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Abstract: Seismic site effects are influenced mainly by geospatial uncertainties corresponding
to geological or geotechnical spatial variance. Therefore, the development of a geospatial
database is essential to characterize site-specific geotechnical information in multiscale areas and
to optimize geospatial zonation methods with potentially high degrees of spatial variability based
on trial-and-error geostatistical assessments. In this study, a multi-source geospatial information
framework, which included the construction of a big data platform, estimation of geostatistical
density, optimization of the geostatistical interpolation method, assessment of seismic site effects, and
determination of geospatial zonation for decision making, was established. Then, this framework
was applied to the Seoul metropolitan area, South Korea. The GIS-based framework was established
to develop the geospatial zonation of site-specific seismic site effects before considering the local
characteristics of site effects dependent on topographic or geological conditions, based on a geospatial
big-data platform in Seoul. The zonal conditions were composed of geo-layers, site effect parameters,
and other multi-source geospatial maps for each administrative area, and infrastructure was
determined based on the integration of the optimized geoprocessing framework.

Keywords: geospatial big data; geo-layer; seismic site effect; geostatistical optimization;
seismic zonation

1. Introduction

The development of geospatial databases is essential for the characterization of local geotechnical
information in multiscale areas using optimized geotechnical survey results that have potentially high
degrees of spatial variability based on geostatistical assessments. To estimate two-or three-dimensional
subsurfaces, such databases should be reviewed based on the reliability of their validation and the
application of advanced integration techniques with multi-source information, such as borehole
data, geophysical investigations, and geological maps. Advanced integration methodologies using
borehole data and proven investigations have been applied at construction sites to identify local
geotechnical characteristics and guide engineering judgments. Moreover, geometric models based on
geomorphological data, geological maps, and numerical surface maps provide continuous subsurface
information based on geo-knowledge for large-scale field characterizations. Geospatial information
has been applied recently as a big data platform to construct potential earthquake hazard maps that
consider site effects. The understanding and quantification of site effects are important aspects of
seismic hazard analyses, particularly detailed site-specific analyses of critical structures [1,2].

Seismic zonation is the process of estimating the response of soil layers to earthquake excitation
and the variation in ground motion characteristics on the ground surface [3]. Seismic zonation
provides the basis for site-specific risk analyses, which can help mitigate earthquake damage [4,5].
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One well-established approach is the three-level method currently shared by international (e.g.,
ISSMGE-TC4 1999) and national (e.g., GdL MS 2008) guidelines, although the use of empirical,
simplified, and advanced methods (for grade I, II, and III mapping, respectively) is characterized
by variable case-to-case specifications [6]. Seismic zonation can be developed using geotechnical
investigation data with geomorphological datasets. For the spatial prediction of subsurface
geotechnical conditions across an area of interest, such as a large metropolitan area, existing borehole
data collected in and near the area can be used effectively as a fundamental resource, and expert
geotechnical knowledge can be used to enhance the prediction reliability. However, borehole data
have uncertainties caused by inherent soil variability, measurement uncertainty, and transformation
uncertainty. Therefore, the development of an optimized geospatial zonation technique that considers
spatial variation in multi-source geological data, presented as point-, line-, and polygon-type
components, is essential. First, a big data platform is necessary to estimate the zonal characteristics
according to various geospatial datasets for a metropolis influenced by urbanization. Based on the
big data platform, site classification can be performed with regard to infrastructure, administrative
boundaries, and other surface information that corresponds to spatial uncertainties by confining the
appropriate geostatistical models for each specific area with similar characteristics using site effect
parameters derived from geotechnical datasets.

Earthquake ground motion amplification is affected predominantly by site-specific geotechnical
characteristics. Current engineering seismic design code provisions incorporate amplification
capabilities that depend on local geological and soil conditions because of their importance in
earthquake-induced hazard mitigation. Local site effects related to geological conditions have
been observed in many earthquake events, including the 1985 Mexico City, 1989 Loma Prieta, 1994
Northridge, 1995 Kobe, 1999 Chi-Chi, 2005 Kashmir, 2008 WenChuan, 2010 Haiti, 2011 Tohoku, and
2016 Kumamoto earthquakes. In general, the term “site amplification” refers to the increase in the
amplitude of seismic waves during their propagation through soft soil layers. Accounting for such
effects is critical to seismic regulations, land-use planning, and the seismic design of critical facilities.

