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Abstract: This paper presents a new method for use in performing continuous scale transformations
of linear features using Simulated Annealing-Based Morphing (SABM). This study addresses two
key problems in the continuous generalization of linear features by morphing, specifically the
detection of characteristic points and correspondence matching. First, an algorithm that performs
robust detection of characteristic points is developed that is based on the Constrained Delaunay
Triangulation (CDT) model. Then, an optimal problem is defined and solved to associate the
characteristic points between a coarser representation and a finer representation. The algorithm
decomposes the input shapes into several pairs of corresponding segments and uses the simulated
annealing algorithm to find the optimal matching. Simple straight-line trajectories are used to
define the movements between corresponding points. The experimental results show that the SABM
method can be used for continuous generalization and generates smooth, natural and visually
pleasing linear features with gradient effects. In contrast to linear interpolation, the SABM method
uses the simulated annealing technique to optimize the correspondence between characteristic points.
Moreover, it avoids interior distortions within intermediate shapes and preserves the geographical
characteristics of the input shapes.

Keywords: morphing; simulated annealing; detection of characteristic points; matching of characteristic
points; continuous generalization

1. Introduction

With the development of web mapping and big geo-data, there have been significant changes in
the goals and methods of map generalization. Th goals of map generalization are to settle the problem
of embedding spatial data covering a large region into a small space and to discover geospatial
knowledge by data abstraction [1–4]. The mode of map services should support interactive zooming
in and out to arbitrary scales [5]. Traditional Multi-Scale Databases (MSDBs) do not meet the demands
of users for arbitrary scaling [6]. To overcome these deficiencies, some new methods have emerged,
such as continuous generalization, on-the-fly generalization and on-demand mapping [7–9].This study
explores the problem of the continuous generalization of linear map features by shape morphing.

Continuous generalization denotes the use of various generalization techniques in real time
to generate geographic information at arbitrary scales with smooth and continuous changes.
This process creates temporary, generalized datasets exclusively for visualization; however, these
datasets are not stored or used for other purposes. There are three solutions for online continuous
generalization, specifically the traditional cartographic generalization algorithm-based solution,
the LOD-based solution and the shape morphing-based solution. The first solution implements
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continuous generalization by selecting and transforming the traditional cartographic generalization
algorithm for data processing in a network environment. For example, Sester and Brenner [7]
defined a set of elementary generalization operations (EGOs) and used them to perform continuous
generalization of building areas on small mobile devices. The LOD-based solution relies on the
accumulation of change to construct a multiscale entity model [10,11]. This model considers the spatial
representation from one scale to another as the accumulation of a set of changes. The difference
between two consecutive representations is recorded in a linear order, and the target representation is
achieved through the gradual addition or subtraction of “change patches”. The third solution achieves
continuous generalization based on shape morphing by obtaining a map representation at a meaningful
intermediate scale and interpolating between the two anchor scales [12–16]. The interpolated result is
coarser than that at the larger scale and finer than that at the smaller scale, thereby reflecting the fusion
of the two basic scales.

Shape morphing is an important technique in computer graphics and computer vision [17].
In general, morphing can be defined as a gradual (i.e., over time) and smooth transformation of
one key shape into another [18]. Previous studies have mainly focused on two aspects, i.e., finding
meaningful correspondences between the characteristics of two key shapes and producing smooth
interpolated shapes according to “trajectories” along which the characteristics change from one key
shape to another. Generally, the process of characteristic correspondence is to detect the characteristic
points and to establish the correspondence between the geometric features of the source and target
shapes. In the field of computer graphics, the relationship of correspondence is usually computed
based on physical energy minimization or the geometric similarity of the shapes [19–21]. The use of
path interpolation in morphing ensures that, as the intermediate shapes change gradually along a
specified trajectory, the boundaries of the intermediates display no shrinkage and the interiors are
not distorted. The simplest method is linear interpolation, which is only suitable for simple shapes.
Sederberg et al. [22] proposed an intrinsic interpolation method that avoids shrinkage by interpolating
both the edge lengths and the vertex angles of two input shapes. Moreover, the as-rigid-as-possible
interpolation method has been described that improves the effectiveness of boundary interpolation by
rigid motion and compatible triangulations [23,24].

