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Abstract: In Geographic Object-based Image Analysis (GEOBIA), identification of image objects is
normally achieved using rule-based classification techniques supported by appropriate domain
knowledge. However, GEOBIA currently lacks a systematic method to formalise the domain
knowledge required for image object identification. Ontology provides a representation vocabulary
for characterising domain-specific classes. This study proposes an ontological framework that
conceptualises domain knowledge in order to support the application of rule-based classifications.
The proposed ontological framework is tested with a landslide case study. The Web Ontology
Language (OWL) is used to construct an ontology in the landslide domain. The segmented image
objects with extracted features are incorporated into the ontology as instances. The classification
rules are written in Semantic Web Rule Language (SWRL) and executed using a semantic reasoner
to assign instances to appropriate landslide classes. Machine learning techniques are used to
predict new threshold values for feature attributes in the rules. Our framework is compared with
published work on landslide detection where ontology was not used for the image classification.
Our results demonstrate that a classification derived from the ontological framework accords with
non-ontological methods. This study benchmarks the ontological method providing an alternative
approach for image classification in the case study of landslides.
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1. Introduction

In remote sensing image analysis, traditional per-pixel and emerging object-based approaches
exist. In a per-pixel method, single pixels are assigned to different geographic classes based on their
reflectance values from different spectral bands without employing additional and potentially useful
spatial, geometrical or contextual features [1]. The per-pixel approaches operates at the spatial scale of
the pixel. This poses the problem of mixed pixels, where a pixel represents more than one type of image
objects. The use of a per-pixel approach is diminishing with the increase in resolution of satellite
images. One of the reasons is the “salt and pepper” effect where single pixels are misclassified in
a group of pixels representing certain class [2,3].

There has been a shift from per-pixel to object-based methods [4,5]. Geographic Object-Based
Image Analysis (GEOBIA) combines contiguous homogeneous pixels to segment geographical objects
in remote sensing images. The grouping of a pixel is carried out using segmentation algorithms [6].
After segmentation, feature values of the segmented image objects are extracted. Applying these
feature values, rule sets are developed to classify image objects into classification categories. In contrast
to per-pixel methods, object-based methods can be applied at multiple scales and make use of spatial,
contextual, and textural features alongside spectral features for image object classification.
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The GEOBIA approach relies on expert knowledge to perform image segmentation and
classification [5,7]. Such expert knowledge, if systematically organised, can guide future image
analysis [8]. However, GEOBIA methods currently lack a systematic method to conceptualise and
formalise domain knowledge. With a high dependency on human experts and a lack of formal
knowledge, GEOBIA processes are highly subjective and largely irreproducible [9]. Image object
extraction and classification can be biased by human subjectivity and vary depending on the users’
capabilities and experiences [8]. With knowledge formalisation, the classification process is prescribed
and automated with less human intervention and using consensus knowledge approved and developed
by domain experts.

Knowledge representation languages can be used to formalise a domain expert’s knowledge and
reduce the issues of subjectivity, automation and transferability. A knowledge representation approach
can employ logic-based formalism or non-logic-based representation. In a logic-based approach,
the representation language is usually a variant of first-order predicate calculus and reasoning is based
on formal verification of logical consequences [10], while, in a non-logical approach, the knowledge
is represented using specialised data structures and reasoning is performed by applying specialised
procedures on the structures [10]. A semantic network represents a non-logical approach with
a specialised network structure in which a graphical network of nodes and arcs is used for knowledge
representation. The graphical representation shows the semantic relations between concepts, which can
be used to create and share the knowledge of thematic experts [11]. Ontology, as a logic-based approach,
has well-defined and formal semantics to represent knowledge.

In our work, we have used ontology as a knowledge representation language that provides
a representation vocabulary specialised to a certain domain or subject. The highly cited definition of
ontology from Gruber [12] states that an ontology is a “specification of a shared conceptualisation”.
Ontology is a shared understanding of a domain agreed by experts and intended to make domain
knowledge interoperable, reusable and sareable [13]. The Web Ontology Language 2 (OWL 2) [14]
is a machine-readable knowledge representation language for authoring and sharing ontologies.
The logical consistency of an ontology can be established using reasoning engines such as Pellet [15],
Fact++ [16] and KAON2 [17]. The Semantic Web Rules Language (SWRL) [18] allows the creation of
conditional rules supplementing the capability of the reasoner. SWRL are executed using the semantic
reasoner, which discovers new entailments and incorporates them into an existing ontology.

In this work, we attempt to develop an ontological framework where domain knowledge is
formalised to assist in rule-based classification. For this, the domain ontology is constructed in
OWL language and the rules are written in SWRL. Using a semantic reasoner, the instances of
segmented image objects are assigned to concepts representing domain entities to perform an image
object classification.

In remote sensing, classification of image objects is highly dependent on the knowledge of domain
experts. However, the use of that knowledge is limited when the knowledge is not formalised because
the knowledge becomes incomprehensible and unsharable [19]. There is a need for a knowledge
organisation and representation method to handle the inefficient and excessive dependency on expert
knowledge [20]. Concisely, GEOBIA needs to adopt knowledge formalisation techniques that can
reduce human involvement and bring transferability to image classification. The use of ontology for
formalising expert knowledge has been explored in [19]. In GEOBIA, the ontological framework helps
in data discovery, automatic image interpretation, data interoperability, workflow management and
data publication [9]. Previous studies show that the ontological framework have been developed for
land cover extraction [20–22], ocean image classification [23], and biodiversity monitoring [24].

