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Abstract: The smart city has become a popular topic of investigation. How to focus large amounts of
distributed information resources to efficiently cope with public emergencies and provide support for
personalized decision-making is a vitally important issue in the construction of smart cities. In this
paper, an event-driven focusing service (EDFS) method that uses cyber-physical infrastructures for
emergency response in smart cities is proposed. The method consists of a focusing service model at
the top level, an informational representation of the model and a focusing service process to operate
the service model in emergency response. The focusing service method follows an event-driven
mechanism that allows the focusing service process to be triggered by public emergencies sensed by
wireless sensor networks (WSNs) and mobile crowd sensing, and it integrates the requirements of
different societal entities with regard to response to emergencies and information resources, thereby
providing comprehensive and personalized support for decision-making. Furthermore, an EDFS
prototype system is designed and implemented based on the proposed method. An experiment using
a real-world scenario—the gas leakage in August 2014 in Taiyuan, China—is presented demonstrating
the feasibility of the proposed method for assisting various societal entities in coping with and
efficiently responding to public emergencies.

Keywords: smart city; cyber-physical infrastructure; focusing service; geospatial information; mobile
crowd sensing; event-driven mechanism; emergency response

1. Introduction

The smart city, one of the most popular topics and the most cutting-edge issues, has attracted
widespread attention and has renovated the traditional city concept [1–5]. In analogy to a living
organism, the intelligence of a smart city resides in its increasingly effective combination of digital
telecommunication networks (the nerves), ubiquitously embedded intelligence (the brains), sensors
and tags (the sensory organs), and software (the knowledge and cognitive competence) [6]. Moreover,
from the perspective of a system, a smart city can also be regarded as a dynamic and complex
system that evolves in space and time following trajectories that are hard to predict [7], mainly
including a physical part and a cyber part, which is also called cyber-physical systems (CPS) [8–12].
Figure 1 presents a conceptual diagram of an operational smart city. As depicted in this figure,
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the sensing infrastructures belong to the physical component of the CPS and comprise various sensing
devices such as diverse heterogeneous sensors (in situ/remote and fixed/mobile sensors, such as
radio-frequency identification [RFID], the Moderate Resolution Imaging Spectroradiometer [MODIS],
and the Global Positioning System [GPS] sensors in smart phones) [13,14]. The communication
infrastructures (e.g., 3G/4G/ZigBee/Wi-Fi/WiMAX/WSN) and cloud computing infrastructures
(e.g., Amazon EC2, Microsoft Azure, Xen Cloud Platform, Hadoop, HBase, Hive, Impala, Storm, Pig,
and SPARK) belong to the cyber component of the CPS.
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The operational smart city is driven by various information resources, including both data and
service resources. Data resources consist of archived data (e.g., basic geographic data, archived
historical sensing data, remote sensing images, unmanned aerial vehicle images, RFID data, and video
monitoring data) and real-time data streams (e.g., monitoring data for city water, electricity, fuel,
and gas supplies) produced by sensing webs. Service resources include geospatial data services built on
interoperable standards [15], e.g., the Web Feature Service (WFS) [16] for geographical features, the Web
Map Service (WMS) [17] for geo-registered map images, the Web Coverage Service for raster data,
the Sensor Observation Service (SOS) [18] for near-real-time sensor observations, the Web Processing
Service (WPS) [19] for encapsulating analysis and decision models for smart cities, the Sensor Event
Service (SES) [20] for filtering of and subscription to sensor observations (events), and the Web
Notification Service (WNS) [21] for message notification. Meanwhile, various public emergencies, such
as security incidents, transportation accidents, and accidents involving public facilities and equipment,
occur frequently and can result in heavy casualties and economic losses [22]. These rich information
resources can be utilized to assist smart-city decision-makers in coping with public emergencies and
making decisions. However, these resources are overflowed and are geographically distributed on
different network nodes. Thus, discovering proprietary information resources efficiently and focusing
them on the effective handling of and personalized decision-making support for public emergencies is
an urgent problem that must be solved for the smart city paradigm [2]. To help solve this problem,
focusing service has been proposed in some studies.
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Focusing service, in essence, focuses massive amounts of information resources on a specific task
and provides personalized service to the various roles involved. Some preliminary work has been
conducted in this area, primarily concerning its conceptual aspects. Yang et al. considered focusing
service to be one of the main solutions to providing personal, accurate service of the intent information
resources [23]. Huang et al. viewed information focusing as a new means of information service
and presented the concept of and a mathematical model for semantic relatedness-based information
focusing [24]. Zhu et al. proposed a hierarchical semantic constraint model for focusing remote sensing
information services, in which constraints establish the connections among user semantics, the data
service and processing services, and basic semantic reasoning toward service discovery, selection,
and composition [25].

