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Abstract: The objective of this research was to investigate the impact of seasonality on urban
land-cover mapping and to explore better classification accuracy by using multi-season Sentinel-1A
and GF-1 wide field view (WFV) images, and the combinations of both types of images in subtropical
monsoon-climate regions in Southeast China. We obtained multi-season Sentinel-1A and GF-1 WFV
images, as well as the combinations of both data, by using a support vector machine (SVM) and
a random forest (RF) classifier. The backscatter intensity, texture, and interference-coherence images
were extracted from Sentinel-1A images, and different combinations of these Sentinel-1A-derived
images were used to evaluate their ability to map urban land cover. The results showed that the
performance of winter images was better than that of any other season, while the summer images
performed the worst. Higher classification accuracy was achieved by using multi-season images,
and satisfactory classification results were obtained when using Sentinel-1A images from only three
seasons. The best classification result was achieved using a combination of all Sentinel-1A data
from all four seasons and GF-1 WFV data from winter, with an overall accuracy of up to 96.02% and
a kappa coefficient reaching 0.9502. The performance of textures was slightly better than that of the
backscatter-intensity images. Although the coherence data performed the worst, it was still able to
distinguish urban impervious surfaces well. In addition, the overall classification accuracy of RF was
better than that of SVM.
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1. Introduction

Urbanization is one of the most dynamic processes in global land-use change [1,2] and a major
force in determining land-use and land-cover change [3]. The level of urbanization in China is expected
to reach about 50% in 2020. The accelerated urbanization process has negative impacts on the current
economy and environment, such as global warming, traffic congestion, the deterioration of urban
ecological environments, and so on. In order to avoid these negative consequences, sustainable urban
development is necessary. The key is how to get up-to-date and reliable information about the current
state of urban areas, such as urban land use and land cover (LULC) [2], which is important for urban
planners and decision-makers. Remote sensing technology has become the main means of obtaining
information on LULC because of its frequent and large area detection and rich spatial information.
Optical remote sensing imagery is one of the most commonly used data sources for LULC change,
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and is widely used in urban mapping [4–7]. However, because optical remote sensing is susceptible to
the effects of cloudy and rainy weather, accurate mapping using optical images is limited. It has been
demonstrated that by using all-weather, day-and-night imaging, as well as canopy penetration and
high-resolution capabilities [8–10], Synthetic Aperture Radar (SAR) images effectively overcome these
limitations in land-cover classification.

Earlier studies that investigated LULC information via SAR data mostly used single-frequency
and single-polarization images as data sources. However, the limited information derived from
single-frequency and single-polarization SAR data leads to limited classification accuracy [11]. As a result
of the continuous development of radar technology, ALOS-PALSAR, Terra-SAR, and RADARSAT-2
satellites were launched; some researchers used multi-frequency and multi-polarization SAR data for
urban mapping [12,13]. Tan et al. [12] reported that multi-polarization achieved better classification
results than single-polarization, and that HV contributed more than the other three polarizations.
Pellizzeri et al. [13] used multi-temporal/multi-band SAR data for urban mapping and obtained
satisfactory classification results. There are also some studies that show how the fusion of optical
and SAR images improves the classification accuracy of urban LULC [14–16].

In addition to backscatter-intensity information, some other information can be extracted and
applied to the classification of SAR data. This mainly includes texture and coherence information.
Roychowdhury et al. [17] used a gray-level co-occurrence matrix (GLCM) algorithm to calculate
texture elements for urban-area classification and found that the use of texture information effectively
improved classification accuracy. Similar results were reported by Fard et al. [18], who used SAR and
optical images for urban mapping and found that texture information was useful. Some researchers,
in using the SAR-data coherence information to classify LULC, found that it is important for SAR-data
classification [19,20]. Optical data can reflect the spectral-feature information of ground objects
better than SAR data. Because of the different characteristics that SAR and optical remote sensing
bring to the classification of LULC, some studies have used the combination of SAR and optical
images to improve classification accuracy. Zhang et al. [21] combined SPOT-5 and ENVISAT data for
urban LULC classification and found that the classification accuracy of combined SAR and optical
data was higher than that of optical data alone. Similar results were reported by Aimaiti et al. [22],
who used the combination of SAR and optical data to extract urban land-cover information and conduct
urban-landscape analyses. The selection of a classifier is also an important factor. Random forests
(RF) [23] and support vector machines (SVM) [24] have been used in many SAR-data classification
studies [12,25,26], and both have been proven to perform well.

