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Abstract: Geospatial transformations in the form of reprojection calculations for large datasets
can be computationally intensive; as such, finding better, less expensive ways of achieving these
computations is desired. In this paper, we report our efforts in developing a Compute Unified Device
Architecture (CUDA)-based parallel algorithm to perform map reprojections for raster datasets
on personal computers using Graphics Processing Units (GPUs). This algorithm has two unique
features: a) an output-space-based parallel processing strategy to handle transformations more
rigorously, and b) a chunk-based data decomposition method for projected space in conjunction with
an on-the-fly data retrieval mechanism to avoid memory overflow. To demonstrate the performance
of our CUDA-based map reprojection approaches, we have conducted tests between this method
and the traditional serial version using the Central Processing Unit (CPU). The results show that
speedup ratios range from 10 times to 100 times in all test scenarios. The lessons learned from the
tests are summarized.

Keywords: CUDA; parallel processing; raster map reprojection; raster datasets; high performance
computing; geospatial data

1. Introduction

Different map projections are useful for different purposes and applications (e.g., spatial analysis,
data visualization), and as such, certain projections that minimize distortions of one or more aspects
(e.g., area, angle) are often necessary. Map reprojection is the process of applying different mathematical
algorithms to convert geospatial datasets with existing projections from one projection to another
(while we concede that the definition of the terms “projection” and “reprojection” are not unambiguous,
we use, in this work, the following general definition: A projection goes from geodetic/geographic
coordinates to 2D Euclidean (planar) coordinates; a reprojection changes between different Euclidean
coordinates). When performing reprojections for large geospatial datasets, complex algorithms
are applied to ensure data quality. As a result, computational challenges may rise when the data
resolution is high, especially for projection or reprojection of raster datasets of continental to global
extent (i.e., when the cartographic scale is small). To solve these types of computationally intensive
problems, previous approaches usually relied on the use of high-end workstations, thus making
efficient map reprojections for raster datasets less accessible to scientists who do not possess expensive
infrastructural resources [1] such as high-end computer clusters or supercomputers. Since the last
decade or so, NVIDIA’s Compute Unified Device Architecture (CUDA) platform was introduced as
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a lightweight and affordable alternative to the traditional parallel computing paradigm based on
high-end supercomputers [2]. This architecture removes previous Information Technology barriers by
allowing scientists to perform parallel processing to accelerate computational-intensive problems with
any computing devices (e.g., desktop machines) equipped with NVIDIA Graphics Processing Units
(GPUs) [3].

In this paper, we report our efforts to develop a CUDA-based parallel algorithm to reproject
raster datasets with personal computers. Our algorithm is based on the rigorous map reprojection
method that uses the four-corner technique for calculating pixel values and further utilizes both
forward and inverse projection processes [4]. This method yields more accurate results, especially for
images of global coverage even though it is more compute-intensive compared to map reprojection
methods based on approximation [4]. Our algorithm introduces two key strategies for handling
the data. One involves implementing an output space-based decomposition strategy so that map
reprojection can be carried out in a parallel manner. The other is the usage of chunks, which are
subdivisions of a dataset used for parallel processing decomposition. Chunks are used to partition
large output raster images by retrieving the pixels in the input images within a spatial extent defined by
the bounding pixels of those chunks [5,6]. This is particularly beneficial when processes are executed
with personal computers, as large datasets could not otherwise be processed given the limited memory
of computing devices.

Besides the methodological design and implementation, we also conducted a series of tests
to demonstrate the superior performance of GPU over CPU processes as well as the different data
decomposition strategies with GPU components. These assessments allowed us to explore the best
practices of utilizing our CUDA algorithm, thus providing guidance for: (a) fine tuning the parallel
implementation algorithm and (b) providing information to design algorithms in various computer
architectures, including supercomputers and cloud computing.

The rest of the paper is organized as follows: Section 2 discusses the status and benefits of
GPU-based geospatial applications, as well as the challenges of implementing map reprojections for
raster datasets. Section 3 describes the parallel design and implementation of map reprojections with
CUDA, as opposed to the traditional serial methods (CPU). Section 4 summarizes the experiment
methods, variables, and results using both CPU and GPU assessments. The conclusions and future
work suggestions are provided in Section 5.