The combination of data and services on demand is one method of focusing the massive
amounts of available information resources and thus realizing focusing service. Yue et al. developed
a semantic-enhanced geospatial catalog service to satisfy the demands for the discovery and analysis
of geospatial information (geospatial data, services/service chains) in a cyber infrastructure [26].
Yang et al. proposed a RESTFul-based workflow interoperation method to integrate heterogeneous
workflows, e.g., one workflow to access sensor information and one to process it, into an interoperable
unit [27]. Furthermore, Chen et al. used SensorML to construct a geoprocessing e-Science workflow
model to internally integrate the sensor system, observation, and processes (physical and non-physical)
under a sensor web environment [28]. Moreover, for operation in a cloud environment, an agent-based
approach was proposed to support the execution of workflows that require large amounts of
computational resources and expensive hardware in one or multiple clouds [29]. These works have
primarily explored the technical possibilities and feasibility of various types of workflow design,
implementation and execution. Additionally, these studies have paid considerable attention to remote
sensing sensors for large-scale applications, such as province-scale normalized difference vegetation
index (NDVI) calculations [28], rather than applications of in situ or mobile smart sensors, which are
more relevant to the rapid operation of cities because of their low cost, relatively simple deployment,
high accuracy, continuity and instantaneity.

Event-driven mechanism is critical for rapid public emergency response that has a minimum
tolerance for time of reaction to events in smart cities. Yu et al. proposed a BPEL-based geoprocessing
web service workflow that can be executed automatically upon the triggering of an event, such as
the acquisition of a new observation at a new time, to perform the message-level coordination of
sensors and earth science models in the Sensor Web environment [30]. Fan et al. considered both
Observations & Measurements (O&M) information and the state changes of tasks as events and
designed an active on-demand service method for geospatial data retrieval based on an event-driven
architecture [31]. These studies have addressed micro and abstract events exceptionally well. However,
they are somewhat unsuitable for macro urban public emergency scenarios. Thus, developing a new
focusing service method driven by macro urban events for rapid emergency response in smart cities is
a necessity.

To achieve the above goal, this paper proposes an urban macro event-driven distributed
information resource-focusing service method for public emergency response in smart cities with
cyber-physical infrastructures. It utilizes in situ sensors and sensors in smart phones to collect the
context parameters of public emergencies and uses these parameters and other web-accessible data
resources distributed on different network nodes as inputs to the analysis and decision-making models
to produce analysis and decision results [32]. These results, with their necessary descriptions, can be
further shared on the web for application by different societal entities. This study offers the following
four contributions:

(1) An event-driven focusing service model is proposed. In the model, macro urban public
emergencies trigger the focusing service process, and the requirements of handling urban public
emergencies and urban information resources are integrated to assist different societal entities in their
rapid response to public emergencies and making sensible decisions.
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(2) An informational representation of the proposed focusing service model (IRFSM) is developed.
It enables the focusing service model to operate in cyber infrastructures, seamlessly bridging public
emergency and information resources.

(3) An event-driven focusing service process is established based on the IRFSM. It provides
operational procedures for the execution of the focusing service throughout the entire lifecycle of
public emergency response.

(4) A focusing service prototype system is developed based on the proposed focusing service
model, its informational representation and the focusing service process. It is leveraged for public
emergency response in a real-world scenario (the gas leakage in August 2014 in Taiyuan, China) to
test its feasibility and effectiveness in assisting various societal entities to achieve personalized rapid
response to public emergencies.

The remainder of the paper is organized as follows. In Section 2, the proposed method is detailed,
including the focusing service model, its informational representation and the focusing service process.
In Section 3, an experiment to test the proposed method is presented, considering the gas leakage event
that occurred in August 2014 in Taiyuan, China, as a study case. Section 4 provides discussions of the
proposed method, including its feasibility, advantages, scope and limitations. Finally, in Section 5,
several conclusions are provided, including possible directions for future work.

2. Methods

This paper proposes an event-driven distributed information resource-focusing service method for
public emergency response in smart cities. The proposed method, from a macro perspective, consists of
a focusing service model that provides an in-depth analysis of the focusing service provision process,
offering guidance for rapid response to public emergencies. To make the model operate smoothly and to
seamlessly integrate the requirements of public emergency handling, rich urban information resources,
and decision-making, a bridge between public emergencies and urban information resources—an
informational representation of the focusing service model—is established.

2.1. Focusing Service Model

The focusing service model, as depicted in Figure 2, is based on the object and process models
introduced by Governance Enterprise Architecture (GEA) [33,34] with the addition of event-driven
concepts and features. In the proposed service model, the focusing service is triggered by public
emergency events in smart cities and serves various societal entities, including governments,
enterprises and citizens. Being a generic model, the service description covers many different areas of
application in public emergency response, making it highly flexible for use in different cases of focusing
service provision. Public Administration Entities are a type of Governance Entities that participate in
service provision, fulfilling one of the following roles during the focusing service provision phase:

• Service Provider that provides the focusing service to Societal Entities, i.e., government
decision-makers, enterprises, and citizens.

• Evidence Provider that provides Service Providers with the necessary Evidence to execute the
Focusing Service.