Although good progress has been made in the LULC classification of SAR data, some challenges
remain. For example, although the effect of seasonality on mapping urban areas has been examined
in previous studies, most only used optical data, with the main types of climate studied being the
tropical monsoon climate and the humid continental or oceanic climate. Zhu et al. [26] compared
single-season and multi-season classification accuracy using Landsat Enhanced Thematic Mapper
Plus (ETM+) images. Deng et al. [27] used Landsat-8 OLI data from different seasons to map urban
impervious areas in different climate types and found that different climatic conditions favored
different seasonal images. Scott et al. [28] used multi-temporal Landsat TM/ETM+ images to extract
impervious surface areas in Wales, UK (oceanic climate). Tsutsumida et al. [29] studied the impervious
surface-area classification of optical data in a tropical rainforest-climate region and found that sub-pixel
classification was a better method than per-pixel classification. Myint et al. [30] used Landsat ETM+
data to study the classification of urban land cover and found that multiple endmember spectral
mixture analysis (MESMA) was effective for desert cities. However, there is still too little SAR data
derived from different seasons that is being used to examine the impact of seasonality on urban
LULC classification.

The overall objective of this study was therefore to examine the impact of seasonality on the
mapping of urban LULC and to improve classification by using Sentinel-1A images, GF-1 data,
and the combination of both types of images in a subtropical monsoon-climate region in Southeast
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China. For this purpose, we obtained backscatter intensity, coherence, and texture images from
Sentinel-1A imagery. First, we explored the impact of seasonality on urban LULC classification
by using single-season Sentinel-1A and GF-1 data respectively, via the RF and SVM classifiers.
Then, we investigated the performance of multi-season images (Sentinel-1A and GF-1 images) and
a SAR-optical dataset (four-season Sentinel-1A images and winter GF-1 data) on the classification
results separately. Finally, we assessed the contributions of the backscatter intensity, coherence,
texture images, and their different combinations.

2. Study Area and Datasets

2.1. Study Area

The study area was the central urban-area of Nanjing (including Gulou District, Xuanwu District,
Qinhuai District, and Jianye District), the capital of Jiangsu Province (see Figure 1). The city is located
in the Yangtze River Delta, which is the fastest expanding metropolitan area in eastern China due
to large-scale migrations from neighboring rural areas. The total area is 6587 km2, and the resident
population is 8.27 million; it is located between the latitudinal parallels of 31◦14′ N and 32◦37′ N
and the longitudinal parallels of 118◦22′ E and 119◦14’ E. It has a subtropical monsoon climate,
with an average rainfall of 1090.4 mm and an annual average temperature of 15.4 ◦C. Its topography is
complex, with low mountains and hills accounting for about 60.8% of the total city area (plains, rivers,
and lakes account for about 39.2%).

Rapid urbanization has brought great pressure to the ecological environment, resulting in a series
of problems, such as water shortage, air pollution, and desertification. In order to address the various
ensuing socio-economic and ecological problems, it is important to monitor Nanjing’s dynamic
urbanization process.
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Figure 1. The research area, located in the Yangtze River Delta in eastern China; and an overview
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polarization, G: 11 October 2016 VH polarization, B: 12 August 2016 VV polarization); (b) The GF-1
WFV composite image (28 March 2016, RGB = 321).
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2.2. Sentinel-1A Data

Sentinel-1 is an important part of the Global Monitoring for Environment and Security
(GMES) [31], co-sponsored by the European Commission and the European Space Agency. The Sentinel
1 mission includes Sentinel-1A and Sentinel-1B satellites. The first satellite (Sentinel-1A) was launched
on 3 April 2014, while the second satellite (Sentinel-1B) was launched on 25 April 2016. As part
of the European Union’s Copernicus Programme, each satellite carries an imaging C-band SAR
instrument (5.405 GHz), conducts a 12-day repeat orbit cycle, and has a total of four operational
modes: Stripmap mode (SM), Extra Wide Swath mode (EWS), Interferometric Wide Swath mode
(IWS), and Wave mode (WM). In this study, we obtained four Sentinel-1A images, corresponding to
the four seasons. Table 1 shows specific information about these images, such as the acquisition dates
and the operational modes.

Table 1. Detailed information of the Sentinal-1A images acquired in this study.

