method is shown in Table 1.

Table 1. Real-time test result estimate method.

Output Unit (n—2)  Output Unit (n—1) Output Unit (n) Result
a b C Action ¢
a a b Action a
a b a Action a
a b b Action b
a a a Action a

After analyzing the test results, as shown in Table 2, it was found that the recognition results of
action Turn_left and action Change_lane are often confused. Analysis of the motion trajectory image
showed that the amplitude of the left arm movement was small in the Turn_left dataset, so the Turn_left
dataset was optimized, and the test results were in turn optimized. The accuracy of each action in
the test dataset and the real-time test accuracy are shown in Table 2. Among them, the average test
accuracy of test dataset is 96.67%, and the average accuracy of the real-time test is 93.0%.

In order to compare this method with state-of-the-art methods, we adopted the same experimental
setting and the same dataset as used in [30-32]. We divided the 20 actions in the MSR-Action3D data
set into 3 groups (AS1, AS2, and AS3). Each group contained eight actions, and similar actions were all
divided into the same group. The data of Subjects 1, 3, 5, 7, and 9 were for training, and the others
were for the test. What is clear from the data in Table 3 is that, compared with the random forest, RNN,
and SVM algorithms, the ST-CNN model proposed in this paper has a higher accuracy rate.
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Table 2. Test results of the ST-CNN model.

Action Straight Stop Turn_Left Turn_Left_ Waiting
Test dataset accuracy (%) 97.2 96.5 95.0 98.3
Real-time test accuracy (%) 90.3 94.6 85.4 93.3
Action Change_Lane Slow_Down Pull_Over Turn_Right
Test dataset accuracy (%) 94.8 98.5 96.5 96.6
Real-time test accuracy (%) 95.1 88.5 98.5 98.3

Table 3. Recognition rates for various methods on the MSR-Action3D dataset.

Random Forests Recurrent Neural .
Dataset Method [30] Network [31] Linear SVM [32] ST-CNN
AS1 (%) 94.87 93.33 95.29 95.41
AS2 (%) 87.00 94.64 83.87 95.45
AS3 (%) 100.00 95.50 98.22 97.50
Average (%) 93.96 94.49 92.46 96.12

7. Conclusions and Discussion

After a TPCGS dataset with time and spatial domains was obtained, the ST-CNN model proposed
in this paper could be used to fully analyze spatiotemporal characteristics and recognize the gestures
of traffic police.

A new traffic command gesture recognition method is thus presented. We built the ST-CNN
model based on the depth data provided by a depth camera. Real-time traffic gesture signals were
applied to a virtual urban scene. The recognition module result was connected to the reserved interface
of the virtual traffic environment module, and the signals controlled vehicles at traffic crossroads.
Traffic police models were changed according to differences in the signals, so that the traffic police in
the virtual scene were more realistic.

The TPCGS dataset was built to compensate for the lack of a gesture dataset for traffic police
command gestures. A new deep learning method for extracting features is presented here for
the recognition of traffic police command gestures. Ultimately, a virtual urban traffic intersection
environment was built to test the model, and the model was found to be stable and robust.

Future works employing the real-time traffic command gesture recognition method will take
the pose (position, size, and orientation), deformation, motion speed, sensor frame rate, texture [33],
and other factors into account. Different types of people, such as children, will be added to the TPCGS
dataset so that more people will be involved in the 3D interaction of this virtual traffic environment.
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