• Consequence Receiver that should be informed following the execution of the Focusing Service.
• Service Collaborator that participates in providing the focusing service.
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Preconditions set the general framework in which the focusing service should be performed
and the underlying business rules that should be fulfilled for its successful execution. Preconditions
can be formally expressed as a set of clauses (or rules) and are validated by a Piece of Evidence
serving a Purpose. Because Evidence is pure information, it is stored in Evidence Placeholders (e.g.,
an administrative document).

The Outcome refers to the different types of results that a focusing service may have. The focusing
service model defines three types of Outcomes:

• Output, which is the documented decision of the Service Provider regarding the service
requested by a Societal Entity. This is currently embedded and reaches the client in the form of
an Evidence Placeholder.

• Effect, which is the change in the state of the real world that is caused by the execution of a service.
In public administration, the service Effect is the actual permission, certificate, restriction or
punishment to which a citizen is entitled. In cases in which public administration refuses the
provision of a service, there is no effect.

• Consequence, which is information regarding the executed focusing service that needs to be
forwarded to interested parties, i.e., other public agencies (Consequence Receivers).

2.2. Informational Representation of the Focusing Service Model

The focusing service model is an abstract conceptual model that depicts the roles of the participants
in the focusing service, the constraints of the focusing service, the inputs and outcomes of the focusing
service, the service object of the focusing service and the service mechanism (event-driven), ultimately
providing high-level guidance for the focusing service for public emergency response. To allow the
focusing service model to operate in cyber infrastructures, it is necessary to establish an informational
representation of the focusing service model, bridging public emergency and information resources.

The IRFSM is specific to the event type and event stage. Put another way, it is a prearranged plan
for a certain type of public emergency at a certain stage. From an information service perspective,
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it is also an abstract service chain for retrieving and processing information resources and producing
results for assistance in decision-making. Figure 3 presents a UML diagram of the proposed IRFSM.
ISPRS Int. J. Geo-Inf. 2017, 6, 251  6 of 22 

 

 
Figure 3. UML diagram of the IRFSM. 

2.2.1. Metadata 

The proposed IRFSM consists of five aspects of information, in accordance with the focusing 
service model, which can be expressed as IRFSM = {IRFSMI, IRFSMRE, IRFSMCS, IRFSMA, IRFSMC}, 
where the individual items represent “Identification”, “Related Event”, “Component Service”, 
“Administrative” and “Constraints” information, respectively.  

(1) Identification. The Identification information specifies the basic information regarding the 
IRFSM for its discovery, including the name, abstract, keywords, identification, applications and 
provider of the abstract focusing service chain. The identification of each service chain in the 
registration center is unique. The remaining information is useful for the discovery of a desired 
abstract focusing service chain.  

(2) Related Event. The Related Event information describes the related event type and stage to 
which the abstract focusing service chain is applicable. It can be used to quickly discover the most 
suitable abstract focusing service chain when a public emergency occurs. 

(3) Component Service. The Component Service information consists of a complex process and a 
figure. The complex process consists of one or more atom processes and the control flows between 
them. Each atom process can be regarded as a model that performs a specific function. The figure is 
further composed of process figures and flow figures for the visualization of the abstract service 
chain. The Outcome is also part of the Component Service information and is represented by 
OutputParam. 

Figure 3. UML diagram of the IRFSM.

2.2.1. Metadata

The proposed IRFSM consists of five aspects of information, in accordance with the focusing
service model, which can be expressed as IRFSM = {IRFSMI, IRFSMRE, IRFSMCS, IRFSMA, IRFSMC},
where the individual items represent “Identification”, “Related Event”, “Component Service”,
“Administrative” and “Constraints” information, respectively.

(1) Identification. The Identification information specifies the basic information regarding the
IRFSM for its discovery, including the name, abstract, keywords, identification, applications and
provider of the abstract focusing service chain. The identification of each service chain in the
registration center is unique. The remaining information is useful for the discovery of a desired
abstract focusing service chain.

(2) Related Event. The Related Event information describes the related event type and stage to
which the abstract focusing service chain is applicable. It can be used to quickly discover the most
suitable abstract focusing service chain when a public emergency occurs.

(3) Component Service. The Component Service information consists of a complex process and
a figure. The complex process consists of one or more atom processes and the control flows between
them. Each atom process can be regarded as a model that performs a specific function. The figure is
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further composed of process figures and flow figures for the visualization of the abstract service chain.
The Outcome is also part of the Component Service information and is represented by OutputParam.

(4) Administration. The Administration information includes contact, history, and document
features that are important for administrative management of the abstract focusing service chain.
In particular, the history information records the update history of the abstract focusing service chain.

(5) Constraints. The Constraints information includes legal constraint and security constraints that
affect the accessibility of the abstract service chain.

2.2.2. Input and Output

Input and output are both critical for the IRFSM, describing what it requires and what it
can produce.

