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Abstract: Many studies have used Global Navigation Satellite System (GNSS) traces to successfully
extract segments of road networks because such data can be rapidly updated at a low cost. However,
most studies have not focused on extracting intersections, which are indispensable parts of road
networks in terms of connectivity. However, extracted intersections often present unsatisfactory
precision and misleading connectivity. This study proposes a novel method for extracting road
intersections from Global Position System (GPS) trace points and for capturing intersections with
better accuracy. The key to improving the geometric accuracy of intersections is to identify the
dominant orientations of road segments around intersections, merge similar orientations and maintain
independent conflicting orientations. Extracting intersections by aligning the dominant orientations
can largely reduce location offsets and road distortions. Experiments are performed to demonstrate
the increased accuracy and connectivity of extracted road intersections by the proposed method.
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1. Introduction

Road networks are the basic geographic information that constitute urban structural skeletons
and connect various geographic elements in a city, and they play key roles in vehicle navigation,
traffic management, and rapid emergency responses [1]. Maintaining timely information on road
networks [2], especially in developing cities where road networks may change rapidly, is challenging.
Conventional ground-based survey map updating techniques are restricted because of the long periods
required to collect and organize geographic information [1]. Remote sensing interpretations can be
used to extract road maps but cannot capture large-scale and complex road networks, and are affected
by occlusions caused by clouds, mist and trees.

Public vehicles with Global Navigation Satellite System positioning devices make it possible
to continuously probe the dynamics of city traffic statuses with complete coverage [3]. However,
vehicle movement, building blockages, high-noise trajectories, outliers and limited-resolution GNSS
equipment cause pervasive position deviations in GNSS trajectory data [4,5]. This new geospatial
resource nevertheless contains a wealth of generic information related to road networks, road grades,
traffic conditions and driving behaviour [6]. For a vehicle trajectory with a positioning accuracy of
5–20 m [7], even the location accuracy of a single trajectory point is very low, most of the random errors
can be eliminated between a large number of trajectory points in the local range. Therefore, the use of
these low-quality tracking data to extract high-quality road maps is a hot topic [7]. Compared with
traditional procedures used to produce road networks, a map inference approach can fully exploit the
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spatiotemporal information generated by tracking data, thereby enabling users to extract and update
road networks over shorter periods.

However, updating a road network starts from the premise that the coordinates of the extracted
road network are registered using intersections as control points [8], and the accuracy of intersection
locations determines the resulting road network registration. Road intersections also play an important
role in the road networks. They can provide very useful information, such as connectivity, topology
and orientation. Based on the complete extracted road network, we can further analyse the preferences
of the travellers on route selection [9], the commute between different transportation modes [10], traffic
flow on the roads [11], the delays caused by traffic jams [10], and so forth. By comparing existing
methods for road extraction, Cao et al. noted issues associated with these methods, namely, that these
existing methods are unable to simultaneously achieve high precision and recall [7], especially for
detecting intersections. Most of these methods focus on extracting road segments and treat intersections
as points at which roadways are connected rather than distinguishing intersection types as a premise.
Therefore, the existing road extraction methods could not extract all intersections with high geometric
and road orientation accuracy; thus, the precise geometry and correct topology of the road networks
could not be guaranteed.

To overcome these defects, an intersection extraction method is proposed in this work, and it uses
the mean-shift clustering method to trace road segments to acquire accurate road orientations, and the
dominant orientations of roads around the same intersection are identified and then used to determine
the positions of the road intersections. The remainder of this paper is organized as follows. Section 2
presents related work regarding road and intersection extraction methods. Section 3 describes the
method’s flow and the strategy used to extract intersections. Section 4 presents comparisons between
two experimental Global Position System trace datasets and existing methods. Section 5 discusses the
conclusions and suggestions for further work.