Season Date Incidence Angle Product Operational Model Polarization

Spring 14 April 2016 38.9 SLC IW VV/VH
Summer 12 August 2016 38.9 SLC IW VV/VH
Autumn 11 October 2016 39.0 SLC IW VV/VH
Winter 12 December 2016 39.0 SLC IW VV/VH

2.3. GF-1 Data

The GaoFen-1 (GF-1) was launched in April 2013 and carries two panchromatic/multi-spectral
(P/MS) and four wide field view (WFV) cameras [32]. GF-1 WFV data have a large swath (800 km) and
a spatial resolution of 16 m, with four spectral channels distributed in the visible and a near-infrared
spectroscopy (NIR) spectral domain ranging from 450 to 890 nm [33]. GF-1 P/MS data have
one panchromatic band and four multispectral bands with spatial resolutions of 2 m and 8 m,
respectively [34]. We obtained four GF-1 WFV images corresponding to the four seasons (a spring
image from 28 March 2016, a summer image from 12 September 2016, an autumn image from
11 November 2016, and a winter image from 13 January 2017). In addition, a GF-1 P/MS image
with a spatial resolution of 2 m was obtained on 17 June 2016 as reference data. The percentage of
cloud coverage for all these images was 0%.

2.4. Ground Reference Data

We identified five land-cover types in our study: dark impervious surface (DIS), bright impervious
surface (BIS), forest (FOR), water (WAT), and grass (GRA). We randomly extracted the sample data of
the five classes in the study area by visually interpreting the GF-1 P/MS image and referring to the
Google Earth images. Fifty percent of these samples were divided into training samples by stratified
random sampling, and the remaining 50% were used to test the results and calculate their accuracy
(Table 2).

Table 2. Numbers of training and validation data used in urban land cover classification.

Class Number of Training Pixels Number of Validation Pixels

WAT 475 452
FOR 484 479
BIS 489 466
DIS 496 463

GRA 428 470

Both the overall accuracy and kappa coefficient were calculated using the confusion
matrix, and the F1 measure (Equation (1)) was computed to evaluate the classification accuracy.
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Overall accuracy is computed by dividing the total number of correctly classified pixels by the entire
validation dataset [35,36]. As the harmonic mean of the producer’s and user’s accuracy [37], the F1
measure is considered to be more meaningful than the kappa coefficient and the overall accuracy [38].

F1 measure = 2× producer′s accuracy× user′s accuracy
user′s accuracy + producer′s accuracy

(1)

3. Methods

3.1. Satellite Data Pre-Processing

The Sentinel-1A images were preprocessed using SARscape 5.2 software, including the following:
multi-look, registration, speckle filtering, geocoding, and radiometric calibration. We used a Lee filter
with a 3 × 3 window [39] to filter the speckle noise in the Sentinel-1A data. The SAR images were
geocoded using the 3-arcsecond SRTM DEM; the digital numbers (DN) were converted to a decibel
(dB) scale backscatter coefficient (σ◦), with a spatial resolution of 20 m.

The GF-1 images were preprocessed by ENVI 5.3 software, which included radiance calibration,
atmospheric correction, and geometric correction. For radiometric calibration, the DN value of the
original image was converted to the surface spectral reflectance [32]. The atmospheric correction of
these GF-1 data was performed by an ENVI FLAASH model. Finally, both the Sentinel-1A and GF-1
images were geometrically rectified at a spatial resolution of 20 m, with 25 ground control points
and the root-mean-square error (RMSE) below 0.5 pixels. We obtained the ground coordinates for
these points through the 1:10,000 LULC map developed by the Nanjing Institute of Surveying and
Geotechnical Investigation.

3.2. Feature Sets

3.2.1. Texture Features

Texture is an effective representation of spatial relationships [40] and is widely used in
the interpretation of remote-sensing images. It has been widely considered to be important to
the improvement of SAR image based urban-classification accuracy [41–44]. The gray-level co-occurrence
matrix (GLCM) is both an effective and commonly used texture measure. In this study, we used GLCM
in order to obtain SAR’s texture features. These texture features included mean, variance, entropy,
angular second moment, contrast, correlation, dissimilarity, and homogeneity.