(1) Input: The entire IRFSM is registered in a registration center in advance and is managed by
the registration center through functional interfaces. Inputs for the discovery of the IRFSM are event
information (event type and event stage).

(2) Output: Basically, an output consists of an output name, output format (which is helpful for
later use; commonly used formats are GeoTIFF, TIFF, and Shape), output value (this can be a literal
value or a reference to a web-accessible resource, e.g., a GetFeature request or a Map request indicating
a reference to an interoperable result published as a WFS or WMS service), and output generation time
(this should be in a standard date and time format, such as ISO 8601 [e.g., 2004-04-18T12:03:04.6Z],
which is an information interchange representation of dates and times) as well as the ID of the
event, service, and service chain that produced the output. Using this information, the origins of the
output (provenance information) can be readily identified. Because focusing service is, in essence,
a personalized service, the output differs for different Societal Entities (government, enterprise and
citizen users):

• Government users: Government users, the administrators of a smart city, are concerned about
rescue information and the reduction and evaluation of losses caused by public emergencies.
Thus, the shortest paths to a public emergency site and the nearest available facilities that can
be immediately used for rescue and alleviation should be output, as should casualties and
economic losses.

• Enterprise users: Enterprise users may be more concerned with the losses caused, such as the
degrees of damage to natural gas pipelines and power grids. This information can help companies
to evaluate their losses and determine the compensation required from insurance companies or
for other societal entities.

• Citizen users: Citizen users usually pay more attention to their own ranges of activity, i.e.,
where they can go and where they cannot, their escape routes, their ability to receive alerts
when an emergency occurs, and information regarding the evolution of an emergency over time.
Thus, for citizens, timely alerts and warnings should be provided, and detailed information about
the evolution of emergencies should also be provided in a timely manner.

2.2.3. Formalization

XML Schema is a language for defining the structure of XML document instances that belong to
a specific document type. The UML of the IRFSM can be mapped to an XML Schema; thereafter, XML
representations of the IRFSM can be established based on the constraints provided by the established
XML Schema. Such XML representations are registered in the registration center, and the XML Schema
can be used to validate these XML representations.

2.3. Focusing Service Process

The process of focusing service is sophisticated and systematic, as is shown in Figure 4. Many
entities with different roles are involved in the interactions that are necessary for focusing service,
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typically including the registration center, public emergency events, information resources, focusing
service software and societal entities.

The registration center, which is the core of the focusing service, registers public emergency event
information, the data resources of the smart city, the analysis and decision-making model services
available in the smart city, the available abstract focusing service chains (the IRFSM), and the analysis
and handling results for public emergencies. Considering different characteristics and other possible
applications of these resources, the registration center also provides other operation interfaces, which
generally include query and updating interfaces.

Entities with the five roles listed above interact with each other directly or indirectly, with the
registration center as the pivot, to form the overall process of the event-driven focusing service:

(1) Registration of information resources. To make information resources more easily manageable
and discoverable, these resources are first registered in the registration center, thereby laying a solid
resource foundation for the event-driven focusing service.

(2) Triggering by events. The entire process of the focusing service is triggered by the initiation or
phase transformation of a public emergency. Once triggered, the focusing service software initiates the
focusing service process.

(3) Query and retrieval of abstract focusing service chain(s). The focusing service software queries and
retrieves the abstract focusing service chain(s) that are related to the type and specified stage of the
event through the query interfaces provided by the registration center.

(4) Service instance binding and data linking. Because the abstract focusing service chain is not
executable, it must be instantiated before it can be executed. This process involves binding every
model in the service chain to a service instance that resides in a certain web server and linking data
resources as inputs to these models. For data linking, an SOS can provide open spatio-temporal
sensor observations through the GetObservation interface with the specified filters, e.g., eventTime,
procedure, observedProperty, and featureOfInterest. A WFS can provide geographical features through
the GetFeature interface, and a WMS can provide geo-registered map images through the Map interface
with spatio-temporal filters [35] specified.

(5) Execution of the focusing service chain instance and establishment of a description of the analysis results.
The instantiated service chain is executed by a workflow engine, such as Apache ODE, to obtain the
intermediate results (results of executing a sub-service chain) and final results (results of executing the
entire service chain). The proposed method establishes a description that relates every result, including
both intermediate and final results, to a public emergency, a service chain, and models in the service
chain, thus facilitating the provenance of results.

(6) Registration and sharing of analysis results. The focusing service software publishes the analysis
results, making them accessible through the web. Meanwhile, a description of the analysis results
(stored in the OutputParam element of OutputParamType, as depicted in Figure 3) is registered through
an interface provided by the registration center, making these results discoverable and reusable by
different societal entities.

(7) Retrieval of analysis results. Societal entities retrieve the analysis results of public emergencies
from the registration center through the discovery interfaces provided.

(8) Decision-making. Societal entities make their own decisions in response to public emergencies
based on the analysis results retrieved in step 7.
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The focusing service process described above can be utilized throughout the entire lifecycle of
public emergency response because the preregistered abstract focusing service chains already consider
the various phases of emergencies.