2. Related Work

Traditionally, remote sensing imagery is most often used to rapidly and economically acquire
road segment and intersection data [12]. To extract centrelines accurately, Unsalan et al. [13] developed
a flexible combinatorial method that relied on probabilistic and graph theory to detect and extract
road networks. Boichis et al. assessed an interpretation strategy system for automatically extracting
road intersections from aerial images [14]. Furthermore, Hu et al. proposed a toe-finding algorithm
based on rectangular approximations to generate a road network and road intersections from aerial
images [15] and discussed classical road intersection types. Unfortunately, frequent cloud cover and
complicated pre-treatments (e.g., geometrical rectification and image mosaics) can have a cumulatively
negative effect and even result in extracted road networks with errors in their topological structures.

With the widespread development of GNSS positioning devices embedded in smartphones and
portable devices, GNSS trajectories are considered an emerging data source (comparing favourably
with remote sensing images) for acquiring road networks [16]. Various methods have been developed
to explore the impacts of GNSS tracking data issues on road extraction over past decades [7], and these
methods can be categorized as point clustering methods, trace merging-based methods and intersection
linking methods. In these novel approaches, the algorithms used to generate intersections from vehicle
trajectories can be divided into two types.

One type directly extracts intersections using the local spatial characteristics of trajectory points
or the spatial relationships between multiple trajectories at intersections. Fathi et al. [17] developed
a classifier that was trained using shape descriptors from two temporally adjacent GPS points from the
same vehicle to extract road intersections. Ahmed et al. [18] reconstructed intersections by utilizing sets
of vertices within bounded regions (vertex regions), with regions bounded by the minimum incident
angle of the streets at that intersection. Based on sparse GPS trace points, Wu et al. [19] converged
low-quality raw points using Kernel Density Estimation (KDE) to identify cluster centres as intersection
points. Xie et al. [20] extracted intersections using the inverse distance-weighted clustering method,
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and intersection points were identified from GPS points with changing directions. Wang et al. [21]
identified intersections using a mean-shift algorithm to calculate the location of an intersection for
which the neighbouring roads presented high turn density values.

The other type of algorithm detects roadways from trajectories and produces intersections by
connecting the centrelines of roads. Davies et al. employed a contour Voronoi diagram to calculate
road segments and intersections, and their method identifies pairs of nearby intersections that should
merge [22]. Xie et al. detected the longest non-consecutive subsequences using dynamic programming
and partitioned them into consecutive sub-tracks [23] to extract road intersections. Tang et al. used
a heading criterion and topology extraction method to derive topology points, although their method
cannot be applied to the geometries of complex junctions [24].

The first class of algorithms is based on the local spatial characteristics of trajectories in which
vehicles stop more often and points are observed at a high frequency. However, vehicles stop at traffic
lights and stop/yield signs and do not stop at the centres of intersections. The second type of algorithm
connects the road centrelines at the same intersection at the mean point of the segment end node;
however, the spatial relation between the road centrelines cannot be specified. Most of the methods
mentioned above produce spurious and distorted intersections from vehicle GNSS traces.

Yao et al. [25] proposed a method that traces road orientations and intersections to refine the
positions of road intersections from raster maps. Based on their study, in this work, we propose a new
method to extract road intersections. The primary contributions of our method can be summarized
as follows: the centrelines of the road were extracted from GPS trace points using a mean-shift
clustering algorithm with penalty, which is robust for outliers and noise. Then, a principal component
analysis (PCA) and depth-first search strategy were used to individually reconstruct the road segments,
which avoid generating short branches. Using the centrelines of the road segments, we first employed
what is termed a merge and intersect strategy for road segments at the same intersection to avoid
intersection position deviations and road distortions. The smooth segments produced during merging
were used to extract an average track, which acted as a geometric representation of each dominantly
oriented segment, and these segments were then utilized to detect the locations of the intersections
from independent dominant orientations.

3. Proposed Method

Road segments and intersections are fundamental elements of road networks. Road segments are
connected by intersections; thus, the road intersections locations or positions, road connectivity and
road orientations are the basic properties of intersections. In general, vehicles moving along different
roads connected from different orientations form the influx at the intersections, and their locations can
be inferred by the intersections of the dominant orientations of the road segments around intersections.