The Korean Peninsula is located in a region of moderate seismicity on the Eurasian plate,
in contrast to nearby regions located at the intersections of tectonic plates with high seismic
vulnerability [5,7]. Metropolitan areas in Korea have low absolute seismic risks, and their populations
have experienced few modern earthquake disasters. Nevertheless, the absolute earthquake risk
potential is greater than that in the country’s mountainous areas because of the soft soil deposits in
coastal and riverside locations of metropolitan areas [8]. Moreover, most urban areas are situated
densely on plains surrounded by mountains. Observations of recent destructive earthquakes have
demonstrated that the extent of an earthquake disaster differs depending on site-specific effects, and
can even vary within a site. Considering the geological characteristics in metropolitan areas, site
responses related to near-surface geological contrasts are typically analyzed for unconsolidated soil
deposits overlying bedrock, which depends on seismic impedance contrasts and the depth of the
basement [9]. Many cases support amplified shaking, changes in frequency content, and wave trapping
in basins due to site response. Amplifications associated with thick colluvial deposits most likely result
from a high impedance contrast with substratum [10]. Thus, the characteristics of site-specific effects
in Korea must be understood with respect to geological and geotechnical conditions.

Local variations that correspond to the use of multi-source big data should be considered before
the development of any seismic mitigation plan [11]. Furthermore, spatial patterns in big data should
be evaluated using optimized geostatistical methods to identify the quantitative characteristics and
customize the representative backbone of a framework based on big data sources, considering the
influences of site effects on each big data source [12–15]. In this study, a multi-source geospatial
information framework, which included the construction of a big data platform, estimation of
geostatistical density, optimization of the geostatistical interpolation method, assessment of seismic
site effects, and determination of geospatial zonation for decision making, was created and applied to
the Seoul metropolitan area in South Korea.
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2. Case Study: Seismic Zonation in Seoul

Seoul is located in the west-central part the Korean Peninsula, on the lower reaches of the Han
River. Seoul covers an area of 605.5 km2, with an east−west length of 36.8 km and north−south length
of 30.3 km. The Han River bisects Seoul into northern and southern sections. Since the 1970s, industrial
activity in Seoul has been concentrated in the southwestern section, where more than 1000 factories
are currently located within each administrative district. Most of the mountain forests are situated
in the northern part of Seoul. The western, southern, and eastern boundaries of Seoul are still used
for suburban agricultural activities. However, forests and agricultural fields, which can act as sites
of natural groundwater recharge, account for relatively small areas. Furthermore, land surface with
impermeable pavement occupies up to 43% of the total area, potentially reducing the amount of direct
groundwater recharge [16,17].

The Korean Peninsula is an ancient landform from a geomorphological perspective because of
continual erosion. This characteristic is prominent in Seoul, which is composed mainly of plains, hills,
and low mountains. The peninsula is composed of various geological strata formed between the
Precambrian period and the Cenozoic era. The surface soils over the bedrock in the inland region were
generally formed by fluvial action or weathering processes, which are represented as alluvial soil and
weathered residual soil, respectively [18,19].

Thirty-seven rock types are found in the Seoul area, and their geological ages can be classified
into Precambrian, unknown, Triassic, Jurassic, Cretaceous, and Quaternary. Among them, distributive
ratios decrease in the order of Jurassic Daebo granites, Precambrian banded gneiss from the Gyeonggi
gneiss complex, and Quaternary alluvium, which in total account for about 83.7% of the rock types in
the area. In Seoul and nearby Incheon, 10 and 15 rock types, respectively, have developed, with the
former being classified into Precambrian, Jurassic, and Quaternary and the latter into Precambrian,
Jurassic, Cretaceous, and Quaternary. In Seoul, the distributive ratios decrease in the order of banded
gneiss from the Gyeonggi gneiss complex, Daebo granites, and alluvium, which account for 95.5% of
the rocks in the area [20].

3. Geospatial Big Data and Geostatistical Zonation Method

In this study, a GIS-based framework was established to develop the geospatial zonation of
site-specific seismic effects before considering the local characteristics of site effects depending on
topographic or geological conditions, based on the application of a geospatial big-data platform to
Seoul. The proposed framework included five functional techniques (Figure 1). First, multi-source
geospatial information (e.g., geotechnical investigation data, geological maps, land cover maps,
and other infrastructure information with the same spatial coordinate system) was collected.
Then, geomodeling and reprocessing using GIS toolsets were performed to determine the primary
relationships among the geo-datasets corresponding to the overlaying and zonal characteristics based
on visualization. Second, the local geotechnical datasets and infrastructure information were classified
using a geostatistical density analysis to identify geostatistical clusters with similar spatial correlations
of geo-layer characteristics. Third, to optimize the conditions of random-field assumptions of the
kriging methods and to incorporate appropriate interpolation and zonation, the potential geostatistical
methodology was established and validated using a cross-validation-based verification test [21].
Moreover, the suitability of the geospatial big data for spatial zonation was determined with an
error map based on geostatistical density and interpolation. Fourth, representative geotechnical
characteristic parameters correlated with site coefficients were estimated as spatial grid information
based on the optimized zonation. The multiscale zonation of local seismic site effects was combined
with a topographical map, and the geo-layers were visualized. Fifth, major infrastructure (e.g.,
buildings and pipelines) and zonal statistical information for surface mapping were extracted to
support multipurpose decision making regarding the seismic hazard potential related to site effects.
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Figure 1. Framework architecture of the GIS-based geospatial zonation.