Generally, in cartography and other fields, the process of characteristic point matching plays
an important role in morphing. Unreasonable matching may result directly in poor warping results.
Simple matching methods based on local geometric properties, such as vertex angles, edge lengths
or triangle areas, are insufficient to describe and match the geographical properties hidden within
geometric shapes [3]. Proper characteristic matching must consider the geometric, topological and
semantic similarities of geographical features. Therefore, matching is a global process and requires
optimization to obtain reasonable results. In this study, simulated annealing, a global optimization
algorithm [25], is applied to carry out characteristic matching and shape interpolation. Finally,
the continuous generalization of linear features is carried out.

The rest of paper is organized as follows. Section 2 investigates the continuous scale transformation
model of linear feature using a simulated annealing-based morphing technique. Experiments involving
simulated data and different real linear features are given in Section 3. Section 4 presents the conclusions
of this study, together with suggestions for future improvements.

2. Methodology

The concept model of morphing can be expressed as Rs = π(α,β, s), in which π is a continuous
and monotonic interpolating function of s; s is a normalized parameter related to the scale; α is the
linear feature of the source, which has a large built-in scale; β is the linear feature of the target, which
has a small built-in scale; and Rs is the interpolation shape, which ranges from α to β. The whole
process consists of four major steps, specifically collecting user inputs, extraction of characteristic
points, assessment of the correspondence between characteristic points and path interpolation. Because
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β is generalized from α, all of the characteristic points on β have corresponding points on α, but not
vice versa. The relationship between s and the scale is as follows:

s =

1
TMid
− 1

Ta
1

Tb
− 1

Ta

(1)

where Ta, Tb and TMid are the scales of α, β and Rs, respectively.
Assume that polyline α is a curve specified by a sequence of points SP : {a1, a2 . . . am} that

are called its vertices, polyline β is a curve specified by a sequence of points TP : {b1, b2 . . . bn}
that are called its vertices, the number of characteristic points on β is k, and their indexes in the
coordinate string are TK : {g1, g2 . . . gk}. Then, the characteristic point series of β can be determined as
TS : {bg1

, bg2
. . . bgk

}, where bgj
∈ TP and gj ∈ TK. The extraction of characteristic points is introduced

in Section 2.1., and the correspondence of characteristic points is introduced in Section 2.2. Path
interpolation is presented in Section 2.3.

2.1. Characteristic Point Extraction

A CDT-based method is adopted to detect the characteristic points of polylines. The results of
this method divide polylines into groups of symmetrical bends. The process of characteristic point
extraction is shown in Algorithm 1.

Algorithm 1 Characteristic Point Extraction

Input: points on β TP : {b1, b2 . . . bn}.
Output: characteristic points of β.
For polyline β at small scale do

1 Construction of CDT
2 Classification of triangles
3 Extraction of characteristic points
4 Elimination of pseudo-characteristic points
5 Supplement with start and end points

End

All the points and segments of β are taken into account in constructing the CDT, in which the
segments play the role of constrained edges. The triangles in the network are classified into three types
based on the number of unconstrained edges of each triangle. Triangles with one unconstrained edge
are defined as type I triangles, those with two unconstrained edges are defined as type II triangles,
and those with three unconstrained edges are defined as type III triangles. In Figure 1a, triangle C
belongs to type I, triangle B belongs to type II, and triangle A belongs to type III. The intersection points
of the two constrained edges of each type I triangle are extracted as characteristic points. In Figure 1a,
the arrow shows the direction of the polyline, and the red points are raw extracted characteristic
points, in which the square points are formed by external bends and the circle points are formed by
internal bends.

The method of extracting characteristic points directly based on triangulation has a drawback in
that it is sensitive to coordinate tremble and the existence of pseudo-characteristic points. In Figure 1a,
the characteristic points o, p and q are generated by coordinate tremble. To improve the quality of
the characteristic points, the characteristic points that satisfy the following two criteria are eliminated.
If a type III triangle is directly adjacent to a type I triangle, then the characteristic point on the latter will
be deleted (e.g., point o in Figure 1a). In addition, if one type III triangle has two directly adjacent type I
triangles, the characteristic point on the type I triangle with a small area will be deleted (e.g., point p
in Figure 1a). After the exclusion of the pseudo-characteristic points, circle and square characteristic
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points appear alternately along the polyline. Lastly, the start and end points of β are added to the set
of its characteristic points. The final characteristic points are shown in Figure 1b.ISPRS Int. J. Geo-Inf. 2017, 6, 242  4 of 15 
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Figure 1. The extraction of characteristic points. (a) Raw characteristic points with pseudo-
characteristic points. (b) Final characteristic points after excluding the pseudo-characteristic points 
and supplementing with the endpoints. 
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Figure 1. The extraction of characteristic points. (a) Raw characteristic points with pseudo-characteristic
points. (b) Final characteristic points after excluding the pseudo-characteristic points and supplementing
with the endpoints.