3.2.2. Coherence Features

SAR interferometry is a powerful quantitative tool for land cover, which exploits the phase
differences of SAR images obtained at different times. As a correlation coefficient, coherence can
detect small surface changes over a period of time [20]. The value of these changes is between 0 and 1;
a high coherence indicates that the change is small or non-existent, whereas a low coherence signifies
an important change. In this study, we acquired six Sentinel-1A-data coherence images, computed
using SARscape 5.2 software. The images were obtained using the following InSAR data pairs:
(1) 14 April 2016 and 12 August 2016; (2) 12 August 2016 and 11 October 2016; and (3) 11 October 2016
and 12 December 2016.

3.2.3. Feature Combination

In order to both evaluate the impact of seasonality on urban land-cover classification using
Sentinel-1A and GF-1 imagery and explore how different Sentinel-1A-derived information identifies
urban land-cover types, the following Sentinel-1A and GF-1 data feature combinations were considered
(Table 3).
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Table 3. Different combinations of Sentinel-1A-derived information and GF-1 images.

ID Abbreviation Description

1 Sentinel-1A (Spr) Spring Sentinel-1A (backscatter intensity, coherence, and texture images)
2 Sentinel-1A (Sum) Summer Sentinel-1A (backscatter intensity, coherence, and texture images)
3 Sentinel-1A (Aut) Autumn Sentinel-1A (backscatter intensity, coherence, and texture images)
4 Sentinel-1A (Win) Winter Sentinel-1A (backscatter intensity, coherence, and texture images)
5 GF-1 (Spr) Spring GF-1
6 GF-1 (Sum) Summer GF-1
7 GF-1 (Aut) Autumn GF-1
8 GF-1 (Win) Winter GF-1

9 Sentinel-1A (Spr + Sum) Spring and summer Sentinel-1A (backscatter intensity, coherence,
and texture images)

10 Sentinel-1A (Spr + Sum + Aut) Spring, summer and autumn Sentinel-1A (backscatter intensity, coherence,
and texture images)

11 Sentinel-1A (Spr + Sum + Aut + Win) Four seasons Sentinel-1A (backscatter intensity, coherence, and texture images)
12 GF-1 (Spr + Sum) Spring and summer GF-1
13 GF-1 (Spr + Sum + Aut) Spring, summer and autumn GF-1
14 GF-1 (Spr + Sum + Aut + Win) Four seasons GF-1

15 Sentinel-1A (Spr + Sum + Aut + Win)
+ GF-1 (Win)

Four seasons Sentinel-1A (backscatter intensity, coherence, and texture images)
and winter GF-1

16 T Textures of four seasons Sentinel-1A
17 C Coherence images of four seasons Sentinel-1A
18 VV + VH Dual polarization (VV + VH) of four seasons Sentinel-1A
19 C + T Textures and coherence images of four seasons Sentinel-1A
20 VV + VH + C Dual polarization (VV + VH) and coherence images of four seasons Sentinel-1A
21 VV + VH + T Dual polarization (VV + VH) and textures of four seasons Sentinel-1A

Notes: Spr means spring; Sum means summer; Aut means autumn; Win means winter; GF-1 means GF-1 WFV data;
T means textures; C means coherence images; VV means VV polarization; VH means VH polarization.

3.3. Classifiers

We selected two classifiers, Support Vector Machine (SVM) and Random Forest (RF), for the urban
land-cover classification.

The SVM classifier, proposed by Vapnik in 1995, is a machine-learning method based on
institutional-risk minimization. It has been widely used in urban land-cover classification and has
achieved high classification accuracy [45,46]. The SVM algorithm separates two classes by fitting
an optimal linear separating hyperplane (OSH) onto their training datasets in a multidimensional
feature space [46,47]. This study employed the radial basis function (RBF); the kernel parameters
Gamma (G) and penalty (C) were set to 0.125 and 100, respectively.

The RF classifier is an ensemble learning technique based on multiple decision trees. A large
number of decision trees were generated using a resampling technique with replacement, with each
tree being fitted to a different bootstrapped training sample and a randomly-selected set of predictive
variables [26,40,48]. The final classification was performed through a majority vote of the trees.
Many studies have shown that the use of an RF classifier for urban land-cover classification studies
can result in high accuracy [12,21]. For each RF classifier, a default number of 500 trees were grown
using the square root of the total number of features that were located at each node.

4. Results and Discussion

4.1. Analysis of Temporal Variables Used for Classification

In order to explore the feasibility of urban land-cover mapping using Sentinel-1A-derived
information, the average coherence and backscatter values of the five urban land-cover classes were
analyzed. The corresponding results are shown in Tables 4 and 5, respectively.