2. Literature Review

In recent years, map reprojection methods have been available in most commercial and open
source geographic information system (GIS) software packages, which usually rely on approximations
for projection equations (with a few exceptions [7–9]) to enable relatively faster processes. With the
explosion of very large, high-resolution geospatial data, problems with map reprojections remain
significant even in expensive enterprise GIS software. High-resolution raster datasets often contain
accuracy issues directly attributable to projections from the equal-angular grids in geographic
coordinates to a plane coordinate system [9,10]. Research has shown [9–12] that there are errors
associated with various spatial data resolutions as well as particular map projection selections and
subsequent resampling. Therefore, various attempts to more precisely handle these problems and
minimize accuracy errors (spatially and categorically) have been developed within geospatial data
processing programs [11,12]. Computational intensity, additionally, often becomes a bottleneck when
those methods are used, due to the complexity of algorithms and large volume of datasets [12–14].

Research into large geospatial data handling and processing problems frequently focuses on topics
related to the computational aspect of cyberinfrastructure (CI) [15], along various lines of inquiry
such as high-performance computing (HPC), big data, data-intensive computing, data analytics, cloud
computing, and geocomputation [3,16–18]. To tackle the computational issues, parallel computing
with its associated computer architecture and programming methods has been more commonly used
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since the 1990s [19,20]. pRasterblaster, a processing software program for performing global raster
reprojections using supercomputers, has also been investigated in cyberinfrastructure studies [21].

However, supercomputers require large monetary and infrastructural resources, and are thus
far less accessible to everyday scientists. A more affordable solution to powerful processing
involves GPU-based parallel implementations using CUDA. This CUDA environment and computing
programming model utilizes NVIDIA Corporation’s GPUs for general purposes [2]. CUDA parallel
implementations consist of a two-level decomposition model made up of units including grids, blocks
and threads. Threads are the smallest programmable units capable of handling tasks in a GPU and are
contained in blocks, which in turn make up a grid in a GPU. A thread is a portion of a process and is the
smallest execution unit in a CUDA program [2]. For example, performing map reprojection on a raster
image is a process. Performing map reprojection for a subset of a raster image can be considered as the
thread of that process. A CUDA-enabled GPU has multiple processors that allow multiple threads to
run concurrently to accelerate computing speed. A block includes a group of threads and is allocated
with a certain amount of shared memory to store data associated with its threads. Threads in a same
block can cooperate with each other and access the shared memory. Depending on the hardware
configurations of devices, the amount of shared memory and the number of maximum threads of a
block can vary. A grid is equivalent to the entire process, which consists of one or multiple blocks.
When designing a CUDA program, developers should configure the grid dimension (i.e., the number
of blocks of a grid) and the block dimension (i.e., the number of threads in a block). This configuration
is termed a two-level block-thread configuration [2]. With CUDA, any personal computers equipped
with NVIDIA GPUs can be used to perform parallel processing, therefore proving a cheaper option
compared to supercomputing with CPU clusters.

CUDA-based parallel processing techniques have been widely utilized in geospatial applications.
Examples include Li et al. [22], Lukac and Zalik [23], and Ortega and Rueda [24]. CUDA has been
utilized to support map projections as well. Tang and Feng [25] report an effort of designing a
CUDA-based parallel algorithm for projecting vector data. When designing and implementing a
CUDA-based map reprojection method for raster datasets, three issues of GPU parallel processing
should be addressed. First, the GPU memory is limited given that GPUs have smaller memory
capabilities compared to main memory in personal computers. Therefore, large datasets cannot be
directly processed with a single GPU. A preprocessing step is usually conducted with the CPU
to prepare datasets, so they can be handled without introducing memory overflow. Secondly,
because CUDA employs a two-level block-thread configuration, the performance varies significantly
when setting different block and thread dimensions. Fine-tuning of block and thread configuration
to best utilize GPU parallel processing capabilities is thus recommended [26]. Lastly, a parallel
algorithm design for spatially dependent map reprojections is challenging. Compared to reprojecting
vector datasets, which are based on the point-by-point coordinate transformation between input and
output datasets, reprojecting raster datasets involve conditions where multiple input raster cells are
aggregated and/or resampled from smaller components to calculate pixel values and generate output
datasets [4,21]. Because of the spatial dependency in data aggregation, input data are difficult to split
among multiple processors. The first two issues exist for both raster and vector reprojection whereas
the last issue is unique to raster reprojection.