2.2. Characteristic Point Correspondence Using the Simulated Annealing Algorithm

For each characteristic point in TS, a corresponding point in SP can be found. The result of
correspondence establishes a relationship between TS and SP γ : TS→ SP. Because the cardinality of
SP is greater than that of TS, there are many kinds of possible corresponding relationships between
TS and SP. Which corresponding relationship is the best? This is an optimization problem. First,
an objective function is built that evaluates the rationality of each correspondence γ. A metric function
d(TS, SP,γ) is defined to evaluate the differences between two series of segments. Obviously, smaller
values of d indicate a more reasonable correspondence. Our purpose is to find a correspondence
γ that causes the metric function d(TS, SP, γ) to achieve its minimum value. The SA algorithm is
employed to identify the optimal correspondence. SA is a random-search technique that exploits an
analogy between the way in which metals cool and freeze into a minimum-energy crystalline structure
(the annealing process) and the search for a minimum in a more general system [25,26]. As a generic
probabilistic meta-heuristic for the global optimization problem of locating a good approximation to
the global optimum of a given function, it is used to identify the optimum matching with the minimum
possible energy based on the objective function d.

The algorithm process of identifying the correspondence of characteristic points by simulated
annealing is shown in Algorithm 2. First, an arbitrary initial matching state γ0 is generated using the
Monte Carlo method. For each characteristic point in TS, a random point is selected from its candidate
set as the corresponding point to generate the initial matching state γ0 : TS→ SP. Then, the SA
algorithm obtains the global optimal result through slow cooling. In each cooling step, the SA heuristic
considers some neighboring state γ′ of the current state γ and decides probabilistically whether to
move to state γ′ or to remain in state γ. These probabilities ultimately lead the model to move to a
lower energy state. Typically, this step is repeated until the model reaches a state that is good enough
for the application, or until a predetermined computational budget has been exhausted. The efficiency
of the algorithm and the quality of the matching results depend on four factors, namely the objective
function, the search space, the acceptance probabilities and the annealing schedule.

2.2.1. Objective Function

Here, the purpose of the objective function is to evaluate the differences in curves. There are
various types of metrics for evaluating the differences between two curves, such as distance, length,
orientation, and shape. In the context of map generalization, these metrics may not work well.
For example, if the target polyline is generated from the source polyline by bend deletion, then the
length may become shorter, and the orientation may rotate by a certain amount. Here, the degree of
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overlap between the buffer areas of pairs of features are used as a metric to evaluate the similarity
of features. Obviously, if two homologous geographic linear features are similar, then the degree of
overlap of their buffer areas will be large, and vice versa. The Hausdorff distance between the two
curves is used as the radius of the buffer function. This method ensures that the buffer function can
adaptively adjust the radius to ensure that the overlap area is neither too broad nor too narrow and
that the two buffers have a sufficient degree of overlap. Now, the differences in the two segments σ
and τ can be defined as:

d(σ, τ) = 1−min{Bσ ∩ Bτ

Bσ
,

Bσ ∩ Bτ

Bτ
} (2)

Here, σ is a segment belonging to α, τ is a segment belonging to β, and B is the buffer function. The
radii Bσ and Bτ are defined by the Hausdorff distances of σ and τ. Then, for one certain correspondence
γ, the global difference can be defined as the sum of the local differences of all of the curves.

d(α,β,γ) =
k−1

∑
i=1

di(σ, τ) (3)

Here, k is the number of characteristic points, and k − 1 is the number of segments.