3.1. Road Skeleton Extraction

Because intersections are influxes of road segments, road segments should be extracted from
collected GNSS points before identifying the intersection nodes of a road network. Currently,
many methods are available to extract road segments, including hierarchical clustering and spectral
clustering [26]; however, these methods cannot be used to process large amounts of data because
of the requisite large number of calculations. Density-based approaches, in which Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [27] and mean-shift algorithms [28] are
employed, are preferred because dynamic cells are used to manipulate data within a neighbourhood.
The mean-shift algorithm was used in this work because it captures the local maximum density
positions of cells. However, DBSCAN merges proximal high-density cells into clusters.

3.1.1. Simplification of Scattered Points

Mean-shift is a mode-seeking algorithm that searches for the maximum densities of local
neighbourhoods from discrete points [29]. The algorithm is iterated until a stable result is obtained,
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that is, until a certain number of iterations is reached or all points move to the location of the local
maximum density in the support neighbourhood. The employed version of the regularized mean-shift
formula is

xk+1
i =

∑j∈J qk
j αk

ij

∑j∈J αk
ij

+ λ
∑i′∈I\{i}

(
xk

i − xk
i′

)
βk

ii′

∑i′∈I\{i} βk
ii′

. (1)

where the first item is the classical mean-shift algorithm; the second item is a regularized
term to prevent further accumulation once points are already contracted onto their local centre
positions; λ is balancing constants between the two item; αij = θ

(
‖xi − qj‖

)
/‖xi − qj‖; j ∈ J;

βii′ = θ(‖xi − xi′‖)/‖xi − xi′‖2; i′ ∈ I\{i}; θ(‖.‖) = e−‖.‖
2/R2

is a Gaussian smooth weight with
a set neighbourhood radius R, and ‖.‖ is the Euclidean distance between two points; xk

i is the initial
position at the current iteration; and xk+1

i is the new position for one iteration loop with a support
cell radius R. qk

j and xk
i′ are the original and sampling points in the local neighbourhood of xk

i for the
current iteration, respectively.

Using the above formula, the mean-shift algorithm clusters the sampling points based on the
resampling of the original point. To accelerate the point clustering, when the distance of two
sample points is less than 1 m, the two points are replaced by a point at their average position.
Hence, the number of sampling points decreases with iterative calculations until only a few feature
points remain, which are finally distributed at the local intermediate positions of the original GNSS
track points, as illustrated in Figure 1.
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3.1.2. Road Skeleton Segmentation

Although feature points are evenly distributed in the middles of the roads, as shown in Figure 1c,
they remain discrete. A classical PCA [30] was used to calculate the distribution characteristics of
each of the feature points. A weighted covariance matrix Ci = (xi − xi′)

T(xi − xi′) was calculated
for feature point xi (a row vector) and the other feature points within its neighbourhood, and the
eigenvalues

{
λ0

i , λ1
i
}

and corresponding eigenvectors
{

e0
i , e1

i
}

of the 2 × 2 covariance matrix Ci were
then calculated. The eigenvalues represent the degree of discretization of the feature points in the
corresponding eigenvectors. The value κi = max

{
λ0

i , λ1
i
}

/
(
λ0

i + λ1
i
)

is then defined as the linearity
degree of xi within the local neighbourhood at radius R. The difference between the two eigenvalues is
smaller, indicating that the distribution of points in the direction of the corresponding eigenvectors
is equivalent, and the value of κi is closer to 0.5. On the contrary, the maximum eigenvalue is far
greater than the other, and more points around xi are aligned along a direction, and the value of
κi is closer to 1. Hence, the κi values range from [0.5, 1]. If the κi values are close to 1, then the
points have more linear distributions, which means that more of the feature points around xi are
aligned along a road. However, if the κi values are closer to 0.5, then the distribution is more uniform.
Therefore, the candidate points (green dots) used to generate road segments are selected from the
feature points with κi > 0.9 as shown in Figure 2a.
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(a) Seed point (highlight point) with the largest distribution characteristics value; (b) trace along the
dominant principal component analysis direction of the seed point; (c) trace along the direction opposite
the dominant PCA direction of the seed point; and (d) merged search results in both directions.