Consequently, we propose a CUDA parallel algorithm driven by a chunk based output space
for map reprojections of these large raster datasets. We also explore the best practices behind block
and chunk assignments through conducting a set of tests, which are compared to traditional serial
processing methods using only CPUs.
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3. Parallel Design and Implementation of Map Reprojections with CUDA

3.1. Rigorous Raster Reprojection in a Serial Processing Manner

Map reprojections for raster datasets have been studied for several decades (e.g., [4,26–28]).
Despite various ways of performing reprojections, we refer to the accurate raster reprojection technique
presented in [4]. Compared to map reprojection methods based on the center point of a pixel and treated
as a vector map reprojection (with only nearest neighbor resampling), this cited method computes the
four corner points of a pixel and allows various options for resampling the resulting pixel value. This
method yields results that are more precise, although it is more time consuming. The rigorous raster
reprojection method, for serial processing, consists of three primary steps described below:

Step 1: Read the input raster dataset and calculate output space. In this step, the algorithm reads the
information from the input dataset. This information can then be used to determine the configuration
information of the output raster. In particular, the geographic extent of the output image is determined
using methods such as the MinBox specification [4]. This MinBox is a rectangular box, which spans
from the top left corner of the dataset to its lower right (thus covering the entire area of the raster,
regardless of overall shape or curvature). In practice, a user specifies the minimum and the maximum
coordinates of the output extent and the numbers of rows and columns to create the frame for the
output raster area.

Step 2: Perform the reprojection for pixels. Instead of applying the center values from each raster
pixel as would be standard, the Steinwand [27,28] algorithm uses the coordinate values of the four
corner points from each pixel in the transformations. Two groups of equations are used which support
the conversion between projected coordinate values and the column and the row numbers of a pixel.
The equations [4] are:

Xoutput = ULprojXoutput +
((

columnoutput – 1
)
∗ pixelSizeXoutput

)
(1)

Youtput = ULprojYoutput –
((

rowoutput – 1
)
∗ pixelSizeYoutput

)
(2)

Alternatively:

Columninput =

((
Xinput – ULprojXinput

)
PixelSizeXinput

)
+ 1 (3)

Rowinput =

((
ULprojYinput – Yinput

)
pixelSizeYinput

)
+ 1 (4)

where:
X, Y represents a pair of projected coordinate values;
Row, Column represents the row and the column numbers;
pixelSizeX, pixelSizeY are the size of a pixel on the ground;
ULprojX, ULprojY are a pair of projected coordinate values of the upper-left most pixel (in image

coordinates) in the dataset.
To identify the value of each pixel in the output image, the algorithm calculates the coordinate

values of each pixel’s four corner points based on Equations (1) and (2). Given a pair of coordinate
values for a corner point, the algorithm first performs an inverse projection to derive a pair of
geographic coordinate values of the point and then performs a forward projection with the obtained
geographic coordinate values to derive the projected coordinate values in the input coordinate system.
Upon identifying the projected coordinate values for all four corner points, the algorithm applies
Equations (3) and (4) to generate a quad consisting of the four points in the input image, again
regardless of the raster’s shape (which is why, once more, using four pixel corners proves more precise
than standard procedures). This overall process is repetitively performed for every pixel in the output
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image. The values of all pixels falling in the quad are retrieved and resampled to produce aggregated
pixel values. These values are assigned as the values of the pixels in the output image.

Figure 1 illustrates the process flow for a map reprojection process of one pixel. The example in
Figure 1 uses simulated coordinates to illustrate the processes. Before explaining the figure, we formally
introduce the following concepts: Rows are series of cells that span across a raster dataset horizontally;
each row therefore stacks on top of the next set of cells in the y direction (i.e., up and down). Columns
are series of cells that span across a raster dataset vertically; each column therefore stacks next to the
following set of cells in the x direction (i.e., left and right). Resolution or pixel size is the pixel or cell size
(in meters for all of our datasets), across one direction. Raster grid size is the number of pixels per dataset
(i.e., the numbers of columns by rows). For a given pixel, we obtain the column and row numbers
of the four corner points (denoted as red dots in Figure 1) and identify the projected coordinates
(Equations (1) and (2)). Then, we perform inverse projection to convert projected coordinates (2D)
to geographic coordinates (3D, real position on Earth) as well as forward projection to convert the
geographic coordinates to projected coordinates in the input image. The projected coordinates are
converted into column and row numbers (Equations (3) and (4)). With column and row numbers, we
can locate the point in the input image. Four points consisting of a quad with all pixels are used to
generate the pixel value in the output space.
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Figure 1. The process of performing map reprojection using one pixel in the output image as
an example.

Step 3: Combine map reprojection results and produce output. In this final step, the pixel values from
previous steps are used to produce the resulting projected image. Meanwhile, the configuration
information of the output image is written as a part of the image. Thus, pixel values and the
configuration information are used to form the final output raster dataset with the given projection.