Algorithm 2 Correspondence of Characteristic Points by SA

Input: Initial matching state γ0 : TS→ SP , initial temperature T0, annealing speed w.
Output: Optimum correspondence for TS and SP.
Evaluate initial matching state
If (initial state = solution) then

Final state← initial state
Else

Current state← initial state
Initialize T0 according to annealing schedule
Do

Select candidate corresponding point that has not yet been applied to the current state
Apply candidate corresponding point to produce a new state
Evaluate new state
Compute ∆d
If (new state is better than current state) then

Current state← new state
Else

P ← e−∆d/T

Generate random number R between 0 and 1
If (R<P) then

Current state← new state
Endif

Endif
Revise T according to annealing schedule

Until (current state = solution ) or (no new candidate corresponding points left to apply)
Final state← current state

Endif

2.2.2. Search Space

A state γ is a matching between the characteristic points of TS and the coordinate points of
SP γ : TS→ SP. The neighbors of a state are new states that are produced by altering a given state
in well-defined ways. Based on state γ, if the point that corresponds to a characteristic point bi is
changed, say from aj to ak, we obtain a neighbor γ′.
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To improve the algorithm’s efficiency, a candidate corresponding set is defined for each
characteristic point in TS to limit the search space. As two different representations of the same
geographical entity, the corresponding points on α and β have similar spatial locations. This property
can be used to narrow the search space of the characteristic points. For each characteristic point in TS,
the Euclidean distances between it and all vertexes of α are calculated, and the vertex with the shortest
distance as an anchoring point is selected. All the anchoring points divide α into k− 1 segments. If a1,
a2 and a3 are three neighboring anchoring points, the segment between a1 and a2 is defined as the
preceding segment of a2, and the segment between a2 and a3 is defined as the following segment of a2.
The half vertexes of the two neighboring segments near the current anchoring point are selected as
the candidate corresponding set of the related characteristic point. Using this method, the matching
process is first solved in a broad region of the search space containing good solutions before shifting to
low-energy regions. The solution space becomes narrower and narrower, and finally, the downhill
movement according to the steepest descent heuristic is used.

2.2.3. Acceptance Probabilities

As a meta-heuristic method, SA uses the neighbors of a state as a way to explore solution spaces,
and although it prefers better neighbors, it also accepts worse or equally acceptable neighbors to avoid
getting stuck in local optima. However, in cases where the new state is worse than or equal to the
current state, simulated annealing has some probability of accepting the new state. The probability of
making the transition from the current state γ to a candidate new state γ′ is specified by an acceptance
probability function P(γ, γ′, T), which is defined as

P
(
γ, γ′, T

)
= e−∆d/T (4)

∆d represents the “badness” of the new state, i.e., the amount by which the evaluation
function is worsened; d(TS, SS,γi)− d(TS, SS,γ0). P(γ, γ′, T) decreases exponentially as ∆d increases
(i.e., a slightly worse new state is more likely to be accepted than a much worse one). T, which is called
the temperature, decreases over time according to an annealing schedule. At higher values of T, “bad”
moves are more likely to be accepted. In practice, the probability P is usually tested against a random
number R(0 ≤ R ≤ 1). A value of R < P results in the new state being accepted.

2.2.4. Annealing Schedule

The initial choice of T and the rate at which it decreases has an effect on how well the algorithm
performs [25]. When T0 is set to a larger value, the evolution of γ will only be sensitive to large
variations in d. Under such conditions, the annealing process will be slow and will take a long
time, but the algorithm is more likely to obtain the optimal matching results. In contrast, small
values of T0 will result in sensitive evolution of γ given even small variations in d. Meanwhile,
the annealing process will be quick and will take a small amount of time; however, the algorithm
may miss the optimal matching results. Generally, the slower the rate of change, the better the result.
However, the processing overhead associated with the algorithm increases as the rate of change of T
becomes more gradual. In practice, a suitable annealing schedule is usually decided upon after some
preliminary experimentation.

2.3. Path Interpolation

Piecewise linear interpolation is used to carry out the path interpolation. For each pair of
segments, the number of vertexes is made to be equal by adding points to the middle position of
the two neighboring vertexes with the biggest Euclidean distance one by one. Simple straight-line
trajectories are then used to define the paths between corresponding points.
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3. Case Study

The algorithms are evaluated using pairs of simulated data and two different types of real linear
geographic features, specifically contour at scales of 1:10,000 and 1:50,000 and river network features at
scales of 1:100,000 and 1:250,000. The simulated data covers the basic operations of map generalization
for line features, which include vertex deletion, bend deletion, bend exaggeration and bend typification.
Only those morphing transformations that take into account the basic generalization operations can be
used for continuous scale transformations of map data. These real linear geographic features were
obtained from the national fundamental geographic information system of China. They represent
typical linear features found on maps and have a high degree of complexity. Here, they are used
mainly to test the efficiency and availability of the algorithm. All of the experiments were performed
on a DELL OptiPlex 3020 MT PC with an Intel® CoreTM i5-4590 CPU and 8 GB of main memory
running Microsoft Windows 7. The algorithms used to detect the characteristic points, determine
the correspondence and perform the shape interpolation were implemented in C++ and compiled
with VS2012.