To identify road segments from those candidates, the seed point with the largest k value, p0,
is first selected. For the seed point, the depth-first search strategy [31] is used to trace the next seed
point to nearby candidates along the dominant PCA direction ep. To avoid straddles the intersection
or connecting to the adjacent road during the road segment search process, this strategy requires the
following two parameters: dis(p0, xi) < 30, i = 0, 1, 2 . . . and ∠

(
ep, (xi − p0)

)
< 15◦, i = 0, 1, 2 . . . [32].

These parameters were determined based on the lane width and the number of real urban roads as well
as much experimental exploration to yield the best results for the tracking data. The lane width in the
cities is approximately 3.5~4.0 m, and we assume that the roads that the vehicles visited contained at
least four lanes. In addition, road barriers and the buffer zone at the intersection should also be taken
into account. The second parameter was set at 15◦, meaning that the road segment was not allowed
to track a connection to another road near the intersection area or parallel to itself. By replacing xi
with p0, nearby candidate points are searched via the same method, and stops are traced when none
of the candidate points in the local neighbourhood satisfy the above conditions. Correspondingly,
the direction opposite the dominant PCA direction of the original seed point can also be searched
to identify another path, and the results of the two paths are then merged into one road segment as
illustrated in Figure 2. If at least five candidate points (by default) are found during the trace, then those
points are labelled as road nodes and are connected to generate road segments [31]. The process is
repeated with a new seed point with the largest k among the remaining candidates until all the
candidate points are processed.

3.2. Orientation-Based Extraction of Intersections

Intersections are commonly known as junctions when two or more roads intersect or meet each
other. Intersections are classified as 2-way, 3-way, 4-way, or 5-way, and so on, depending on the number
of road segments (road connectivity) that meet at the same intersection. The morphology of a road
may be distorted when an intersection node is formed directly by connecting more road segments
or by the mean value of road segment end nodes. Figure 3b illustrates the distortions of T-shaped
road intersections, which were connected using the mean value of the coordinates. To overcome these
distortions, the approximately collinear segments near the intersection are identified and merged,
and the location of the intersection is extracted from those conflicting orientations to extract more
accurate road intersections.

Koutaki et al. provided three intersection models according to the road width and orientation
including: the crossroads model, which represents the intersection of two road portions; the three-forked
road model, which has three road segments; and the T-intersection model, which consists of one straight
road and a connected branch [33]. However, their models are not suitable for roads with arbitrary
incidence angles at intersections. To apply more intersection geometry types and variable orientations,
stronger constraints and additional knowledge regarding intersections should be refined. Because
intersections with the same road connectivity can be intersected with diverse forms associated with



ISPRS Int. J. Geo-Inf. 2017, 6, 403 6 of 16

road segments with different independent dominant orientations [34], a set of paired segments that
are approximately collinear is first identified around the same intersection. Each pair is merged into
a single segment and, finally, only the conflicting orientation segments at the same intersection are
retained. Here, conflicting does not necessarily mean that there is a 90◦ difference in orientation from
a reference orientation, but rather that the orientation differs greatly from the reference, which is
defined as the independent dominant orientation of the intersection. Therefore, intersection locations
can be detected by finding nearby road segments at the same intersection that intersect in multiple
conflicting orientations. Under that assumption, a two-step strategy that merges collinear segments
and intersecting conflicting segments is proposed for detecting the locations of intersections.
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Figure 3. The intersection position deviation and road segments around the intersection are distorted,
which connect directly with the end nodes of the road around the T-intersection. (a) The original GNSS
input points; (b) T-intersection directly connected by road centrelines.