3. System Implementation and Experiment

3.1. System Implementation

To test the proposed method, a focusing service prototype system is developed based on the
proposed focusing service model, its informational representation, and the focusing service process.
The architecture of the prototype system is illustrated in Figure 5, including four layers: a resource
layer, a component layer, a business layer and a representation layer. In particular, the resource layer
manages distributed information resources through the CSW (an implementation of the registration
center) in a unified manner. The prototype system assists in decision-making for public emergencies
through the collaborative application of networked and distributed information resources.
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The prototype system performs three main functions: (1) the modeling and registration of 
abstract focusing service chains, which is realized by the component for modeling abstract focusing 
service chains and the component for interacting with the CSW; (2) the discovery and instantiation 
of abstract focusing service chains, which is realized by the component for instantiating abstract 
focusing service chains and the component for interacting with the CSW; and (3) the execution of 
focusing service chain instances and the sharing of analysis results, which is realized by the 
component for orchestrating services, the component for sharing analysis results, and the 
component for interacting with the CSW. Communication among the system modules is achieved 
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The prototype system performs three main functions: (1) the modeling and registration of abstract
focusing service chains, which is realized by the component for modeling abstract focusing service
chains and the component for interacting with the CSW; (2) the discovery and instantiation of abstract
focusing service chains, which is realized by the component for instantiating abstract focusing service
chains and the component for interacting with the CSW; and (3) the execution of focusing service chain
instances and the sharing of analysis results, which is realized by the component for orchestrating
services, the component for sharing analysis results, and the component for interacting with the CSW.
Communication among the system modules is achieved through three types of interfaces: (1) interfaces
for interacting with the CSW, (2) interfaces for interacting with the workflow engine, and (3) interfaces
for utilizing information resources.

3.2. Gas Leakage Scenario

Types of public emergency events that frequently occur in cities include gas leakages, pipe
breakages, and utility outages etc. Gas leakage is the most dangerous to the general public for that
it may explode when exposed to flame or sparks if not handled correctly or in time. In addition to
causing fire and explosion hazards, leaking flammable gases can kill vegetation, including large trees,
and release powerful greenhouse gases into the atmosphere [36]. To help alleviate this problem, Google
Earth Outreach and the Environmental Defense Foundation (EDF) are now working together, utilizing
Google Street View cars mounted with mobile methane sensors to find and assess leaks under streets
and sidewalks and publishing interactive thematic maps of leakage in certain US cities.
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Gas leakage is also a serious problem in China, particularly in cities with decades-old gas pipelines
that may suffer from aging and erosion. Taiyuan, the capital of Shanxi Province, uses coal gas
and natural gas as its two main energy sources and is therefore one such city. Currently, the total
length of the city’s gas pipelines is more than 2700 kilometers, making effective management of the
pipelines and monitoring and addressing gas leaks vitally important. With the smart city building
boom, Taiyuan has become one of the pilot smart cities of the Ministry of Housing and Urban-Rural
Development (MoHURD) of China. One major goal of the construction of smart Taiyuan is to achieve
real-time/near-real-time monitoring and effective management of gas pipelines by adopting Internet
of Things (IoT) technologies.

On 15 August 2014, a truck crashed into a pipeline, leading to a gas leakage event at the
intersection of Xuefu Road and Changzhi Road. It was reported by nearby citizens through smart
phones, and various parameters of the leakage were gathered by in situ sensors and transmitted to
the Smart City Intelligent Decision Making Center (SCIDMC) in Taiyuan in near real time. At the
SCIDMC, a cloud platform was deployed that ran a CSW instance to register and manage diverse
information resources, multiple WPS instances to serve analysis and decision models, multiple
instances of MongoSOS (an SOS implementation for serving sensors and live sensor observations that
was developed by our team and is suitable for distributed environments), and multiple GeoServer
instances to serve basic geographical data. Figure 6 depicts the scenario.
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3.2.1. Model Service

The severity of the consequences caused by a gas leakage depends on the amount and extent
of expansion of the leakage. The amount of leakage further depends on the intensity of the leakage
source and its duration. Analysis and prediction of the amount and expansion extent of the leakage
are of fundamental importance for severity evaluation and emergency response. Because the gas in
this scenario was natural gas, whose density is approximately 0.7174 kg/m3, equivalent to a fraction
of 0.5548 relative to that of air at 0 ◦C and 101.325 kPa, the Gaussian plume model is suitable for
calculating the expansion of the leakage. The Gaussian plume model has ten input parameters: pipeline
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pressure, atmospheric pressure, environmental temperature, leak diameter, leak duration, pipeline
height, wind direction, wind speed, latitude of the leak, and longitude of the leak. The output of the
model is the mass concentration of gas at every specified location. To allow the model to be used
online in an interoperable manner, the Gaussian plume model is encapsulated as a WPS process and
invoked through the standard interfaces.