3.1. Simulation Experiments and Analysis

The simulated data are two representations on different scales. Figure 2a is the finer representation
at a large scale (1:10,000) that has 119 vertexes and contains rich detail. Figure 2b is the related coarse
representation at a small scale (1:50,000), which includes fewer details. Figure 3 shows the overlap
of the two different representations. From this figure, it can be seen that the coarser representation is
generalized from the finer one by four types of classic map generalization operations: the area of A
being generalized by vertex deletion, the area of B being generalized by bend deletion, the area of C
being generalized by bend exaggeration and the area of D being generalized by bend typification in
order to reduce a series of three bends to two bends.
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The extraction of characteristic points was conducted using algorithm 1, which is described in 
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Figure 2. The experimental data with different levels of details and the characteristic point extraction
from coarse representation of small scale. (a) Large-scale representation (1:10,000). (b) Small-scale
representation (1:50,000). (c) Detection of characteristic points.

The extraction of characteristic points was conducted using algorithm 1, which is described in
Section 2.1. In Figure 2c, the different types of triangles are filled using three colors. Red is used for type
II, green is used for type I, and blue is used for type III. After the elimination of pseudo-characteristic
points and supplementing with the start and end points, the final 13 characteristic points are marked
with small black circles in Figure 2c.
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According to the rules of the search space presented in Section 2.2.2, the matching candidate
sets of each characteristic point are extracted, and the results are listed in Table 1. The start and end
points each have one and only one candidate. Each of the internal characteristic points has multiple
candidates, which will be filtered using the SA-based correspondence algorithm.

Table 1. The characteristic points in Figure 2b and the related matching candidates (TS: characteristic
points; CP: candidate points).

TS CP TS CP TS CP TS CP

b1 {a1} b12 {a23, . . . , a35} b30 {a68, . . . , a75}

b41 {a119}
b3 {a4, . . . , a8} b18 {a36, . . . , a49} b33 {a76, . . . , a83}
b5 {a9, . . . , a12} b25 {a50, . . . , a60} b36 {a84, . . . , a97}
b7 {a13, . . . , a22} b28 {a61, . . . , a67} b38 {a98, . . . , a113}

In this paper, a linear annealing schedule that is described by the function tnew = w ∗ told is
used. Here, w controls the annealing speed, and this parameter decreases from 0.9 to 0.3. The initial
temperature T0 decreases from 13 to 3. The results of the characteristic corresponding links with
different annealing speeds w and initial temperatures T0 are shown in Figure 4. It can be seen that the
linear annealing schedule is the key factor influencing the matching results when the initial temperature
is sufficiently high for the annealing speed. The results of characteristic point correspondence have
been quantitatively evaluated by Ctnl [13]. Defining a function e: [0,1]→ E, where e(u) = g(u) − f(u)
and u ∈ [0,1], the length |E| of the linear feature E is the value of Ctnl [14]. A smaller Ctnl value
indicates more accurate corresponding points. The run times and translation costs Ctnl that would
result from different annealing rates w and initial temperatures T0 are shown in Table 2 and Figure 5.

The experimental results show that, when the initial temperature T0 is greater than 9,
the correspondence effect has no obvious improvement. Given a rapid annealing speed, even when
the initial temperature T0 is high enough, the correspondence effect is not acceptable. For example,
when T0 = 13 and w = 0.3, the Ctnl still has a large value of 73.94. When the annealing speed is slow
enough, say w = 0.9, the corresponding results are satisfactory.
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Table 2. The running time (in milliseconds) and Ctnl (in meters) with different annealing speeds and
initial temperatures.