In Table 4, the coherence values of bright impervious surfaces were the highest (in the range of
0.529–0.625), while those of dark impervious surfaces were slightly lower. In contrast, the coherence
values of water bodies were the lowest (in the range of 0.163–0.187). This is because water bodies
consist of changing scattering centers as a result of waves; they are therefore very unstable [49].
Conversely, the backscatter property of urban buildings is more stable than that of non-manmade



ISPRS Int. J. Geo-Inf. 2018, 7, 3 7 of 16

objects. Built-up structures had very high phase-stability properties and were still able to maintain
a high coherence over long periods of time [50]. On the contrary, water, forest, and grass could become
completely incoherent within a few days.

Compared with urban areas, the coherence values for forest and grass areas were smaller:
0.188–0.209 and 0.178–0.339, respectively. The main factors to cause low coherence values in vegetation
were changes in both the vegetation canopy and moisture content in between two SAR acquisitions [20].

Table 4. Comparison of the average coherence values for each urban land cover class.

Sentinel-1A Data Pairs Polarization WAT FOR GRA DIS BIS

14 April 2016–12 August 2016 VV 0.183 0.207 0.198 0.520 0.582
VH 0.163 0.188 0.178 0.442 0.529

12 August 2016–11 October 2016 VV 0.178 0.202 0.286 0.597 0.603
VH 0.174 0.209 0.191 0.492 0.543

11 October 2016–12 December 2016
VV 0.187 0.190 0.339 0.609 0.625
VH 0.166 0.194 0.216 0.545 0.572

In Table 5, the average backscatter values of dark impervious surfaces were the highest for VV
polarization (in the range of −4.99 to −4.49), whereas for VH polarization they were lower (in the
range of −11.26 to −10.86). The average backscatter values of bright impervious surfaces were slightly
lower than those of dark impervious surfaces for both VV and VH polarizations, with average values of
−6.65 to −4.50 and −11.98 to −11.46, respectively. In contrast, the average backscatter values of water
bodies for both VV and VH polarizations were the lowest, with average values of −18.40 to −16.50
and −21.39 to −20.91, respectively. The main reason for the high-average backscatter values in urban
areas was the predominance of single or double bounce from roof- or wall-ground structures and other
metallic structures [51]. We can attribute very low backscatter values associated with water bodies to
the specular reflection of water, which causes less backscattering towards the radar antenna [20,52].
Moreover, for both VH and VV polarizations, the backscatter values of forest areas were higher than
those of grass areas.

The five urban land cover classes therefore have different backscatter-intensity characteristics and
interference-coherence characteristics, and can be very useful to the classification of urban land covers.

Table 5. Comparison of the average backscatter values for each urban land cover class.

Class
14 April 2016 12 August 2016 11 October 2016 12 December 2016

VV VH VV VH VV VH VV VH

FOR −7.36 −13.63 −7.55 −13.59 −8.12 −13.98 −7.93 −12.71
WAT −17.00 −21.39 −16.50 −20.91 −17.60 −21.11 −18.40 −20.96
GRA −14.91 −19.94 −14.52 −19.11 −14.18 −19.17 −13.56 −19.20
DIS −4.93 −11.15 −4.72 −11.01 −4.99 −11.26 −4.49 −10.86
BIS −6.65 −11.98 −5.09 −11.48 −5.21 −11.73 −4.50 −11.46

4.2. Urban Land-Cover Mapping

4.2.1. Classification Results Using a Single-Season Image

Table 6 shows the classification accuracy of two classifiers for each land cover using individual
Sentinel-1A imaging. The classification results of RF were always better than SVM in terms of F1
measure, overall accuracy, and kappa coefficient. This indicates that RF is more suitable for urban
land-cover classification when using a single-season SAR image. Classifications using the winter
Sentinel-1A image produced the highest classification accuracy, with an overall accuracy of 87.82% for
RF (kappa coefficient = 0.8470) and 81.30% for SVM (kappa coefficient = 0.7650), followed by autumn
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and spring. The summer Sentinel-1A image performed the worst, with an overall accuracy of 84.70%
for RF and 75.07% for SVM. This shows that the performance of the winter SAR image was better
than that of any other season in this subtropical monsoon-climate area. For BIS and GRA, the best
performance came from the winter Sentinel-1A image, with an F1 measure of 88.57% and 87.18%,
respectively; the poorest result was found in the spring Sentinel-1A image. For DIS and FOR, the spring
Sentinel-1A image produced the best accuracy, with an F1 measure of 85.48% and 93.42%, respectively;
the poorest accuracy came from the summer Sentinel-1A image. For WAT, the best performance for RF
was found in the winter Sentinel-1A image (F1 measure = 86.08%), whereas for SVM it was found in
the autumn Sentinel-1A image (F1 measure = 82.84%); the poorest performance came from the spring
Sentinel-1A image.