It is not sufficient to simply calculate the expansion extent of gas leakage; it is also important to
know which buildings, facilities and populations are or will be affected by the gas leakage and its
expansion. Thus, overlay analysis is a necessity; in such an analysis, the expansion of the gas leakage
is overlaid on basic geographical data, such as maps of buildings and populations. There are many
open-source implementations of overlay analysis models, which can also be encapsulated as a WPS
process and invoked through the web.

Knowledge of the shortest paths that relevant staff can take to reach the leakage site is also
critical for rescue and urgent repair, both of which are time-sensitive tasks. A shortest-path analysis
model can facilitate the acquisition of this information. Similar to overlay analysis models, there are
many open-source implementations of such models available in a variety of programming languages,
which can also be encapsulated as a WPS process and invoked through the web.

3.2.2. Sensors and Data

As stated in Section 3.2.1, the Gaussian plume model requires ten input parameters. Among these
parameters, the pipeline pressure can be measured by a pressure sensor mounted on the pipeline;
the atmospheric pressure, environmental temperature, and leak position (latitude, longitude) can
be measured by sensors embedded in smart phones, supposing that a personal mobile sensor web
(PMSW) app (Figure 7) is installed on each to publish sensor observations to MongoSOS in a timely
fashion; the wind speed and wind direction can be obtained by looking up the MongoSOS to obtain
observations from the wind sensors placed by the Weather Bureau that are located nearest to the leak;
the diameter of the leak can be estimated from prior knowledge of the pipeline; and the height of the
pipeline can be obtained from construction records.
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Basic geographical data, including base map data, administrative division data, road net data,
gazetteer data, building data, and population and juridical person information data, are necessary
for evaluating and predicting the impact on and harm to nearby human activities caused by the
leakage and expansion of the gas through overlay analysis and for determining the shortest paths
to the emergency site through shortest-path analysis. These data can be retrieved from GeoServer,
which provides a standard and interoperable WFS and WMS service for basic geographical features
and map images.

3.3. Experimental Process and Results

Figure 8 illustrates the process for gas leakage emergency response in Taiyuan. A public emergency
evolves in four phases: the monitoring phase, the warning phase, the response phase, and the recovery
and evaluation phase. Government departments, enterprises, and citizens focus on different tasks in
different phases, and the focusing service provides different outcomes and decision-making support
for each of them during these phases.
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3.3.1. Monitoring Phase

In the monitoring phase, gas pipelines are monitored by various sensors, such as gas detectors,
smoke alarms, fire detectors, and video sensors. Citizens and inspectors can also report malfunctions
of gas pipelines or gas leakages to government departments. Once an abnormality is monitored or
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reported, the monitoring phase evolves into the warning phase, and the focusing service is triggered
and begins operation.

3.3.2. Warning Phase

As stated in Figure 8, the most important task for government departments is to determine
the severity of and the area affected by the gas leakage and expansion; based on this information,
the government issues a suitable level of warning. As discussed in Section 3.2.1, the Gaussian plume
model and overlay analysis model can be used together to perform this task. In step 0 of the proposed
focusing service process, an abstract focusing service chain containing these two models for the warning
phase of the gas leakage emergency has been registered in the CSW in advance. The abnormality
monitored or reported in the monitoring phase triggers the focusing service prototype system to
retrieve this registered abstract service chain and instantiate it by binding model service instances
(WPS processes) and linking data (real-time sensor data from MongoSOS and archived WFS/WMS
data service from GeoServer). Figure 9 shows a service chain instance for evaluating the impact of gas
leakage and expansion. The intermediate and final results are contained in the proposed informational
representation of the focusing service model and registered in the CSW. These results can be obtained
from the CSW through the web and displayed on various platforms, including 3D desktop platforms
and 2D mobile platforms, as shown in Figure 10. Based on these results, the warning level, time,
message type, message content, area, and extent of the alert are determined by the government and
issued to enterprises and citizens to inform them to take the appropriate precautions.
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3.3.3. Response Phase

Emergency rescue and urgent repair are the two main tasks in this phase. Thus, the police stations,
fire stations, hospitals, and other public facilities nearest to the scene of the gas leakage emergency and
the shortest paths for them to reach the scene should be determined. As explained in Section 3.2.1,
the overlay analysis model and shortest-path analysis model can be utilized together to perform this
task. In step 0 of the proposed focusing service process, an abstract focusing service chain containing
these two models for the response phase of the gas leakage emergency has been registered in the CSW
in advance. The evolution from the warning phase to the response phase triggers the focusing service
prototype system to retrieve this registered abstract service chain and instantiate it through binding
model service instances (WPS processes) and linking data (archived WFS/WMS data service). Figure 11
illustrates a service chain instance for finding the shortest paths along which relevant staff can reach
the emergency scene in the shortest amount of time. The results are contained in the proposed IRFSM
and registered in CSW. These results can be obtained from the CSW through the web and displayed
on various platforms, including 3D desktop platforms and 2D mobile platforms. Figure 12 shows
the shortest paths (red and blue solid lines) displayed on Gaea (a 3D GIS platform). Based on these
results, rescue staff and urgent repair staff (from both government departments and gas enterprises)
can perform their duties (as shown in Figure 13) in the shortest possible time and thus reduce losses to
the greatest possible extent. Similarly, the shortest paths for rapid evacuation from the dangerous gas
leakage area are also determined and provided to enterprises and citizens, thus ensuring the safety of
their lives and property.
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Once a gas leakage emergency has been effectively controlled, the repair work is in order, and any
secondary and derivative disasters have been eliminated, the response phase ends and evolves into
the next phase, the recovery and evaluation phase.