3.2. CUDA-Based Parallel Design and Implementation

As discussed in Section 2, the parallel implementation should be carefully designed to allow the
map reprojection to be performed in an independent manner. The parallel implementation is based
on the output dataset space and every pixel in the output space is processed with one GPU thread
while using CUDA. This parallel design is defined for two reasons. On the one hand, the output pixels
are determined by variable pixels in the input image, as it would be difficult to distribute input pixels
accurately to different computing threads otherwise. On the other hand, every pixel in the output
image is independent from each other. The independence is well suited for parallel implementation,
though it nevertheless requires that the algorithm identifies a spatial quad (i.e., MinBox) in the input
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image to enclose all pixels, to then calculate the corresponding pixel values of the raster cells in the
output image.

Figure 2 describes the process of performing map reprojections using CUDA. This process is
similar to the three-step procedure described in the previous section: the parallel algorithm takes
the configuration information of the output raster image (such as spatial resolution and output
coordinate system) and an input raster image as input information. To enable fast parallel processing,
every GPU thread processes one or a set of pixels in the output image. This part of the process is
identical to Step 2 of the serial processing method, though with GPU components. When the algorithm
identifies the pixel values of all pixels in the new image, the results are written to an output raster file.
(Note: depending on the selected type of map projection, the coordinate transformation process
applies different mathematical formulas, though there are no additional steps in the parallel version
regarding these.)
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Figure 2. The 4-corner point based map reprojection using CUDA.

Compared to the serial processing method of map reprojection described in [27], the parallel
implementation version described in Figure 1 has special steps. First, the parallel implementation
involves two additional procedures of data transfers between GPU and CPU (denoted as green boxes
in Figure 2). Data transfers can introduce additional processing overhead, due to the limited amount of
GPU memory available in personal computers (very similar to the main memory). Secondly, the pixel
value assignment, which corresponds to Step 2 in the serial processing method, is instead performed
with GPU threads in parallel (i.e., alongside each other, but simultaneously). This ability for tasks
to be distributed for processing at the same time thus reduces computational time costs, even if
communication between CPU and GPU is added for these parallel processes.

3.3. Handling of Raster Chunks

In parallel computing, particularly with large datasets, data decomposition is necessary to break
up the entire process into manageable tasks. Since the memory of the on-board GPU is limited, data
decomposition is extremely important to ensure the map reprojection process is performed successfully
without memory overflow. The memory of a GPU ranges from 1 GB to several GB in high-end
expensive GPU devices. GPU memory is generally less than main memory. When the file size of
the input image exceeds the on-board memory of GPU, which occurs very frequently, the concept
of “chunk” is introduced [5] to allow GPUs to perform map reprojections on subsets of the input
image. A chunk is defined as a subdivision of the dataset used for parallel processing decomposition,
measured in pixels/cells across one direction. Each chunk is processed as one grid. A grid is a container
of blocks, created when a kernel (i.e., CUDA function) is launched. Grids are then subdivided into
blocks. A block contains many threads. A thread thus processes one pixel (or a set of pixels) in a chunk
of the output image.
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To illustrate the process of generating chunks, Figure 3 shows a decomposition example.
In Figure 3a, the dataset has a raster grid size of 16 rows by 16 columns, or 16 pixels in the ‘x’
direction (columns), and 16 pixels in the ‘y’ direction (rows). The spatial resolution is 1000 meters.
This raster dataset (green outline) is divided into four chunks (blue outlines). The blue example chunk
comprises 8 columns by 8 rows of pixels (in red), and these pixels are 1000 meters in resolution too.
Chunks then have the same spatial resolution as the original image, but with smaller raster grid sizes.
Figure 3b shows the block and thread composition for a grid containing a chunk from Figure 3a. In this
case, the grid has four blocks, and each block contains four threads. In practice, when the data volume
exceeds the on-board memory, the image will be decomposed into many more chunks and contain
many more blocks and threads. If memory overflow does not take place (e.g., due to a small size
dataset), the standard CUDA-based map reprojection described in Figure 2 is applied directly.
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The chunk-based map reprojection method (see Figure 4) starts with the provision of an image as
input, and configurations of the projected output image. Additionally, the size the chunks for breaking
up the output image should be specified. Based on these provided raster grid sizes for chunks, the
algorithm generates the divisions, so that every chunk is indexed with a pair of row and column
numbers. Given the raster grid size information, the algorithm only retrieves the pixels in the input
image required by each of the chunks on the fly. As a result, instead of loading the complete input
image, only a portion of the image raster pixels are loaded at a time for GPU processing, to avoid
memory overflow. Then, the algorithm performs parallel map reprojections with every chunk available.
The process ends in the ultimate merging of the initial dataset components after performing map
reprojections on individual chunk pixels. Depending on how users may want to access the reprojected
results, the datasets can be organized through different data indexing methods and loaded individually.