3.2.1. Identification of Collinear Segments

Roads have characteristics of compactness, parallelism, convexity and ductility [35]. Regnauld [36]
and Campbell [37] used parallelism and compactness as the main factors to select road networks for
generalizing maps. In this work, a spatial feature measure function called Cost, which is the degree
of collinearity based on parallelism and compactness, is proposed to analyse the spatial relationship
between pairwise segments around the same intersection, where the segments exhibit collinearity
that is not necessary strictly 0◦ or 180◦, but have approximate orientations. The cost function Cost is
defined as

Cost =
√

Parallelism× (1− Compactness), (2)

Parallelism =
2Length−MBR

Perimeter
, (3)

Compactness = 4π × Area
Perimeter2 , (4)

where Length-MBR is the length of the longest edge of the minimum boundary rectangle (MBR) of the
geometry and Perimeter and Area represent the perimeter and area of the geometry, respectively. In this
work, the segments refer to the end segments of road segments around the same intersection, and the
MBR of any two segments is used as the geometry.

Parallelism and Compactness range from 0 to 1. Parallelism increases with thinner MBR,
and Compactness is conversely related to Parallelism because long and thin geometries are not compact.
Cost ranges from 0 to 1, and if the Cost is close to 1, two road segments are more collinear along
one orientation, and if the Cost is close to 0, two road segments are spatially distributed along two
independent and dominant orientations.

The two candidate segments with the larger aggregation Cost are chosen and merged if the Cost is
larger than a minimum threshold. Guillaume et al. [38] used 0.83 and 0.2 as thresholds for parallelism
and compactness (the corresponding calculated value of Cost is 0.81), respectively, to select the main
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road in a map generalization. However, these authors used the two criteria as the measures for
a complete road, whereas in this work, only parts of road segments are calculated. After a series of
experiments, the Cost threshold was set to 0.85 so that two segments could be aligned to the similar
orientation. As illustrated in Figure 4, a group of road segments with different spatial distributions
were chosen as candidates (only the end segment of a road around the intersection is illustrated),
where the solid line represents the extracted road in Section 3.1.2, and the dotted line represents the
refitted results. As shown in Figure 4a,b, the Cost of the two candidate neighbours was less than
the set threshold, and the candidates were considered to have two dominant orientations and no
modifications. Figure 4a presents two segments that are spatially parallel but not collinear. Figure 4b
shows two segments that are said to be conflicting in the two independent orientations, which should
persist until the following step. However, as shown in Figure 4c,d, these segments have greater Cost
values, which indicates that they are regarded as a broken road with similar orientations that should
be merged into a smooth segment.
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Figure 4. Calculating the geometric relationships between the segments at the same intersection.
(a) The two roads are spatially parallel and neither intersect nor merge; (b) The two segments with two
distinct orientations; (c,d) The two approximately collinear disjointed roads with larger Cost values
should be combined into a single road.

A set of mutual conflicting road segments was therefore obtained around the same intersection
and included two types, one of which was the original and independent segments, and the other was
refitted by merging a pair of approximately collinear segments. The two types of segments both are
hereafter considered independent of conflicting segments. Figure 5 presents the results of the collinear
identification and shows three conflicting segments around the intersection after the merge operation.
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Figure 5. Identifying collinear road segments around the intersection. (a) Input GNSS trajectories
around the intersection; (b) road segments extracted from the input GNSS trajectories; and (c) two
segments are combined into a single segment, and the other two segments remain unchanged. The black
segments represent road segments, and the bold black segments represent the end segments of the
road segments.

3.2.2. Detecting the Locations of Intersections

From the above collinear identification and segment merging process, a set of conflicting segments
with conflicting orientations around the same intersection were acquired, as shown in Figure 5c
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or Figure 6a. However, the location of the actual intersection could not be determined using the
intersections of those segments at the same intersection because more than one intersection may occur,
as shown in Figure 6b. In this step, the intersections of the conflicting road segments are first calculated,
as shown in Figure 6b, and then the actual location of the intersection is calculated, which illustrated
in Figure 6c.
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Generally, intersections are sufficiently far apart that their buffers do not superimpose. 
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determine the intersections that are correlated and should be merged into an intersection. The 
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Figure 6. Detecting the location of the intersection based on the intersect of segments with conflicting
orientations. (a) Identifying the conflicting road segments around the intersection from the previous
steps; (b) road segments intersecting at multiple points; and (c) calculating the intersection location
based on multiple points.