According to the proposed framework (Figure 1), a previously constructed geospatial database
was used as the backbone dataset for the stage-by-stage procedures conducted using multilayered
GIS-based information. To assemble the geospatial big data, borehole datasets and geo-knowledge,
which provides data spanning the fields of geotechnical engineering, geology, and geomorphology,
and other multi-resource geospatial datasets were collected and standardized. To enable more reliable
geotechnical prediction in the area of interest, we acquired topological surface information from
topographic maps, satellite images, surface geologies, and a digital elevation model. In this study,
ArcGIS python [22] and toolsets were used for geospatial zonation for the source-oriented application.

3.1. Construction of Multiple Geo-Datasets

We constructed and applied the geospatial database to Seoul, South Korea, to assess site-specific
geospatial distribution patterns, specifically the thicknesses of soil layers and local differences among
spatial components in the geospatial big data (Figure 2). The testbed was first separated into
100-m-mesh areas, yielding 156,025 spatial grids. Component mesh-unit data were created for each
spatial grid. The target study area included the entire territory of the Seoul metropolitan area, which
is the largest urban area in Korea, based on the administrative boundary. The geospatial big data
included geotechnical investigation data, a digital elevation model, digital numerical information
(e.g., watershed and administrative boundaries), infrastructure information (e.g., roads, buildings, and
pipelines), geological maps, and land cover maps.

First, we gathered existing borehole data and conducted site visits across the study area to
acquire surface geo-knowledge data. The subsurface soil layers identified from borehole data were
classified into five categories: fill, alluvial soil, weathered soil, weathered rock, and bedrock. However,
the existing borehole datasets in the study area were insufficient because of their biased spatial
distribution. Accordingly, site visits were conducted to acquire surface geo-knowledge data, mainly in
areas where borehole data were lacking. The surface geo-knowledge datasets (bedrock outcrop data)
were established with a geotechnical ground survey (e.g., using a simple cone test, GPS) at grid-type
locations and cross-checked with the geotechnical layers from neighboring borehole data, which were
based on geotechnical engineering judgments. Spatial estimates for the five categories of geotechnical
layer across the extended Seoul area were collected from about 22,300 existing borehole datasets and
about 1700 surface geo-knowledge datasets.

To spatially estimate soil layers, we applied the optimized site-specific interpolation method to
the extended Seoul area (39.0 km west-east, 34.0 km north-south). Figure 2a shows the geographic
information for Seoul and corresponding selected areas (i.e., extended Seoul area and Seoul study
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area) with a digital elevation model. In addition, information on roads, buildings, and pipelines
was collected from building registers in Seoul and converted into geospatial datasets based on the
coordinate information for each vertex for the infrastructure (polyline type) using the GIS platform
(Figure 2e–g). For this study, a 1:250,000-scale geological map [23], with lithofacies, geologic boundaries,
and fault information was obtained from the geologic information system of the Korea Institute of
Geoscience and Mineral Resources (Figure 2h).
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Figure 2. Big data platform for the Seoul metropolitan area consisting of multiple geological datasets:
(a) three-dimensional bird’s-eye view overlaid with multiple geo-layers; (b) digital elevation model
(DEM) and watershed; (c) administrative boundary; (d) borehole and site survey information; (e) road
and railroad information; (f) building information; (g) pipeline information; (h) geological map with
DEM; and (i) land cover map.

Land cover maps prepared by the South Korean Ministry of the Environment were used to
identify the current surface conditions and developed areas [24]. Land cover maps are among the
most widely used types of map in the numerical modeling community for geological and soil science.
However, data on characteristics such as soil properties and moisture are limited due to the difficulty
of performing ground-level observations. Therefore, it has been almost impossible to obtain sufficient
land surface data at a high spatial resolution and temporal frequency. As a result, the average values
of geotechnical information for a unit zone classified as the cover category were added to the land
cover map.