Table 6. Classification results using single-season Sentinel-1A images.

Classifier Season
F1 Measure (%)

Overall Accuracy (%) Kappa
WAT FOR BIS DIS GRA

RF

Spring 82.14 93.42 86.11 85.48 71.84 84.75 0.8084
Summer 83.75 90.36 86.49 80.00 80.35 84.70 0.8078
Autumn 85.00 90.80 87.14 83.33 82.14 86.12 0.8256
Winter 86.08 91.86 88.57 84.03 87.18 87.82 0.8470

SVM

Spring 75.41 91.23 74.42 75.19 53.33 76.20 0.7006
Summer 78.03 86.39 72.58 69.63 60.42 75.07 0.6865
Autumn 82.84 88.13 75.59 72.00 74.07 79.60 0.7435
Winter 82.63 89.77 78.12 73.02 78.90 81.30 0.7650

Table 7 presents the urban land-cover classification results of two classifiers using single- season
GF-1 imaging. Similarly, the performance of single-season GF-1 data using RF was better than those
that used SVM, in terms of overall accuracy and kappa coefficient. However, in terms of F1 measure,
SVM obtained better WAT and FOR classification results than RF. The overall classification results for
the GF-1 data were similar to the Sentinel-1A data. The winter GF-1 image obtained the best accuracy
among the four seasons (with an overall accuracy of 93.22% for RF (kappa coefficient = 0.9151) and
90.96% for SVM (kappa coefficient = 0.8868), followed by autumn and spring. The poorest result
was found in the summer GF-1 image, which exhibited an overall accuracy of 90.46% for RF (kappa
coefficient = 0.8807), and 86.71% for SVM (kappa coefficient = 0.8338). The classification results that
used the single-season GF-1 data were better than those that used the corresponding single-season
Sentinel-1A data. Consistent with previous studies, the classification accuracy of single-date optical
images was higher than that of single date SAR images [53,54]. For WAT and FOR, the best performance
was found in the winter and autumn GF-1 data, with an F1 measure of 93.83% and 96.85%, respectively;
the summer GF-1 provided the poorest results. For BIS and DIS, the best accuracy was found in the
winter GF-1 image, with an F1 measure of 90.37% and 89.43%, respectively; the poorest accuracy came
from the summer GF-1 image. However, the latter also yielded the best classification result for GRA,
with an F1 measure of 99.17%. This shows that different seasons’ remote sensing images are suitable
for the classification of different types of urban land cover.

In this subtropical monsoon climate area, when using single-season SAR and optical data for
urban land-cover classification, the classification results show that winter images perform better than
spring and summer images, which in turn perform better than summer data. In Nanjing, the rainy
season mainly occurs between March and August; from late June to early July, the climate segues
into the plum-rains season, with abundant rainfall and heat. When using summer images for urban
land-cover classification, water can be mistaken for urban impervious surfaces due to the spectral
similarity between water and dark impervious surfaces [27]. By contrast, Nanjing’s climate in winter
is relatively dry with less rain. Consequently, during that season, there is less spectral confusion.
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Table 7. Classification results using a single-season GF-1 image.

Classifier Season
F1 Measure (%)

Overall Accuracy (%) Kappa
WAT FOR BIS DIS GRA

RF

Spring 90.86 92.55 89.91 88.63 95.71 91.39 0.8923
Summer 85.92 91.82 89.66 86.36 99.17 90.46 0.8807
Autumn 92.40 95.65 89.76 88.71 97.71 92.94 0.9115
Winter 92.40 95.65 90.37 89.43 97.71 93.22 0.9151

SVM

Spring 91.43 91.55 82.48 79.01 93.87 87.23 0.8403
Summer 90.00 91.25 78.05 76.51 98.33 86.71 0.8338
Autumn 93.83 96.85 80.65 79.39 96.97 90.11 0.8762
Winter 93.83 96.85 82.93 81.81 96.97 90.96 0.8868