As illustrated in Figure 7, the intersections were calculated from different road connectivity (end
segments of road segments) and spatial relationships. Three intersecting cases are possible for the road
segments around the intersection.

• In the first case, all the segments intersect at one point exactly, as illustrated in Figure 7a,c.
• In the second case, the segments intersect at multiple sub-intersections and the sub-intersections

are all near the road intersection position, as illustrated in Figure 7b.
• In the third case, the segments intersect at multiple sub-intersections but some of the sub-intersections

are not near the road intersection (i.e., outliers and noise), as illustrated in Figure 7d.
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Figure 7. Connecting multiple line segments around an intersection. (a) T-intersection detected by
the single intersection of segments on two conflicting orientations; (b) three-forked road intersected
in three conflicting orientations, with an acute small triangle formed by the intersection of the three
roads and the centroid of the triangle representing the intersection of the three roads; (c) crossroad
with two conflicting orientations intersecting at one point; and (d) irregular intersection with multiple
orientations and multiple sub-intersections.

Generally, intersections are sufficiently far apart that their buffers do not superimpose. However,
for sub-intersections that are part of a splintered larger intersection, which frequently occur over a small
distance, calculating the distance between the adjacent sub-intersections could help determine the
intersections that are correlated and should be merged into an intersection. The positions determined
from the intersection schemes are described as follows.

• For the first situation, which is illustrated in Figure 7a,c, the location of the road intersection is the
intersection point of the road segments (i.e., the crossroad, T-intersection and turn).
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• For the second situation, which is illustrated in Figure 7b, the location of the road intersection is
the centroid of the multiple sub-intersections of all road segments.

• For the third situation, which is illustrated in Figure 7d, before merging the sub-intersections,
outliers and noise must be removed (Section 3.1.2 states that a road segment cannot cross through
the intersection area where feature points have a smaller linearity value; thus, the sub-intersection
defined by the intersection of road segment l2 and the dashed line in Figure 6d is discarded).
Hierarchical clustering [39] is then performed to calculate the remaining intersections (sets of data
are grouped by maximizing the similarity among similar clusters and minimizing the similarity
between different clusters), and the centroids of the clusters are then used as the intersections.
As illustrated in Figure 7d, the remaining two sub-intersections, k1 and k2, are autonomous
fragmented parts that preserve an irregular intersection because they are divided into two clusters.

Based on the merge and intersect strategy, the disconnected road segments extracted based on
the previous step are checked and further connected one by one. Fathi [17] used 40 m to determine
the coverage of intersections, which was 1.5 times the road skeleton search threshold used in this step
to search for the endpoints of the road segment around the intersection. For example, as road l is
checked, the head nodes of road l and other surrounding road segments within the threshold distance
(head and tail nodes of nearby segments should be included) are found, and the road intersection is
then extracted utilizing the above strategy. The same process is used to check and connect the tail
node of road l, and a new road is then generated that maintains the topological features of the nearby
road segments. The next road is modified in the same way until all the roads are checked. In this
process, intersections are extracted based on the road segments extracted from the GNSS trajectories.
More intersection confluence scenes are shown in Figure 8.
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GNSS track point inputs, and the red lines represent the extracted roads for which the topological
features are preserved. When an intersection has two or more dominant orientations, all the orientations
of the intersection converge to the location of the intersection.
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4. Experiments and Discussion