A chunk-based map reprojection requires one critical step, where corresponding pixels in the
input dataset image are retrieved from matches in the output image. To identify those pixels, we
first gather all bounding pixels of the chunk in the output dataset space (that is, the pixels on the
boundary of the chunk), and then perform an inverse map projection for all those bounding pixels.
We then find the locations of the corresponding pixels in the input image and formulate region(s) or
polygon(s) based on those pixels. All pixels in the input image falling in the region(s) then undergo
map reprojection for the chunk in question. To facilitate fast data retrieval, instead of using irregular
regions to identify the pixels, we create a MinBox with simpler bounds from which to identify pixels.
This step is also implemented in a parallel manner. Figure 4 above again summarizes the basic flow of
the process, while Figure 5 below has two examples of the input and output dataset spaces as well as
forward and inverse projections, for visual representations:
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Figure 5. (a) Equirectangular sphere and Equirectangular standard projections. Pixel corners in the
input image are shown in black circles; (b) Goode Homolosine and Equirectangular projections. Both
figures show correspondence between example pixels in an output image’s chunk (blue outline) and
where those would fit in the input image’s MinBox (black outlines).
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Figure 5 shows the unequal matching between pixels in the output datasets’ chunks and where
those would fit in the input images. Pixels 1, 2, 3 and 4 are examples of the bounding pixels for the
output images’ chunks. In Figure 5b, we demonstrate how splitting of a MinBox may occur based on
irregularities in a dataset (black outline). The importance of using the four corners of a pixel rather
than the standard pixel center, given these missing correspondences of bounding boxes, is portrayed
in both figures too. These aspects highlight the benefits of using inverse and forward projection as
part of the reprojection process with chunks, as transformation distortions and irregularities can be
common in standard procedures (see Figure 5b and the orange outlines, which indicate the irregular
chunk shape correspondence from the output image space to the input image’s). Lastly, our process of
using the four corners in a pixel increases accuracy for finding pixel coordinates.

4. Experiments

4.1. Test Environment

To demonstrate the advantages of using a CUDA-based parallel map reprojection, we performed a
set of experiments. Due to the variability of map projection types, we only selected three representative
map projection types to conduct tests; these are Equirectangular, Mollweide and Albers (provided
in Geospatially referenced Tagged Interchange File Format (GeoTIFF) format). Table 1 describes the
metadata of the datasets used. We selected these three for the following reasons. First, the chosen map
projections are used for producing maps with large spatial extent, which require the use of accurate
map reprojection methods. Second, they are applicable to different spatial coverages. Albers is used
to model North American regions whereas Equirectangular and Mollweide are common for global
maps. The conversion between these map projections can test how our algorithm can handle the issues
described in Figure 4. Finally, the projections carry different yet common types of distortions, which
allow us to test the effectiveness of the four-corner point projection method with several projections.

Table 1. A summary of the test datasets (https://cegis.usgs.gov/projection/mapProjections.html).

Example Image Projection Resampled Dataset
Resolution (in meters)

Raster Grid Size
(rows by columns) Description
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This dataset covers the entire
contiguous United States and
shows different land cover types
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300 16,119 × 10,442
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6000 806 × 522

For testing and comparison purposes, we performed resampling using the nearest neighbor
method to generate multiple images at different spatial resolutions. The resampling method may
introduce noise at boundaries [29], and the spatial extent of the images may change slightly after
resampling. Resampling allowed us to achieve two goals. First: to derive images of different spatial
resolutions to examine the role of spatial resolution in changing the performance of map reprojections.
Second: to reduce the dataset sizes and allow the computing environment to manage and process
the images properly (as some of them were originally over 16 GB in size). This is due to memory
allocation limitations, given that a machine cannot handle files larger than its main memory. As a

https://cegis.usgs.gov/projection/mapProjections.html
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result, every type of image was resampled into a group of images. For example, the file sizes of the
Equirectangular (resolution at 1000 meters) and Albers (resolution at 150 meters) images exceeded
the GPU on-board memory of the desktops for testing (Table 2). The corresponding raster grid size
information is provided in Table 1. Given the raster grid sizes of resampled datasets, chunking was
applied to the first four image raster grid sizes from each group except for the last one (i.e., that with
the lowest spatial resolution), due to the ability of the machine to handle projecting without chunking
these coarser datasets. Note that resampling is not necessary if the file size of the image fits the main
memory of the computer.