3.3.4. Recovery and Evaluation Phase

In this phase, the gas leakage emergency is under effective control, those wounded are being
treated, and any damaged facilities are under urgent repair. The main task to be executed in this phase
is to recover from and evaluate the losses caused by the gas emergency.

This objective can be achieved through the orchestration of the Gaussian plume model and overlay
analysis model. Although this combination of models is the same as that used in the warning phase,
a separate abstract focusing service chain containing these two models for gas leakage emergencies,
but for the recovery and evaluation phase thereof, is registered. One difference between the focusing
service process applied in this phase and that executed in the warning phase is the geographical data
used. In the warning phase, base map data, road network data, building data and population data are
used as inputs to the overlay analysis model to predict the possible extent of the area affected by the
gas leakage, based on which the warning information is determined. However, in the recovery and
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evaluation phase, the primary task is to evaluate the losses that have already been incurred because of
the gas emergency; therefore, economic data are used in addition to the data used in the warning phase.

The main results of the focusing service for this phase are loss reports, including casualties, facility
damage, and economic losses, as shown in Figure 14. These reports are output and distributed to
government departments in the form of documents (Evidence Placeholders in the proposed focusing
service model) or published to the public as news items.
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4. Discussion

The experiments carried out in four different phases of a real-world scenario—a gas leakage
emergency that occurred in 2014 in Taiyuan, China—demonstrate that the proposed focusing service
method is feasible for application in assisting with emergency response in smart cities and also offers
certain unique features and advantages over the existing methods, as is discussed below in detail.

4.1. Feasibility of the Proposed Focusing Service Method

Based on considerations of the overwhelming amount of available information resources and the
types of public emergencies that most frequently occur, the proposed method adopts an event-driven
mechanism to actuate the focusing service process. It prefabricates processing flows (abstract focusing
service chains) related to both the types and phases of public emergencies, based on practical historical
experience. When a public emergency occurs, suitable processing flows can thus be made available in
a relatively short period of time, using the event type and event phase as query filters. These processing
flows can be instantiated to be executable by binding the appropriate service instances and linking data
with the assistance of the registration center (e.g., the CSW in the experimental scenario) and can thus
produce personalized outputs for various societal entities, e.g., government users, enterprise users and



ISPRS Int. J. Geo-Inf. 2017, 6, 251 19 of 22

citizens, in accordance with their knowledge requirements in response to an emergency. Taking the
warning phase of the gas leakage emergency considered in the experiment as an example, the process
flow orchestrating the Gaussian plume model and overlay analysis model predicts the expansion
area of the gas and provides this information to government departments to allow them to determine
a suitable warning level. Further warning information is issued and pushed to enterprise and citizen
users so that they can take necessary precautions in a timely manner. Therefore, the proposed focusing
service method can feasibly provide personalized service support throughout the entire lifecycle
of public emergencies to various users to facilitate their effective and efficient response to public
emergencies. However, an important premise of the feasibility of the proposed method is that the
communication infrastructure is not damaged in the emergency cases, namely the sensing devices can
still function well and sensing data can be transmitted back normally.

4.2. Advantages of the Proposed Focusing Service Method

4.2.1. Efficient Urban Event-Driven Emergency Response in Smart Cities

The event-driven mechanism is vitally important for efficient emergency response in smart cities.
However, studies to date have focused primarily on micro events [31], such as sensor observation
events, which are difficult to adapt to macro urban public emergency scenarios. By contrast, the method
proposed in this paper is oriented toward macro urban public emergencies. IRFSMs specific to the
various types and stages of public emergencies are registered in and managed by the registration center
and are retrieved through interoperable web service interfaces by the focusing service software when
an urban emergency event occurs or when such an event evolves to another phase. Thus, it can apply
to the whole life-cycle of an event which, however, is not supported by some of the state-of-the-art
methods [25,31]. This urban event-driven mechanism for focusing service implementation contributes
to providing greater suitability and efficiency in response to macro urban emergencies. Table 1 details
the comparison between the proposed method with some state-of-the-art methods.

Table 1. Comparison of the proposed method with others.