w = 0.9 w = 0.7 w = 0.5 w = 0.3

Running
Time Ctnl

Running
Time Ctnl

Running
Time Ctnl

Running
Time Ctnl

T0 = 13 578.3 59.105 170.8 63.896 87.9 65.65 50.6 73.94
T0 = 11 538.1 60.202 158.9 61.807 81.8 69.17 47.1 80.326
T0 = 9 485.2 58.527 143.3 62.512 73.7 66.62 42.5 78.05
T0 = 7 423.2 58.99 125.0 68.3 64.3 69.29 37.1 77.7
T0 = 5 338.7 59.98 101.1 64.446 52.0 81.13 29.9 82.2
T0 = 3 214.1 63.36 63.2 80.53 32.5 84.97 18.7 90.09
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Considering the operation of map generalization, the matching algorithm performs well for the
characteristic points generated by the vertex deletion, bend deletion and bend exaggeration operations.
However, for the characteristic points generated by bend typification, the matching results are less
satisfactory. For example, when T0 = 9 and w = 0.9, the segment between characteristic points b36

and b38 corresponds to a long segment at a large scale between vertexes v87 to v107, which results in
merging two bends into a single bend. Nöellenburg et al. [13] believe that there is a trade-off between
obtaining a smooth morph that retains the mental map and producing an optimal diagram at a fixed
scale. If a user stops zooming at an intermediate scale where the merging process is not quite complete,
it could make sense to continue merging while maintaining the scale until the representation of the
bends is acceptable.

The process of piecewise linear interpolation is conducted based on the characteristic
correspondence, of which the result is shown in Figure 6. Meanwhile, the same data were tested using
the naive linear interpolation method; the results are shown in Figure 7. Based on this comparison,
it can be seen that the SABM method produces gradual changes that involve vertex deletion, bend
deletion and bend exaggeration. Even for bend typification, the SABM method merges two bends into
a single bend, which is likely preferable. The morphing results produced by naive linear interpolation
have two obvious defects. First, the isomorphic character of the two representations are broken during
the interpolation; for example, the bend within the dotted rectangle first becomes exaggerated and
then shrinks. On the other hand, using the SABM method, the bend was always constant. Second,
the heterogeneous character of two representations generated by map generalization operations will
not be able to reflect progressive changes. For example, the bend within the dotted circle becomes
increasingly sharp, and it ceases to point to the right and begins to point upward. During the morphing
process, the typification operation was not taken into consideration. The reason for the two abnormal
deformations lies in that the naive linear interpolation method ignores the matching of the inherent
structural characteristics of linear features. In contrast, the SABM method conducts a global optimal
matching on each feature’s structural character, so the result is more acceptable and more adapted to
human visual perception.
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3.2. The Application of SABM for Continuous Scale Transformation

Contours and river network are two typical linear features on maps. Here, the SABM method
is applied to the continuous generalization of contours and river networks. The data set of contour
lines has two scales, 1:10,000 and 1:50,000, and the data at these scales are generalized from the
large-scale data. The scales of the river networks are 1:100,000 and 1:250,000. The complete data
set comprises 17 contours and 57 rivers. Experiments similar to those described in Section 3.1 are
performed to select the values of parameters T0 and w. The experimental results show that the initial
temperature parameter T0 = 9 and annealing speed parameter w = 0.9 are suitable for morphing the
contours and river network. The generalization effect are reflected by the average Ctnl values of the
intermediate shape and the original shape in the coarser representation. Data sizes, running times and
the series of Ctnl are given in Table 3. The morphing results are shown in Figures 8 and 9, respectively.
Actually the computation of the characteristic point extraction and optimum correspondence are
part of the preprocessing of the data, whereas the actual morphing using straight-line trajectories
is computed at interactive speeds. The statistical results in Table 3 show that when the value of s
increases, the intermediate state is more and more like the original shape in the coarser representation
as the value of Ctnl decreases. The SABM method can produce the continuous generalization of linear
geographical features.
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Table 3. Data sizes, running times and the series of Ctnl (in meters), (Num1: number of records; Num2:
number of characteristic points; T1: time to extract the critical points in seconds; T2: time to determine
the optimum correspondence in seconds).

Num1 Num2 T1 T2 Ctnl (s = 0.2) Ctnl (s = 0.4) Ctnl (s = 0.6) Ctnl (s = 0.8)

Contours 17 982 13.18 24.51 468 355 279 144
Rivers 57 212 2.71 5.7 399 307 226 136
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4. Concluding Remarks

In this study, the morphing technique is used to perform the continuous generalization of linear
features. In carrying out the morphing of vector data, there are two core processes, namely the matching
of characteristic points and the interpolation of paths. In the context of map generalization, the two
input states of finer and coarser polylines refer to the same entity, meaning that the two features have
many common characteristics. By introducing the simulated annealing technique to perform the global
correspondence of characteristic points, most of the homogeneous characteristics can be matched.
The traditional map generalization operations, such as vertex deletion, bend deletion and the bend
exaggeration effect can produce gradual warping effects in transformations from fine detail to coarse
detail. If the coarser polyline being generated by bend typification operations, the correspondence
relationship of the coarser and finer scales is an m-to-n mapping (where m and n denote the number
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of bend; m 6= n), which means the finer state’s multiple bends may combine to the coarser state’s
single bend. It is perhaps arguable whether this is the best correspondence, however. Experiments
show that, when the initial temperature parameter T0 = 9 and the annealing speed parameter w = 0.9,
the corresponding results are satisfactory for most cases.