3.2. Estimation of the Geostatistical Density of the Geo-Data.

Natural variations in spatial density generally exist, depending on the local status of geotechnical
datasets. For example, the pipeline information based on installation depth was distributed along
roads between building blocks. Meanwhile, most borehole investigations were focused on roads and
the boundaries of building blocks. Thus, the spatial correlation or pattern between the geotechnical and
infrastructure information had to be estimated with a geostatistical density analysis before optimizing
the geospatial zonation using these geo-datasets. To identify the spatial patterns and correlations of the
geospatial database in the target area, similar geotechnical datasets were grouped using multivariate
statistical clustering. The geotechnical datasets were distributed spatially in linear and circular
clusters focused on urban facilities (e.g., roads, railways, buildings, pipelines) for engineering projects.
Accordingly, the spatial interpolation showed some variation, depending on the density of the specific
clusters in the target area. Thus, the spatial density of the geotechnical datasets was estimated to
determine the appropriate zonation method, considering the spatial correlations in the Seoul area,
using two conventional geostatistical methods for the estimation of point density and kernel density.

Point density is used to calculate the magnitude-per-unit area from point features that fall
within a neighborhood around each data point (or cell) [25]. Kernel density is used to calculate the
magnitude-per-unit area from point or polyline features using a kernel function to fit a smoothly
tapered surface to each point [26,27]. Kernel density is a well-established method for the identification
of spatial patterns; the density of events around each point is scaled by the distance from the point to
each event. Kernel density describes a smooth and continuous surface map of risk targets because
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a discrete density surface is created continuously by interpolation [28]. Therefore, this method can
compensate for a paucity of data. A general density estimation function is shown in Equation (1):

f (x) =
1

nh

n

∑
i=1

K(x− xi)

h
(1)

where xi is the value of the variable x at location i, n signifies the total number of locations, h
denotes the bandwidth or smoothing parameter, and K represents the kernel function. According
to Zhang et al. [29], previous studies have indicated that kernel density function selection does not
significantly affect the results; however, bandwidth (h) significantly affects the results, and no perfect
measure exists for its determination [30].

3.3. Optimization of the Geostatistical Interpolation Method

Kriging interpolation based on the geostatistical analysis components was expected to produce
more reliable predictions of unknown geotechnical data from known geotechnical data than would
extrapolation in the spatial domain. Geostatistical interpolation can enable the reliable zonation
of seismic response properties [31]. However, its effectiveness depends on the accuracy of the
interpolation method used to define spatial variability in soil properties [32–34]. A variogram is a
mathematical description of the relationship (or structure) between the variance of pairs of observations
(or data points) and the distance separating those observations (h) [35]. The fitted curve minimizes the
variance of the errors. The variogram model is used to define the weights of the kriging function [19,36],
and semivariance is an autocorrelation statistic defined as:

γ(h) =
1

2N(h)

N(h)

∑
i = 1
{Z(xi)− Z(xi + h)}2 (2)

where γ(h) is the semivariance for interval distance class or lag interval h, N(h) is the total number
of sample pair observations separated by distance h, Z(xi) is the measured sample value at point
i, and Z(xi + h) is the measured sample value at point i + h [37,38]. In this study, to consider the
correlated distance within clusters and the corresponding weights of the kriging function, an individual
experimental variogram was modeled for every geotechnical dataset cluster.

When data are lacking, the large error in the variogram increases prediction error without being
apparent in the calculated values. Therefore, we validated the results of the proposed step-by-step
technique with independent data. To validate the accuracy of the interpolation method, existing
datasets were cross-validated to evaluate the susceptibility of kriging or zonation models and to reduce
the statistical uncertainty of the borehole data [37,39–41]. The local reliability of each observation was
evaluated based on the difference between the measured and estimated values using the following
procedure. To evaluate cross-validated residuals, an experimental variogram was computed from the
entire sample dataset and a plausible model was fitted. After exclusion of each measured target value at
its point, the sequential value at each sampling point was estimated using kriging. Then, the difference
between the estimated and measured values at each sampling point was calculated. For comparison,
the root mean square error (RMSE) from the cross-validation result was calculated as the square root
of the average squared distance of a data point from the fitted line using the following equation:

RMSE =

√
1
n

n

∑
i = 1

(ŷi − yi)
2 (3)

where yi and ŷi are the measured and estimated values, respectively, of the ith data point and n is
the total number of data points. RMSE values closer to zero represent more accurate estimates. The
coefficient of variation is the ratio of the RMSE to the mean of the dependent variable [42].
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3.4. Assessment of Seismic Site Effects

