Next Article in Journal
Ranking the City: The Role of Location-Based Social Media Check-Ins in Collective Human Mobility Prediction
Previous Article in Journal
Indoor Fingerprint Positioning Based on Wi-Fi: An Overview
Article Menu
Issue 5 (May) cover image

Export Article

Open AccessArticle
ISPRS Int. J. Geo-Inf. 2017, 6(5), 133; doi:10.3390/ijgi6050133

Statistical Evaluation of No-Reference Image Quality Assessment Metrics for Remote Sensing Images

1
International School of Software, Wuhan University, Wuhan 430079, China
2
State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
*
Author to whom correspondence should be addressed.
Academic Editor: Wolfgang Kainz
Received: 19 January 2017 / Revised: 17 April 2017 / Accepted: 25 April 2017 / Published: 28 April 2017
View Full-Text   |   Download PDF [13775 KB, uploaded 28 April 2017]   |  

Abstract

Image quality assessment plays an important role in image processing applications. In many image applications, e.g., image denoising, deblurring, and fusion, a reference image is rarely available for comparison with the enhanced image. Thus, the quality of enhanced images must be evaluated blindly without references. In recent years, many no-reference image quality metrics (IQMs) have been proposed for assessing digital image quality. In this paper, we first review 21 commonly employed no-reference IQMs. Second, we apply these measures to Quickbird images with three different types of general content (urban, rural, and harbor) subjected to three types of degradation (average filtering, Gaussian white noise, and linear motion degradation), each with 40 degradation levels. We evaluate the robustness of the IQMs based on the criteria of prediction accuracy, prediction monotonicity, and prediction consistency. Then, we perform factor analysis on those IQMs deemed robust, and cluster them into several components. We then select the IQM with the highest loading coefficient as the representative IQM for that component. Experimental results suggest that different measures perform differently for images with different contents and subjected to different types of degradation. Generally, the degradation method has a stronger effect than the image content on the evaluation results of an IQM. The same IQM can provide opposite dependences on the level of degradation for different degradation types, and an IQM that performed well with one type of degradation may not perform well with another type. The training-based measures are not appropriate for remote sensing images because the results are highly dependent on the samples employed for training. Only seven of the 21 IQMs were found to fulfill the requirements of robustness. Edge intensity (EI) and just noticeable distortion (JND) are suggested for evaluating the quality of images subjected to average filter degradation. EI, blind image quality assessment through anisotropy (BIQAA), and mean metric (MM) are suggested for evaluating the quality of images subjected to Gaussian white noise degradation. Laplacian derivative (LD), JND, and standard deviation (SD) are suggested for evaluating the quality of images subjected to linear motion. Finally, EI is suggested for evaluating the quality of an image subjected to an unknown type of degradation. View Full-Text
Keywords: image quality assessment; no reference; quality measures; statistical evaluation image quality assessment; no reference; quality measures; statistical evaluation
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Li, S.; Yang, Z.; Li, H. Statistical Evaluation of No-Reference Image Quality Assessment Metrics for Remote Sensing Images. ISPRS Int. J. Geo-Inf. 2017, 6, 133.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
ISPRS Int. J. Geo-Inf. EISSN 2220-9964 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top