Table 2. Configuration of the testing machines.

Machine Information Machine 1 Machine 2

CPU
Intel

Quad-core i5
3.10 GHz

Intel
Quad-core i7

3.40 GHz

Main memory 8 GB 8 GB

GPU NVIDIA GeForce GT 640,
384 GPU Cores 1 GB Memory

NVIDIA GeForce GT 640,
384 GPU Cores 1 GB Memory

Output images are configured with the same pixel type, number of bands, and pixel size as the
original input image. The output image has a different coordinate system and thus shape compared to
the input image. The spatial extent and the number of columns and rows are adjusted based on the
extent of the input image. After the adjustment, the output image should cover the same spatial extent
as the input image, but in the format of the coordinate system of the output image.

We ran map reprojection tests with two desktop machines. We did not perform the tests with
powerful workstations because we want to evaluate the feasibility of applying our lightweight map
reprojection method within a less powerful, more conventional desktop computing environment.
The specific configurations are provided in Table 2. Both desktops are equipped with the same
GPUs, which have 384-GPU cores. Machine 2 has a slightly better CPU speed, however. The slightly
different configuration allows us to examine the role of CPU in changing the overall performance. The
development took place using NVIDIA CUDA SDK version 5.5, in a Visual Studio 2010 environment.

4.2. GPU Speedup Ratios

We first examine the time costs of performing the same sets of map reprojections with GPU
and CPU separately. In the case of CPU based implementations, every pixel in the output image is
processed in a serial manner. In the case of GPU based implementations, every pixel is processed by
one thread, though a parameter exists in our script that allows the user to adjust the number of pixels
handled by each thread, potentially minimizing the GPU load imbalance. We recorded the combined
time costs, consisting of the time costs from reading data, performing pixel-by-pixel projection, and
writing output data. CUDA-based implementations only accelerate the pixel-by-pixel projections.
In all scenarios, therefore, tests with GPU delivered faster computational times. To show the
performance gains and highlight the benefits of using this parallel setup, we calculated the speedup
ratios. A speedup ratio is defined as the proportion between the time cost of performing a map
reprojection with CPU and the time cost of performing the same map reprojection with GPU
(see Equation (5) below).

R =
tcpu

tgpu
(5)

where:
R is the speedup ratio;
tcpu is the time cost of running the map reprojection with CPU, in seconds;
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tgpu is the time cost of running the map reprojection with GPU, in seconds.
Figure 6 below shows the raw CPU time costs and the speedup ratios when performing different

types of map projections. The raw CPU time costs generally decline linearly with the decrease of
spatial resolutions (as they become coarser), because fewer pixels are contained in those input images.
Note that, since multiple runs of tests are conducted for each reprojection instance, only the best
performance of CPU and GPU is used. The speedup ratios range from ~10 times to ~100 times.
In Figure 6b, the reprojections from Albers to Mollweide with Machine 1 overall yield the highest
GPU speedup ratios (shown with black bars), almost reaching the 100 times mark for the lowest pixel
resolution (i.e., 6000 meters). In Figure 6d, the reprojections from Equirectangular to Mollweide with
Machine 1 overall yield the highest speedup ratios (shown with black bars). These are more obvious in
the datasets with lower resolutions. In Figure 6f, the reprojections from Mollweide to Equirectangular
with machine 1 show the highest speedup ratios (shown with black bars), but this time it is the highest
resolution dataset that yields the best speedup (i.e., 1000 meters).
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When we examined differences in speedup ratios, we found that these vary significantly with
map projection types. The speedup ratios also vary slightly with different spatial resolutions. Overall,
we observe the best speedup ratios from Machine 1, which implies that the CPU-based implementations
of Machine 1 are slower than those of Machine 2 (and therefore create larger time cost differences
between CPU and GPU). The difference in speedup ratio can be attributed to several factors. First,
the complexity of different map reprojection algorithms varies from relatively simple spherical
projections to complex approximations with many polynomial ellipsoidal projections [29]. The time
cost of map reprojection of every pixel can thus vary depending on the location of the pixel in the
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output and input image. The pixel size can also determine the variation of reprojection. This is
confirmed by the fact that the time cost of CPU is not linearly correlated with the number of pixels for
different images. In the case of parallel processing, threads are synchronized to obtain the final output,
though a load imbalance can lower the performance (which is not an issue for serial processing).
Second, due to the irregular raster grid size of images and block sizes (e.g., raster grid size of 100
rows by 100 columns, with block size of 32 threads by 32 threads) and because of the round up issue
in CUDA algorithms (in the previous example, 4 by 4 blocks process 128 rows by 128 columns of
pixels), some blocks are created which include threads that do not process any pixels. This again
can introduce a load imbalance. Third, CUDA-based implementations involve data transfer between
CPU and GPU. The number of rounds of data transfer varies with different images based on size and
projection complexity. Finally, when the concept of chunks is introduced, the computational cost and
the data transfer cost between CPU and GPU vary with the locations of these chunks in the output
image (as illustrated in Figure 5). Formulating an optimal strategy to maintain load balance and best
utilize GPU computing capabilities is beyond the scope of this article, however.