For the process of path interpolation, the linear interpolation method is employed. On the basis
of the correspondence among characteristic points, the linear interpolation algorithm has been used
to identify corresponding points for every pair of these split corresponding subpolylines, and the
straight-line trajectories are employed for interpolation. The case study shows that the proposed
method is accurate and efficient. Since the process of characteristic point extraction and corresponding
takes structural information and the map generalization operations into account, this method can better
preserve the gradual changes in homogeneous structures between two polylines in the interpolation
process. Therefore, this method can improve the accuracy of morphing and can be used for the
continuous generalization of linear geographic features.

However, the following two aspects still need to be improved. First, if the span over which
the scale changes is large, the geometric dimensions of map objects may change, say from polygon
to polyline. Thus, the SABM method cannot be used for this type of continuous generalization.
Second, during the process of interpolation, non-linear trajectories can be developed to ensure that
self-intersections do not occur.

Acknowledgments: This work was supported by the National Key Research and Development Program of China
(Grant 2017YFB0503601 and 2017YFB0503500), the National Natural Science Foundation of China (Grant 41671448
and 41531180); and the China Scholarship Council (CSC) (Grant 201706275018).

Author Contributions: Jingzhong Li and Tinghua Ai conceived and designed the experiments, Jingzhong Li
performed the experiments, Pengcheng Liu and Min Yang contributed analysis tools, and Jingzhong Li wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bereuter, P.; Weibel, R. Real-time generalization of point data in mobile and web mapping using quadtrees.
Cartogr. Geogr. Inf. Sci. 2013, 40, 271–281. [CrossRef]

2. Meng, L.; Murphy, C.; Ding, L.; Yang, J. A Review of Research Works on VGI Understanding and Image
Map Design. Kartographische Nachrichten. Available online: https://www.researchgate.net/publication/
316277984_A_Review_of_Research_Works_on_VGI_Understanding_and_Image_Map_Design (accessed on
7 August 2017).

3. Ai, T.H. The drainage network extraction from contour lines for contour line generalization. ISPRS J.
Photogramm. Remote Sens. 2007, 62, 93–103. [CrossRef]

4. Ai, T.H.; Li, J. A DEM generalization by minor valley branch detection and grid filling. ISPRS J. Photogramm.
Remote Sens. 2010, 65, 198–207. [CrossRef]

5. Jones, C.B.; Ware, J.M. Map generalization in the web age. Int. J. Geogr. Inf. Sci. 2005, 19, 859–870. [CrossRef]
6. Danciger, J.; Devadoss, S.L.; Mugno, J.; Sheehy, D.; Ward, R. Shape deformation in continuous map

generalization. Geoinformatica 2009, 13, 203–221. [CrossRef]
7. Sester, M.; Brenner, C. Continuous generalization for visualization on small mobile devices. In Development

of the Spatial Data Handling; Fisher, P., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 355–368.
8. Van Oosterom, P. Variable-scale Topological Data Structures Suitable for Progressive Data Transfer:

The GAP-face Tree and GAP-edge Forest. Cartogr. Geogr. Inf. Sci. 2005, 32, 331–346. [CrossRef]
9. Liu, P.C.; Li, X.G.; Liu, W.B.; Ai, T.H. Fourier based multi-scale representation and progressive transmission

of cartographic curves on the internet. Cartogr. Geogr. Inf. Sci. 2016, 43, 454–468. [CrossRef]
10. Ai, T.; Li, Z.; Liu, Y. Progressive Transmission of Vector Data Based on Changes Accumulation Model; SDH:

Leicester, UK; Springer: Berlin, Germany, 2003; pp. 85–96.
11. Van Kreveld, M. Smooth generalization for continuous zooming. In Proceedings of the 20th International

Cartographic Conference (ICC’01), Beijing, China, 6–10 August 2001; pp. 2180–2185.