4.2.2. Incremental Classification Results Using Multi-Season Images

We conducted incremental classifications with seasonal combinations using Sentinel-1A and GF-1
data. The corresponding results are shown in Figures 2–4. Incremental classification meant that every
new seasonal image was added to all of the previously available images. It was conducted using
the RF classifier. Figure 3 shows that the classification accuracy with seasonal combinations using
Sentinel-1A improved as the season progressed. The best performance resulted from the combination
of all four seasons, with an overall accuracy of up to 91.95% and a kappa coefficient of up to 0.8989.
As shown in Figure 2, the F1 measure of each urban land-cover class also improved with added
seasonal combinations. This indicates that the use of multi-seasonal SAR images can improve the
classification accuracy of urban land cover because multi-season SAR can provide more abundant radar
scattering information of ground objects. Deng et al. also showed that urban land-cover classification
can be improved by using multi-season imagery [27]. For all seasonal combinations, the F1 measure
of FOR was the highest, followed by BIS and WAT, while the classification result of GRA was the
poorest. In addition, when using SAR images with only three combined seasons, the F1 measure of
each urban land cover was higher than 85%, with an overall accuracy of up to 90.67% and a kappa
coefficient of up to 0.8828. Some studies have shown that classification results are satisfactory when
the classification accuracy is higher than 85% [55–57]. Therefore, optical images can be replaced by
SAR images for urban land-cover classification, and SAR images that only combine three seasons can
meet the classification accuracy requirements.
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Figures 3 and 4 show that the overall incremental classification results using GF-1 were similar
to the Sentinel-1A classification results with different seasonal combinations. The incremental
classification accuracy using GF-1 improved as the season progressed and was higher than that of
Sentinel-1A. The highest classification accuracy was achieved when using the four season GF-1 images,
with an overall accuracy of up to 94.04% and a kappa coefficient of up to 0.9253. Conversely, the lowest
classification accuracy was obtained using a GF-1 image with only one season. The use of multi-season
GF-1 images can therefore significantly improve the classification accuracy when compared to the
use of GF-1 images with only one season. Consistent with previous observations, the classification
accuracy can be improved when using multi-temporal SAR and optical images [26,34,56,58]. Figure 4
shows that when more seasonal GF-1 images are used, the F1 measure of each urban land-cover type
improved. However, contrary to the incremental classification results of Sentinel-1A, the F1 measure
of GRA was the highest, followed by FOR and WAT. The classification accuracy for urban impervious
surfaces (BIS and DIS) was markedly lower than that of other land-cover types. This shows that
optical data is more suitable for vegetation classification, because it contains abundant vegetation
spectral information.
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4.2.3. Classification Results Using Sentinel-1A and GF-1 WFV Images

Because the winter GF-1 image was the most accurate out of the four seasons, it was selected
for combination with the four-season Sentinel-1A images. Table 8 shows the corresponding results
using RF. The best classification results were obtained when using the combined GF-1 and Sentinel-1A
images, with an overall accuracy of up to 96.02% and a kappa coefficient of up to 0.9502. The addition
of the winter GF-1 image allowed us to increase the overall accuracy and kappa coefficient by 4.07%
and 0.0513, respectively. This is because microwaves are more sensitive to canopy-structure features,
and SAR data have more spatial-texture information. Optical data, on the other hand, contain more
spectral information. In order to provide more useful information on different types of urban land
cover, the SAR and optical images were able to use their information in a complementary way, thereby
improving the classification accuracy. The importance of using both SAR and optical images has
also been reported by a few previous studies [15,59–61]. The highest F1 measure belonged to GRA
(F1 measure = 99.94), followed by FOR, WAT, and BIS. However, at 90.37%, DIS’s F1 measure was
the lowest, similar to the results we reported above. This shows that DIS gets mistaken for other
types more often than the other types of urban land cover do. Figure 5 presents samples of the final
classification maps.

Table 8. Classification results using the combination the four-season Sentinel-1A and winter GF-1 data.