4.1. Datasets

To test the feasibility and effectiveness of the proposed intersection extraction method, two types
of trace point datasets were used, and the features are described as follows. (1) The Chicago Campus
Bus Dataset contains 118,364 GPS points and 889 trajectories within a region of 3.8 km × 2.4 km at the
University of Illinois at Chicago [40], as shown in Figure 9a. Since the campus buses travel on relatively
fixed routes, the GPS tracks are distributed over fixed roads and relatively clean. The dataset has been
widely used in existing related work to evaluate map construction algorithms; (2) the Chengdu Taxi
dataset was collected by taxis in the city of Chengdu, Sichuan, China, over an approximate duration of
1 day. The dataset covers a region of 3.4 km × 2.6 km, contains 2371 trajectories and approximately
501,861 points, and has a sampling rate that varies from 1 to 232 s. The taxi routes were not fixed
shuttle in an urban region with a mixture of highways, high and medium volume roads, therefore,
the track points are unevenly distributed on different volume roads with a lot of noise as shown in
Figure 9b.
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4.2. Evaluation Method

Road networks are important geographic entities that are presented in the form of complex
networks, and they require high position precision and accurate topological relationships.
The proposed method reconstructs intersections using extracted road segments, thereby improving
the accuracy of the intersections and maintaining the morphologies of the road confluences. In this
work, because the GNSS track points presented accuracy limitations, the real intersections were not all
detected, and spurious intersections not present in the real word were found. An efficient intersection
detection method should be able to detect a maximum number of ground truth intersections and
minimize the number of spurious and missing intersections. Biagioni and Eriksson proposed
a point-matching approach to measuring the accuracy of points based on three criteria: precision,
recall, and F-measure [41]. The approach considered a one-to-one match between two groups of points
(i.e., the extracted intersections and the truth intersections) at a given distance threshold and counted
matching points between the two groups. The number of matched points increases quickly with
increases in the distance threshold, and a smaller discrepancy between two groups corresponds to
a faster period required to reach stability with a smaller distance threshold. Therefore, the accuracies
of the intersections with respect to the ground truth map were quantified by the proportion of matched
points, where the number of matched extracted intersections is represented by Matched-extracted,
the number of matched truth intersections is represented by Matched-truth, the accuracy of the
extracted intersection geometry is represented by precision, and the completeness of the number
of extracted intersections is represented by recall, with precision = Matched_extracted/extracted and
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recall = Matched_truth/truth. To produce a composite performance index from these two values,
the F-measure is defined as

F−measure = 2 ∗ precision ∗ recall
precision + recall

The F-measure ranges from 0 to 1, and scores close to 1 indicate that the extracted intersections
performed better at position accuracy and completeness. In this work, this evaluation method was
used to evaluate the geometric and completeness accuracies of the exacted intersections compared
with that of a ground truth map.

4.3. Comparison and Discussion

Based on the experimental tests, the radius of the neighbourhood in the trajectory contraction
was 30 m, and the thresholds for the segment growth process were 15◦ and a distance of 30 m.
For comparison and evaluation, the road inference methods of Davies [22] and Ahmed [18] were used
to extract intersections from the same datasets. These two open source algorithms are implemented in
Python and Java and retain the original default parameter settings over the experiments. To measure
the accuracy of the intersections extracted from the GPS traces, OpenStreetMap [42] was selected as
the ground truth map for this work. To perform a qualitative evaluation of the results, the extracted
intersections (highlighted points) were overlaid on the ground truth vector maps of the corresponding
area as shown in Figures 8 and 9.