http://dx.doi.org/10.1080/15230406.2013.779779
https://www.researchgate.net/publication/316277984_A_Review_of_Research_Works_on_VGI_Understanding_and_Image_Map_Design
https://www.researchgate.net/publication/316277984_A_Review_of_Research_Works_on_VGI_Understanding_and_Image_Map_Design
http://dx.doi.org/10.1016/j.isprsjprs.2007.04.002
http://dx.doi.org/10.1016/j.isprsjprs.2009.11.001
http://dx.doi.org/10.1080/13658810500161104
http://dx.doi.org/10.1007/s10707-008-0049-0
http://dx.doi.org/10.1559/152304005775194782
http://dx.doi.org/10.1080/15230406.2015.1088799


ISPRS Int. J. Geo-Inf. 2017, 6, 242 15 of 15

12. Cecconi, A.; Galanda, M. Adaptive zooming in Web cartography. Comput. Graph. Forum 2002, 21, 787–799.
[CrossRef]

13. Nöellenburg, M.; Merrick, D.; Wolff, A.; Benkert, M. Morphing polylines: A step towards continuous
generalization. Comput. Environ. Urban Syst. 2008, 32, 248–260. [CrossRef]

14. Deng, M.; Peng, D. Morphing Linear Features Based on Their Entire Structures. Trans. GIS. 2015, 19, 653–677.
[CrossRef]

15. Whited, B.; Rossignac, J. B-morphs between b-compatible curves in the plane. In Proceedings of the
ACM/SIAM Joint Conference on Geometric and Physical Modeling, San Francisco, CA, USA, 5–8 October
2009; pp. 187–198.

16. Li, J.Z.; Li, X.G.; Xie, T. Morphing of Building Footprints Using a Turning Angle Function. ISPRS Int.
J. Geo-Inf. 2017, 6, 173. [CrossRef]

17. Yang, W.; Feng, J. 2D shape morphing via automatic feature matching and hierarchical interpolation.
Comput. Graph. 2009, 33, 414–423. [CrossRef]

18. Gomes, J.; Darsa, L.; Costa, B.; Velho, L. Warping and Morphing of Graphical Objects; Morgan Kaufman:
San Francisco, CA, USA, 1999.

19. Sederberg, T.; Greenwood, E. A physically based approach to 2D shape blending. ACM Comput. Graph. 1992,
26, 25–34. [CrossRef]

20. Efrat, A.; Har-Peled, S.; Guibas, L.J.; Murali, T.M. Morphing between polylines. In Proceedings of the
12th ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, USA, 7–9 January 2001; pp. 680–689.

21. Van, O.R.; Veltkamp, R.C. Parametric search made practical. Comput. Geom. 2004, 28, 75–88.
22. Sederberg, T.; Gao, P.; Wang, G.; Mu, H. 2-D shape blending: An intrinsic solution to the vertex path problem.

Comput. Graph. 1993, 27, 15–18.
23. Alexa, M.; Cohen-Or, D.; Levin, D. As-rigid-as-possible shape interpolation. In Proceedings of the

27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’00), New Orleans,
LA, USA, 23–28 July 2000; pp. 157–164.

24. Surazhsky, V.; Gotsman, C. Intrinsic morphing of compatible triangulations. Int. J. Shape Model. 2003, 9,
191–201. [CrossRef]

25. Ware, J.M.; Jones, C.B.; Thomas, N. Automated map generalization with multiple operators: A simulated
annealing approach. Int. J. Geogr. Inf. Sci. 2003, 17, 743–769. [CrossRef]

26. Kirkpatrick, S.; Gelattjr, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.
[CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/1467-8659.00636
http://dx.doi.org/10.1016/j.compenvurbsys.2008.06.004
http://dx.doi.org/10.1111/tgis.12111
http://dx.doi.org/10.3390/ijgi6060173
http://dx.doi.org/10.1016/j.cag.2009.03.007
http://dx.doi.org/10.1145/142920.134001
http://dx.doi.org/10.1142/S0218654303000115
http://dx.doi.org/10.1080/13658810310001596085
http://dx.doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology 
	Characteristic Point Extraction 
	Characteristic Point Correspondence Using the Simulated Annealing Algorithm 
	Objective Function 
	Search Space 
	Acceptance Probabilities 
	Annealing Schedule 

	Path Interpolation 

	Case Study 
	Simulation Experiments and Analysis 
	The Application of SABM for Continuous Scale Transformation 

	Concluding Remarks 