Site effects that induce amplification of ground motion are related directly to geological site
conditions and are associated with the passage of seismic waves through soil layers [7]. The behavior
of site-specific seismic responses can be explained first by differences in the shear wave velocity
(VS) between the soil layers and the underlying bedrock, which represent an impedance contrast,
and second by the thickness of the soil layers or the depth to bedrock (H). Site response analysis
techniques have incorporated these concepts, particularly the phenomenon by which the largest
amplification of earthquake ground motion at a nearly level site occurs at approximately the lowest
natural frequency [43]. The period of vibration corresponding to the fundamental frequency is called
the characteristic site period (TG), and for multilayered soil is calculated as follows:

TG = 4
n

∑
i = 1

Di
Vsi

(4)

where Di is the thickness of each soil layer above the bedrock (H = ΣDi), VSi is the VS of each soil layer,
and n is the number of soil layers. The site period is a useful indicator of the period of vibration, during
which the most significant amplification is expected. In addition, the depth to bedrock geometrically
indicates the local seismic response patterns, assuming similar stiffness in soil layers over the bedrock.
When the spatial variations in the thickness and VS values of soil layers are known for an entire
study area, the spatial variation in TG can be readily established and used for regional earthquake
hazard estimation.

For the seismic design of structures in accordance with site conditions, correlations have been
established between the mean VS of the upper 30 m (VS30) and site coefficients (or amplification factors)
based on empirical and numerical studies of specific earthquakes, including the 1989 Loma Prieta
earthquake [44,45]. Accordingly, current seismic codes can be used to characterize a site and determine
a site class based only on the top 30 m of the ground [7,43]. The site class is determined solely and
unambiguously by one parameter, VS30. For a profile consisting of n soil and/or rock layers, VS30 (in
units of m/s) is given as:

Vs30 = 30/
n

∑
i = 1

di
Vsi

(5)

where di is the thickness of each soil or rock layer to a depth of 30 m (30 m = Σdi).
Iwahashi et al. [46] presented a correlation between VS30 measurements and several topographic

parameters, including topographic heights, slope gradient, local convexity, and surface texture. Other
authors have proposed different approaches based on geomorphological units [47], geotechnical
categories [48] and geological units [49–51], as a proxy for VS30 assessment. More recently,
Thompson et al. [52] proposed a VS30 map for California, United States, using a hybrid geostatistical
approach to account for geology, topography, and site-specific shear wave velocity measurements.

To quantify site effects for use in structural design, correlations between site coefficients and
several geotechnical parameters have been established based on empirical and numerical studies
conducted in many countries [7,43,45]. Geotechnical parameters have been used as criteria for the
categorization of site conditions according to the extent of ground motion amplification, quantified by
site coefficients. Representative parameters include VS30 and TG. In most current seismic design codes,
site conditions are classified into five categories (denoted as A to E) according to VS30 values and one
exceptional category (denoted as F) [5,53]. The site coefficients are used to estimate the design response
spectra, depending on the site classes and intensity of rock motions. The short- and mid-period
site coefficients (Fa and Fv) are the same (site class B), and increase as the soil becomes softer with
decreasing VS30 or as the site class evolves through C, D, and E. In addition, the site coefficients are
generally higher for small rock outcropping motions than for large rock motions because of geomaterial
nonlinearity [19,48].
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The spatial grid information for the TG values was computed using the thickness and VS of the
geotechnical layers (including weathered rock) over the bedrock. The thickness of soil layers was
estimated previously across the study area and is included in the geotechnical database. However,
VS had not been determined for each testbed due to insufficient seismic testing. Thus, representative
VS values for the geotechnical layers in the target area were determined by compiling the results of
previous insitu seismic tests that yielded VS profiles at several sites in South Korea [7,18,19]. Based on
the previous seismic testing results, the representative VS values were determined to be 190 m/s for
fill, 280 m/s for alluvial soil, 350 m/s for weathered residual soil, 650 m/s for weathered rock, and
1300 m/s for bedrock [18]. In this study, the site classification scheme for Korea (Table 1), based on the
depth to bedrock, VS30, and a TG zoning map, was adopted.

Table 1. Site classification system using depth to bedrock, VS30, and TG in Korea [19].

Generic Description Site Class
Criteria Site Coefficients

H (m) VS30 (m/s) TG (s) Fa Fv

Rock B <6 ≥760 <0.06 1.00 1.00

Weathered rock and very stiff soil
C

C1 <10 <760 <0.10 1.28 1.04
C2 <14 <620 <0.14 1.45 1.09

Intermediate stiff soil
C3 <20 <520 <0.20 1.65 1.13
C4 <29 <440 <0.29 1.90 1.19

Deep stiff soil D

D1 <38 <360 <0.38 2.08 1.23
D2 <46 <320 <0.46 2.26 1.29
D3 <54 <280 <0.54 2.48 1.36
D4 <62 <240 <0.62 2.86 1.43

Deep soft soil E ≥62 <180 ≥ 0.62 1.50 2.00

3.5. Geospatial Zonation for Decision Making

Spatial zoning maps of the site classes in the Seoul metropolitan area, based on administrative
subunits, were constructed. The site classes for all administrative subunits of Seoul were estimated
based on the average of three seismic site-effect parameters (depth to bedrock, VS30, and TG) for
component districts. The short- and mid-period site coefficients (Fa and Fv), according to the depth to
bedrock, VS30, and TG for the seismic design of structures, described in the site classification system in
Table 1, are presented in the legend of spatial zoning maps.