4.3.1. Visual Inspection

In Figures 10 and 11, the extracted intersections are superimposed on the corresponding areas
of the vector map to qualitatively evaluate the results. Figure 12 shows the detailed intersection
results, which are compared with another method employing the Chengdu dataset. The visualization
clearly shows that the proposed method extracted more intersections and showed considerable
consistency with the ground truth map. Although Ahmed’s method can extract more intersections,
it produces a large number of offset outputs and is messy (i.e., an excessive number of topology points
at intersections are not merged), as shown in Figure 12c,h. Based on the positions and morphologies
of the intersections, the proposed method was able to adapt to a variety of road intersections and
was also able to extract the intersections with high precision; moreover, the orientations of the roads
involved in constructing the intersections better conformed to the ground truth map.
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Figure 10. Extracted intersections (highlighted points) and road network (red lines) overlapped
with the ground truth map (grey line) of the Chicago dataset. (a) Intersections and road network
extracted by the proposed method; (b) intersections and road network extracted using Davies’s
method; and (c) intersections and road network extracted using Ahmed’s method.
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4.3.2. Accuracy Results

Table 1 lists the statistical results for the number of matched extracted intersections for different
threshold distances in the two experimental areas. Based on the statistical results in Table 1, the position
accuracies of the intersections detected from the two GPS trace point datasets using the additional
models are compared in Figures 13 and 14.

At matching distances of 5 m and 10 m, the number of matched intersections obtained by the
proposed method was significantly better than that of the other two methods, especially for the lowest
matching distance of 5 m. The results are listed in Table 1, and they indicate that the intersections
extracted using the proposed method had higher position accuracies. Figures 13a and 14a show that
the criteria values of the proposed method increased as the matching distance threshold increased from
5 m to 20 m and increased slowly after the threshold reached 20 m. Figures 13b and 14b demonstrate
that the results from Davies’s method became constant after the matching distance thresholds reached
20 m and 30 m, respectively. The results obtained by Ahmed’s method for the Chicago stabilized at
30 m in Figure 13c, but the performance continued to increase with the Chengdu dataset as shown
in Figure 14c. Therefore, the constant values of the curve indicate that the position offset of the
intersections extracted using the proposed method were distributed over a small distance. For the
Chengdu Taxi dataset, although Ahmed’s method matched more intersections than the proposed
method in the range of 30 to 50 m, the intersections matched by Ahmed’s method are considered
messy or spurious as shown in Figure 12c,h. These evaluation results indicate that the intersections
extracted using the method proposed in this work had a higher accuracy in terms of geometry and
were better able to preserve the morphology of the roads at the intersections.
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Table 1. Matched intersections with the threshold distance by the different methods.

Area Method Extracted/Truth 1 Number of Matched Intersections with the Threshold Distance (m)

5 10 15 20 30 40 50

Chicago
Proposed 55/74 17 35 45 48 51 52 52

Davies 28/74 1 8 17 20 21 21 21
Ahmed 38/74 4 11 17 23 30 31 31

Chengdu
Proposed 106/175 35 69 84 93 98 100 102

Davies 100/175 7 24 42 62 85 90 92
Ahmed 177/175 6 31 62 80 110 126 138

1 Extracted represents the number of intersections that are extracted, and Truth represents the number of
real intersections.
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5. Conclusions

A method for extracting intersections is proposed in this study. The method consists of
two steps that rely solely on the locations of track points, and this method performs better in
geometric accuracy and confluence morphology than the other two methods, especially for irregular
junctions. First, a clustering algorithm is employed that uses the coordinates of the trajectory points.
The decentralized trajectories are contracted at the midlines of the roads via the regularized mean-shift
method, and a PCA and depth-first strategy are used to search the roads to avoid constructing short
segments and ensure correct road morphologies. To identify the independent dominant orientations of
an intersection, the degree of collinearity Cost measure, which is based on parallelism and compactness,
is used to merge the approximately collinear road segments and detect the intersections along
independent dominant orientations using intersecting lines to accurately determine the geometry of the
confluences of the roads. The experiments indicate that the proposed method has improved accuracy
based on the geometry and road orientations of intersections, especially for T-shaped road intersections.
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However, the proposed method could not extract all the intersections because road segment
extraction depends on a certain density of GNSS trace points. Extracting road centrelines from sparse
trajectories is difficult. In addition, the appropriate coverage radius for intersections and collinear
parameter thresholds are important when extracting intersections. In this study, these parameters were
set according to experience or statistical analyses and were not explored in detail; thus, these would
orient our future study.
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