Accuracy Measure WAT FOR
Class

DIS GRA
BIS

F1 measure (%) 98.65 98.04 92.31 90.37 99.94
Overall accuracy (%)/Kappa 96.02/0.9502
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4.2.4. Classification Results Using Different Sentinel-1A-Derived Information

In order to fully explore how Sentinel-1A-derived information can be used for urban land cover
classification, different combinations of Sentinel-1A-derived information were tested using the RF
classifier (Table 9). As shown in Table 9, all of the overall accuracy results obtained using single
Sentinel-1A-derived information were lower than 85%. Furthermore, the performance of T was better
than that of VV + VH and C, which indicates that three combinations of single Sentinel-1A-derived
information could not meet the urban land-cover classification accuracy requirements. C’s overall
classification accuracy came in last, whereas the F1 measure of urban impervious surfaces (BIS and
DIS) was markedly higher than that of other land cover types. This is because the coherence values of
BIS and DIS were significantly higher than that of other types and BIS and DIS are highly separable.
This shows that the texture and intensity information of Sentinal-1A data is very important for urban
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land-cover classification, and that the coherence information is more suitable to the classification of
urban impervious surfaces.

C+T had the highest classification result (with an overall accuracy of 89.24% and a kappa
coefficient of 0.8650), and all its F1 measures were above 85%. Consequently, satisfactory classification
results can be obtained by using combined texture and coherence information from Sentinel-1A data.
When adding coherence images to the backscatter intensity information, the overall accuracy and
kappa coefficient improved by 8.22% and 0.1029, respectively. These improvements were also observed
when the texture information was added to the backscatter intensity images with both the overall
accuracy and kappa coefficient increasing from 79.32 to 84.42% and from 0.7408 to 0.8046, respectively.
This indicates that these Sentinel-1A-derived images, when using their information in a complementary
way, can effectively improve classification accuracy. Some previous studies have also reported on the
importance of using the coherence and texture information of SAR data [17,19,40].

Table 9. Classification results using different combinations of Sentinel-1A-derived information (using
the RF classifier).

ID
F1 Measure (%)

Overall Accuracy (%) Kappa
WAT FOR BIS DIS GRA

T 86.63 87.27 85.52 75.81 86.95 84.70 0.8080
C 46.24 52.17 85.29 80.88 54.37 63.17 0.5373

VV + VH 86.08 84.37 73.53 70.68 79.66 79.32 0.7408
C + T 86.08 95.76 88.28 89.43 85.12 89.24 0.8650

VV + VH + C 86.45 94.05 87.88 86.15 80.99 87.54 0.8437
VV + VH + T 85.35 88.35 85.52 76.80 84.48 84.42 0.8046

5. Conclusions

In this study, we classified Sentinel-1A data and GF-1 images taken during all four seasons
in a subtropical monsoon climate region of Southeast China using both SVM and RF classifiers.
The following conclusions can be drawn from this study: (1) In this subtropical monsoon-climate
area, for both Sentinel-1A and GF-1 data, the winter images performed better than any other season,
while the summer images performed the worst. Although, in terms of the F1 measure, SVM obtained
better WAT and FOR classification results than RF did using single-season GF-1 data, the overall
classification accuracy of RF was still better than that of SVM; (2) Classification accuracy was improved
by using multi-season images, and the best performance resulted from combining all four seasons.
When using Sentinel-1A images from only three seasons, the F1 measure of each urban land cover
was higher than 85%, with an overall accuracy of up to 90.67% and a kappa coefficient of up to 0.8828.
This shows that optical images can be replaced by Sentinel-1A images for urban mapping; (3) The best
result was obtained through combining GF-1 and Sentinel-1A images, with an overall accuracy of
up to 96.02% and a kappa coefficient of up to 0.9502. When adding the winter GF-1 image to the
four-season Sentinel-1A image, the overall accuracy and kappa coefficient improved by 4.07% and
0.0513, respectively. This indicates that SAR data and optical images can use their complementary
information in order to improve classification accuracy; and (4) The textures’ classification results were
slightly better than those of the backscatter-intensity images. Although the coherence data performed
the worst, it was still able to distinguish urban impervious surfaces (BIS and DIS) well. When using
different combinations of Sentinel-1A-derived information, the highest classification accuracy was
obtained with the combination of coherence and texture images, with all of the F1 measures above 85%
(with an overall accuracy of 89.24% and a kappa coefficient of 0.8650).

Our results apply to more regions than those examined by previous studies that used optical
images to investigate the impact of seasonality on urban land-cover mapping. This is because optical
images are susceptible to the effects of cloudy and rainy weather. This study’s method can also be
applied to other types of land covers. In a future study, in order to use SAR data to investigate the
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impact of seasonality on urban land cover mapping, further climate types will be planned, along with
comparisons between them.
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