For seismic design and seismic performance evaluations, site classes can be determined
unambiguously using three parameters. Therefore, when spatial variations in site conditions are
known over an entire study area, the site coefficients according to these site classes can be readily
determined for any site in the study area based on spatial seismic zonation. To assist conservative
seismic decision making for individual administrative subunits in a metropolitan area, a seismic
zoning map for site classification based on TG values is more appropriate than a map constructed using
other site parameters, because it can better classify deep soft soil in a given subunit. Furthermore, to
support decision making related to earthquake mitigation plans from preliminary seismic performance
evaluations for infrastructure based on zonation information about seismic site effects, discriminatory
zonation is necessary.

4. Case Study: Results and Discussion

In this study, seismic zonation in the Seoul metropolitan area was determined using multiple
geo-datasets according to the framework proposed herein. We found marked differences in spatial
distribution, depending on the geotechnical datasets and geographic conditions, with the number of
geo-layers (Figure 3). In the extended Seoul area, central Seoul showed more consistent density for
site effect characteristics, especially depth to bedrock, along the Han River. Two strong concentrations
of site effects were induced by depth to bedrock; one spread over a distance of several kilometers in
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the west-central area and one was located on the east-central side. Rather than choosing an arbitrary
interval, use of the mean nearest-neighbor distance for different orders of K, which can be calculated
using ArcGIS toolsets as part of a nearest neighbor analysis, is useful. Thus, geostatistical estimation
can be conducted discriminately for large-scale zones with similar spatial correlations according to
a specific group (or cluster) and with consideration of kernel density. In addition, the density of
pipeline was evaluated, and the pattern of kernel densities was approximately similar to the borehole
information (Figure 4). The standard deviation of kernel densities between boreholes and pipelines
at each grid was 2.45. Considering the similarity in density, the seismic zonation of site effects using
borehole datasets could be appropriated for the pipelines in Seoul.
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To determine the optimal interpolation method, four representative interpolation methods inverse
distance method (IDW), simple kriging (SK), ordinary kriging (OK), and empirical Bayesian kriging
(EBK) were used in a cross-validation-based verification trial-and-error map. Using the database for
the extended Seoul area, site-specific geotechnical spatial datasets were interpolated. The optimal
interpolation method was determined by applying the four representative interpolation methods:
IDW, SK, OK, and EBK. Accordingly, cross-validation-based RMSEs were estimated for the depth to
bedrock based on a 100-m grid cell size in the target area (Figure 5). Among the interpolation methods,
OK had the lowest RMSE, indicating that this technique offered the most accurate geostatistical
interpolation for the Seoul area. In addition, the error map indicated the deviation between measured
and predicted bedrock depth in each grid cell (Figure 6). The OK error map showed less deviation
in spatial trends than did the SK and EBK maps. Thus, we selected OK as the optimal interpolation
method for application to geotechnical information in Seoul. The geostatistical optimization should
be validated for each grouped datasets (cluster) considering spatial density and effective range of
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de-trended variogram. Thus, the OK was estimated relatively more reasonable interpolation method
for spatially densely and highly correlated zone such as urban or riverside areas.ISPRS Int. J. Geo-Inf. 2017, 6, 174  11 of 18 
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Depth to bedrock, VS30, and TG were calculated based on Equations (4) and (5). Then, the
calculated depth to bedrock, VS30, and TG values for Seoul were spatially modeled, yielding the
seismic zoning maps presented in Figure 7. The three-dimensional geotechnical datasets and their
visualizations appropriately characterized site-specific seismic site effects, corresponding to the strata
of the geo-layers based on the GIS platform. In the river basin of the Seoul area, the alluvial soil was
thicker (up to 70 m) and the depth to bedrock was greater (up to ~85 m) than in the surrounding
mountainous areas (Figure 7a). Soil development in the river basin is mainly a result of fluvial
processes (Figure 7a). Zones with thick soil or large depths to bedrock are susceptible to ground
motion amplification due to site effects during earthquakes. VS30 ranged from about 240 to 320 m/s
(Figure 7b) in part of the western river basin, which was deeper and smaller than the mountainous and
hilly areas. For efficient zonation based on TG values obtained across the study area, the geotechnical
thickness data interpolated in the geostatistical optimization component and the VS values were
imported into the geotechnical analysis component. Representative TG values (Figure 7c) for the
densely built-up zone along the river were generally greater than those for mountainous and hilly
areas, and the values generally ranged from about 0.3 to 0.5 s in Seoul. The spatial distribution of
TG was particularly consistent with the distribution of bedrock depth (Figure 7c). Rigorous zonation
can serve as a fundamental resource for the prediction of seismically induced structural damage. All
objects or structures have their own natural periods. For example, the natural period of a building is
generally accepted to be 0.1 times the number of its stories. Therefore, three- to five- story buildings
located along the river are relatively vulnerable to seismic damage caused by earthquake resonance.
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In the Seoul area, most subunits adjacent to the Han River and major creeks fell within site classes
C2, C3, and C4 based on the three parameters. However, three subunits for VS30 (Figure 8b) and eight
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subunits for TG (Figure 8c) in the southwestern plain fell into site classes D1 and D2. The amplification
potentials shown in Figure 8 were lower than those shown in Figure 7 because the site class for each
subunit was determined by averaging the site classes, which can be particularly useful for official
agencies when making earthquake-related decisions.
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Based on the geospatial big-data platform, zonal characteristic values of site effect parameters
could be determined with a focus on buildings and pipelines. A buffer zone of 5 m was defined
uniformly as the influential area of the site effect for all buildings in Seoul. Then, the grid cell of TG
zonation under the buffer zone was extracted (Figure 9a). A 5-m buffer zone for TG zonation was
determined in the same manner for the pipelines (Figure 9b). Detailed structural information, site
classes corresponding to site effects, and other geo-layer information could be identified specifically for
each building block or pipeline vertex. Moreover, the grid-based site classification for the facilities is
utilized as fundamental criteria of geotechnical proxy to evaluate the earthquake induced geotechnical
hazard such as liquefaction and landslide.