Method Event-Driven Event
Type

Suitable for the
Life-Cycle of Events Efficiency Real-Time Dynamic

The proposed
method Yes Macro Yes High High High

Zhu et al. [25] Yes Macro No Medium Medium Medium
Yu et al. [30] Yes Micro No Medium High Medium
Fan et al. [31] Yes Micro No Medium High Medium

Yang et al. [23] No - 1 - Medium Medium Medium
Huang et al. [24] No - - Not known Medium Medium

1 “-“ means that the comparison item does not apply to a method in that row.

4.2.2. Cyber-Physical Infrastructures for Near-Real-Time Location-Based Sensing and Handling
of Emergencies

In the proposed method, cyber-physical infrastructures (as shown in Figure 1) are utilized
rather than cyber infrastructures alone, as in the traditional methods: (1) Sensing Infrastructures:
various sensors (static in situ sensors and dynamic mobile sensors embedded in smart phones) to
acquire comprehensive data regarding the emergency conditions, including geo-location information,
which is particularly important for emergency response; (2) Communication Infrastructures:
communication fabrics (e.g., wireless/wired communication; 3G/4G/Wi-Fi/WSN; email/SMS) to
transmit emergency states (measurements of the surrounding context) and emergency response
messages (e.g., issuance/cancellation of warnings and warning level adjustments); and (3) Cloud
Computing Infrastructures: storage and computation facilities (e.g., the cloud platform deploying
the MongoSOS, WPS, and GeoServer instances at the SCIDMC in the experimental scenario)
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for the analysis of, decision-making in, and efficient handling of emergency scenarios utilizing
service chains comprising analysis and decision-making models with near-real-time and archived
data services as inputs. These cyber-physical infrastructures form extensive networks of sensing-
transmission-computation links to realize the near-real-time location-based sensing of emergencies,
thereby contributing to the efficient handling of emergencies and reducing losses to the greatest
possible extent.

4.2.3. Mobile Crowd Sensing for Dynamic Comprehensive Monitoring of Emergencies in Smart Cities

Traditional sensing techniques such as wireless sensor networks (WSNs), in which distributed
sensors are leveraged to acquire real-time measures of emergency conditions, rely on static
sensing, which suffers from several disadvantages, such as insufficient node coverage, high
installation/maintenance costs, and lack of scalability. As a consequence, these traditional sensing
techniques have been established only in specific areas and are generally not adopted on the large
scale; the necessary support may be lacking throughout most of or even an entire city, thus reducing
the utility and practicability in effective monitoring of emergencies, which occur randomly in time
and space. To overcome these limitations, in addition to traditional sensing techniques (e.g., wind
speed/direction sensors and atmospheric sensors), the proposed method leverages the increasingly
popular mobile crowd sensing technique [11], which represents a new sensing paradigm based on the
power of various mobile devices/objects, such as the smart phones considered in the experiment using
the PMSW app (Figure 7) for the near-real-time publishing and sharing of measurements by a large
pool of mobile sensors and sensor-equipped vehicles. The huge number of users with sensor-enhanced
mobile devices and their inherent mobility and geographical distribution enables more comprehensive
sensing of city dynamics, ensuring that occurrences of public emergencies are identified and reported
in the shortest possible time and in reasonable detail (e.g., when and where it occurred and parameters
of the surrounding context), thereby aiding in timely sensing, decision-making and handling of public
emergencies and contributes to safer and smarter cities.

4.3. Limitations of the Proposed Focusing Service Method

Despite the advantages of the proposed method discussed above, it still suffers certain drawbacks
and limitations:

(1) Static event-driven mechanism: In the proposed method, abstract focusing service chains for
different types and phases of public emergencies must be established in advance. Thus, it is a static
event-driven process that involves human labor.

(2) Semi-automatic focusing service process: The proposed method is not a fully automatic but
rather a semi-automatic focusing service process. The procedure for the retrieval and instantiation
of abstract processing flows involves human interaction with the focusing service software, which
requires that the users involved possess certain prior knowledge concerning public emergencies,
the abstract processing flows, and manipulation of the software, thereby reducing the usability of the
system for non-expert users.

5. Conclusions and Outlook

This paper proposes an event-driven focusing service method to focus the overwhelming
amounts of available distributed information resources to efficiently respond to the types of public
emergencies that occur most frequently in smart cities. The method consists of a focusing service
model, an informational representation of the model, and a focusing service process. Mobile
crowd sensing and cyber-physical infrastructures are utilized to comprehensively monitor and
sense emergencies, to perform near-real-time analysis of emergencies and to help respond to
emergencies in the shortest possible time. The proposed method can focus a rich variety of information
resources on public emergencies and provide personalized service to three different types of societal
entities—government users, enterprise users, and citizen users—to assist them in their efficient
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responses and decision-making with respect to public emergencies, ultimately contributing to the
establishment of safer and smarter cities.

However, the proposed focusing service method still needs human interaction. To further improve
the efficiency and utility of the proposed method, the development of a dynamic event-driven
fully automatic focusing service process will be addressed in our future work. Besides, how to
assist decision-making and emergency response in extraordinary serious disasters during which
communication infrastructures may be heavily damaged should be further investigated.
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