4.3. Data Chunk Size, Spatial Resolution, GPU Block Size, and Performance

To examine the impacts of chunk sizes on the performance of map reprojections, we carried out
map reprojections for every image using a fixed block size and a set of varying chunk raster grid
sizes of 128 rows by 128 columns (chunk 128), 256 rows by 256 columns (chunk 256), 512 rows by
512 columns (chunk 512) and 1024 rows by 1024 columns (chunk 1024). We additionally conducted a
similar set of experiments to examine the role of block sizes in changing the performance, by testing
constant chunk sizes against varying blocks of 32, 64, 128, and 256 threads. We then grouped images by
their original map projections to summarize the relationship between the changes of spatial resolution
(which mainly lead to the changes in number of pixels) and performance. Figures 7–9 show the map
reprojections results with GPU using Machine 1. Because both machines have the same GPU devices
but Machine 1 shows the most GPU performance gains, we only present the results from this machine.

As Figure 7 shows, in both sets of projections we see that chunk 512 is the most efficient in terms
of processing speed (see Figure 7a,c). On the other hand, the fixed chunk size yields the best processing
speeds with block 128 (as shown in Figure 7b,d). In particular, with the fixed chunk pattern, we noticed
that the time costs decrease significantly when the block size changes from 32 to 64 (Figure 7b,d).

For the first reprojection in Figure 8a below, we see that chunk 1024 is the most efficient in terms
of processing speed, though in Figure 8c chunk 256 is the fastest in reprojecting (shown with black
bars). In Figure 8b,d, however, we notice the same pattern as in Figure 7 with the fixed chunk size,
where the best processing speeds come from block size 128. Concerning the fixed chunk pattern, we
again observed that the time costs decrease significantly when the block size increases from 32 to 64
(see Figure 8b,d).

Next, in Figure 9, for both sets of reprojections, we see that chunk 512 is the most efficient in terms
of processing speed (see Figure 9a,c). On the other hand, the fixed chunk size yields the best processing
speeds while using block size 128 (as shown in Figure 9b,d). The fixed chunk pattern, where the time
costs decrease significantly upon changing the block size from 32 to 64 (see Figure 9b,d), is noticeable
once more.

Given the results shown in Figures 7–9, the processing times generally linearly change in the
negative direction with the spatial resolution. Changing spatial resolution leads to the changes in pixel
numbers. For example, changing from 600 meters to 300 meters leads to 4 times the number of pixels
needing to be reprojected, and thus the processing time is about 4 times higher. Changes in the pixel
numbers are hence correlated with the increases in time costs. Given the different block and chunk
configurations we have tested, we found that the best results are overall found when the chunk size
is 512 rows by 512 columns and the block size is 128, or somewhere in between the decomposition
configuration options. The results are consistent across the different map reprojection processes.
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Figure 9. From Mollweide to Albers and Equirectangular reprojections: (a) and (b) show Mollweide to
Albers reprojections; (c) and (d) show Mollweide to Equirectangular reprojections. Charts (a) and (c)
use a block size of 32 threads, while charts (b) and (d) use a fixed chunk raster grid size of 1024 rows
by 1024 columns.