ISPRS Int. J. Geo-Inf. 2017, 6, 174 14 of 18

ISPRS Int. J. Geo-Inf. 2017, 6, 174  14 of 18 

 

factors [54]. In addition, the inhomogeneities of the geomorphological and geological in Seoul area 
influence the site-specific variation of site effects and correlations between geotechnical dynamic 
properties and lithological category. The geological inhomogeneities mean fast changes in the 
seismic velocity vertically, horizontally, or both. One plausible explanation for the failure of a 
satisfactory relationship between VS and the possible damage distribution could be the rapid 
variation of the VS velocities. Between the hill zone and the transition zone in Seoul area, there is a 
high lateral VS velocity contrast that may also be one of the underlying causes of damage because of 
the topographic amplification corresponding to the geological or geomorphological contrast. To 
normalize the correlation between site effects and geological characteristics, researchers should 
consider comparison and empirical quantification using the geological map with multiscale 
geological unit boundaries for the entire Korean Peninsula. 

(a) 
 

(b) 

 
(c)

Figure 9. Geospatial zonation of site classes corresponding to TG, based on infrastructure and 
geological maps: (a) spatial distribution of TG under the building buffer zone (b) spatial distribution 
of TG over the pipeline buffer zone and (c) site classes based on geological boundaries. 

5. Conclusions 

In this study, geospatial zonation of seismic site effects was applied and validated in Seoul, 
South Korea, based on a big data platform, which was integrated with multi-source geo-layer 
information. Seismic site effects are influenced mainly by geospatial uncertainties corresponding to 
geological or geotechnical spatial variance. In particular, spatial characteristics of the surface and 
subsurface have natural complexities induced by rapid development in densely built-up urban areas. 
To estimate site-specific effects considering current land cover patterns and geological conditions 
with geotechnical influence factors, multi-source integrated geo-layers were constructed as 
geospatial big data. 

A recently established GIS-based framework was applied to the Seoul area, and its applicability 
for regional assessment of the geostatistical zonation of site-specific seismic effects was evaluated. 

Figure 9. Geospatial zonation of site classes corresponding to TG, based on infrastructure and geological
maps: (a) spatial distribution of TG under the building buffer zone (b) spatial distribution of TG over
the pipeline buffer zone and (c) site classes based on geological boundaries.

Next, the zonal average value based on the geological boundary was evaluated (Figure 9c).
In Seoul, the Quaternary deposit shown on the geological map was assigned to site classes C4 and D1.
The banded gneiss and intrusive granite were classified as B, C1, and C2.

The alluvial deposit area along Han River was formed as sandy or clayey material from weathered
zone of mountainous area, which was categorized as granite or acid duke. Thus, the lithological
zone-based geospatial approach is appropriate for large-scale area without geotechnical investigation.
For example, the damage distribution observed in the region clearly demonstrates the effect of
local site conditions and soil amplification arising from the geological and geotechnical factors [54].
In addition, the inhomogeneities of the geomorphological and geological in Seoul area influence
the site-specific variation of site effects and correlations between geotechnical dynamic properties
and lithological category. The geological inhomogeneities mean fast changes in the seismic velocity
vertically, horizontally, or both. One plausible explanation for the failure of a satisfactory relationship
between VS and the possible damage distribution could be the rapid variation of the VS velocities.
Between the hill zone and the transition zone in Seoul area, there is a high lateral VS velocity contrast
that may also be one of the underlying causes of damage because of the topographic amplification
corresponding to the geological or geomorphological contrast. To normalize the correlation between
site effects and geological characteristics, researchers should consider comparison and empirical
quantification using the geological map with multiscale geological unit boundaries for the entire
Korean Peninsula.
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5. Conclusions

In this study, geospatial zonation of seismic site effects was applied and validated in Seoul, South
Korea, based on a big data platform, which was integrated with multi-source geo-layer information.
Seismic site effects are influenced mainly by geospatial uncertainties corresponding to geological or
geotechnical spatial variance. In particular, spatial characteristics of the surface and subsurface have
natural complexities induced by rapid development in densely built-up urban areas. To estimate
site-specific effects considering current land cover patterns and geological conditions with geotechnical
influence factors, multi-source integrated geo-layers were constructed as geospatial big data.

A recently established GIS-based framework was applied to the Seoul area, and its applicability
for regional assessment of the geostatistical zonation of site-specific seismic effects was evaluated. The
proposed framework included the application of five functional techniques: construction of a big data
platform, estimation of geostatistical density, optimization of the geostatistical interpolation method,
assessment of seismic site effects, and geospatial zonation for decision making.

Existing seismic hazard mapping techniques depend on geotechnical information. Accordingly,
spatial correlations or properties related to geotechnical datasets should be determined based on
proper geostatistical methods before conducting geospatial zonation and associated mapping. Thus,
the geostatistical density of geotechnical information and pipelines was estimated. Density analyses
take known quantities of geospatial datasets and spread them across a landscape based on the measured
quantity at each location and spatial relationship of the measurement locations. Point or kernel density
surfaces show where point or line features are concentrated. Based on the kernel density, the spatial
co-location between borehole and pipeline datasets for the area along the Han River was remarkable.
To optimize the assumption conditions to support appropriate interpolation and zonation, the potential
geostatistical methodology was validated and determined using a cross-validation-based verification
trial-and-error map. Spatial geotechnical layers and indices of site effects were predicted using OK in
accordance with the zonation method in unit grid cells, which were classified as multivariate zonation
values with a grid size of 100 m in the Seoul area. Accordingly, the optimization of geostatistical
density and interpolation should be verified based on local relationships in geospatial big data using
the validation trial-and-error rule.

The grid-based seismic site-effect zonation of site classes was constructed for the administrative
subunits of Seoul based on the average of three seismic site effect parameters (depth to bedrock, VS30,
and TG) for each district. In the river basin, the alluvial soil was thicker (up to 70 m) and the depth to
bedrock was greater (up to about 85 m) than in the surrounding mountainous areas. Soil development
in the river basin was mainly a result of fluvial processes. Such zones with thick soil or large depth to
bedrock are susceptible to ground motion amplification due to site effects during earthquakes. VS30

ranged from about 240 to 320 m/s in some parts of the western river basin, which was deeper and
smaller than the mountainous and hilly areas. The representative TG values for the built-up zone along
the river were generally greater than those for mountainous and hilly areas; these values generally
ranged from 0.3 to 0.5 s in the Seoul area.

Geo-processing, involving procedures such as the calculation of zonal statistics and geometric
extraction, was performed with a focus on the buffer zones around buildings and pipelines. Zonal
conditions composed of geo-layers, site effect parameters, and other land cover maps for each type of
infrastructure can be used for decision making in seismic hazard mitigation plans and preliminary
earthquake performance evaluations. Losses from earthquakes associated with building damage can
be predicted based on spatial zonation maps by comparing geological and topographic characteristics
with the spatial distribution of seismic site classes in inland Korea. Furthermore, according to the
geospatial grid information for coastal areas and river basins, earthquake vulnerability induced by site
effects should be considered in more detailed seismic performance evaluations.
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