4.4. Discussion

4.4.1. Performance

a. GPU speedup ratios

In all scenarios, we observed GPU speedups, proving how the parallel implementation can reduce
the processing times when compared to CPU methods. The speedup ratios can vary with different
map projection types. These variations are attributed to the complexity of transformations associated
with those map projection types. They vary slightly with spatial resolutions as previously noted in
Section 4.3. Given the same GPU configurations, CPU speed also plays a role in GPU processing gains
because of the data transfer and pre/post processing communications involved. In our case, both
machines have the same GPU devices but different CPUs. The CPU speed of Machine 1 is slightly
slower than that of Machine 2, and thus the greater speedup changes were observed with this slower
CPU machine (due to the larger the range in processing speeds and increased overhead from CPU-GPU
communications). The results from Machine 2 were not shown in the GPU time cost figures to avoid
providing very similar and redundant results, as the overall GPU timing patterns were the same.

b. The relationship between chunk size, block size and spatial resolution concerning the
speedup ratios

When the chunk size falls within the limit of GPU memory, given the same block configuration, a
larger chunk usually yields better performance (i.e., chunk with a raster grid size of 512 rows by 512
columns or 1024 rows by 1024 columns). This is likely because larger chunks lead to fewer rounds
of on-the-fly data retrieval. Besides, when extremely small chunks are used, the performance tends
to be worse because the over-decomposition process requires more computational overhead and
more rounds of data transfer (e.g., communication between CPU and GPU), thus eliminating the
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benefits of using CUDA. The results also show that, generally, a medium-larger block size yields
better performances (128 is the overall best among block sizes of 32, 64, and 256), though again,
performance can vary slightly depending on the utilization of parallel processing capabilities of a GPU.
It is recommended that 128 to 256 threads be used to fully utilize CUDA occupancy [3]. Results show
that the speedup ratios generally are linearly correlated with the number of output pixels given the
same spatial extent, so that the coarser the pixel resolution (i.e., larger pixel sizes) in a dataset, the
faster the GPU time costs will be.

4.4.2. Issues

When we conducted experiments, we found two particular issues that should be further
investigated. First, the workload is not well balanced in the kernel setups, as the processing workloads
may not be the same even though the chunk sizing is the same (See Figure 5a). We may want to
introduce a module that can automatically identify the chunk and the block configuration based on the
characteristics of the data and the computing devices, to improve individual performance (including
the assignment of pixels per thread to optimize the GPU load balance). Secondly, creation of chunks
in the parallel data decomposition process is not configured based on the characteristics of the input
datasets (e.g., spatial extent). The way to retrieve input data chunks based on the bounding box of
output chunks (with the MinBox) is not always the most effective. We identified an edge problem
where, for chunks near the edges of datasets that require some overlap to be retrieved (or are out of
bounds), negative coordinate values in the input raster were returned, which are not necessary in
processing. This may introduce additional processing time in the map reprojection process. Figure 10
shows an example of where negative coordinate values may be derived. In future work, we plan to
improve the data retrieval process to avoid this issue.
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where errors may be introduced for processing chunks, due to data section overlap/pixels falling out
of bounds.

5. Conclusions

Rigorous reprojection of raster data using the four-corner point algorithm is more computationally
intensive than the raster map reprojection handling a single point per pixel but yields a higher degree
of spatial dependency. Our output space-based data decomposition method allows map reprojections
of raster data to be implemented in a parallel manner. Implemented with CUDA-enabled GPUs,
our approach can be performed in an affordable and lightweight desktop environment, instead
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of requiring high-end supercomputers that have been previously suggested in literature [21,30].
The chunk-based on-the-fly data retrieval strategy we employed overcomes some limitations of GPU
memory overflow in personal computers when processing large files. To our knowledge, this is the
first lightweight parallel algorithm that handles map reprojection for large raster datasets using both
this four-corner pixel algorithm and chunking decomposition within the CUDA environment.

We used varying approaches to assess the GPU based map reprojection method. As the results
show, CUDA delivers a more efficient computing solution than the traditional CPU, with speedup
ratios ranging from ~10 times to ~100 times of improvement. With the chunk-based data retrieval
strategy, large raster datasets can be processed while only introducing minimal computational overhead
times. We found that the most efficient configuration required using relatively larger chunk sizes and
medium-large CUDA block sizes. The best performing setups used 512 rows by 512 columns of pixels
in raster grid size for chunks with a block size of 32 threads, and block sizes of 128 threads in raster
grid size when implementing chunks of 1024 rows by 1024 columns of pixels.

Future work includes expanding this research to support various additional types of map
projections; we also hope to apply this projection method to parallel computing strategies in multi-GPU
or GPU cluster settings, in order to examine these reprojection processes in state-of-the-art systems
(e.g., supercomputer workstations). Based on the expansion, extensive tests with different computing
environments and CUDA optimization parameters (e.g., chunk, block, thread assignments in a kernel)
will therefore be conducted to explore optimized solutions tailored to those environments.
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