In this paper, we aim to answer the following research questions:

• Can ontology be used to formalise domain knowledge in the manner required by GEOBIA for
image classification, and

• What methodological changes are required to apply the formalised knowledge as a spatial
ontology in object-based image classification?
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This paper is a methodological contribution in the field of geo-spatial image analysis with a focus
on ontological implementation. The specific contributions of the formalised ontology in this study are:

• transferability of knowledge with modularisation of highly transferable domain ontology and
data dependent feature ontology;

• extensibility of the knowledge base with a clear separation of knowledge construction and
classification tasks;

• minimisation of human intervention during image classification by developing prior rules with
the consensus of experts;

• use of inferencing capability in image classification with reasoner (Pellet); and
• data interoperability with the use of W3C (World Wide Web Consortium) standard languages

(OWL, SWRL).

The remainder of this paper is organised as follows. Section 2 outlines the case study on landslides,
data and study area. In Section 3, the methodology for ontology-based image classification is proposed.
In Section 4, the outcome of the experiment is presented and later discussed in Section 5. In Section 6,
conclusion of this work is presented.

2. Case Study

2.1. Case Study on Landslide Detection

Landslides are commonly occurring and can have disastrous impacts. Rapid and accurate
detection of landslides can help to monitor hazards, minimise risk and support disaster management.
Earth observation data can play a significant role in the early detection and analysis of landslides [25,26].
For landslide detection, different remote sensing techniques such as aerial photo interpretation,
stereoscopic image analysis, interferometry studies, and airborne laser scanning (ALS) can be used [27].
Aerial photographs are rich in data allowing comprehensive landslides analysis but involve high cost,
time and most importantly they may not be available instantly after the occurrence of a disaster.
In contrast, high-resolution satellite images are an economical source of data that can provide on
time information about affected landslide areas [28]. Recently, LiDAR data and its wide range of
derivatives including digital terrain models (DTM), shaded relief, slope, aspect, and surface roughness
have been used for qualitative interpretation and quantitative statistical analysis [26]. In this context,
landslide detection through earth observation data is considered to be a promising application domain
for image analysis.

Several studies have shown the applicability of knowledge based image analyses to detect
landslides [28–30]. However, there is a lack of formalised methodology to enable the reusability
of developed knowledge. The use of a knowledge representation language for managing domain
knowledge in landslide detection is very rare. HazardMatch is a system developed for creating
landslide susceptibility maps using semantic technology [31]. In this work, landslide experts describe
the key properties of landslide susceptible areas, and the landslide relevant properties for potential
areas are ranked by their similarity to those defined by experts.

In this study, landslide detection is selected as the problem domain and a case study is
developed using previously published work by Martha et al. [28], where the classification was
carried out using geographic object-based image analysis, but without using a formalised knowledge
representation technique such as ontology to classify different landslide classes. The reason for using by
Martha et al. [28] for the case study was to benchmark the proposed ontological framework. We used
available remote sensing and landslide data, rule sets and classification results from [28] to evaluate
an ontology-driven classification method. This benchmarking of the proposed framework tests its
soundness. The data includes spectral, spatial and morphometric properties of landslides, which serve
as sources for constructing a knowledge base in the landslide domain.



ISPRS Int. J. Geo-Inf. 2017, 6, 386 4 of 24

2.2. Landslides Class Description

In this work, five different types of landslides are identified based on their spectral, contextual
and morphometric characteristics. The landslide types and their description with feature criteria are
sourced from [28] and provided in Table 1. In this table, the first column is landslide class; the second
column is a description in the natural language; and the third column is the translation of these
descriptions into measurable thresholds. For example, shallow translational rock slides are relatively
narrow and elongated in shape, which means they are asymmetrical in shape. Thus, we can say that
’shallow translational rock slide’ has a high asymmetry value and this is translated to the threshold of
measurable features using hasAsymmetry (ě0.5).

Table 1. Descriptions of landslides classes sourced from [28].

Landslide Classes Description Features and Thresholds

Shallow translational
rock slide

Found in rocky land with shallow depth, and
relatively narrow and elongated shape.

hasAsymmetry (ě0.95)
hasMeanSlope (ě25)

Debris slide Found in a weathered zone or thickly covered soil,
moderate slope and low length.

hasRelBorderToNonRocky(agr.)
(ě0.5)

Debris flow Found in a weathered zone or thickly covered soil
and moderate slope, but has a long run-out zone.

hasLength (ě500)
hasMeanSlope (ě25)

Rotational rock slide Found in a rocky land with steep slopes and
terrain curvature is concave upward.

hasMeanCurvature (ď´1)

Translational rock slide Found in rocky land with moderate slope and
planar terrain curvature.

hasMeanProfileCurvature
(ď1)

2.3. Data

IRS (Indian Remote-Sensing Satellite)-P6 (also known as ResourceSat-1) is an earth observation
mission within the IRS series of ISRO (Indian Space Research Organisation). Multi-spectral image
data acquired on 16 April 2004 was used to calculate spectral characteristics used in defining landslide
classification rules. The ResourceSat-1 is equipped with a high resolution Linear Imaging Self Scanner
(LISS-IV) operating in three spectral bands as shown in Table 2.

Table 2. ResourceSat-1 spectral bands with 5.8 m spatial resolution.

Bands Range

green (0.52–0.59 µm)
red (0.62–0.68 µm)
near-infra-red (0.77–0.86 µm)

A Digital Elevation Model (DEM) created from 2.5 m resolution stereoscopic Cartosat-1 data
acquired on 6 April 2006 was used to extract morphometric derivatives. The cartosat-1 optical satellite
was launched by ISRO and is equipped with two panchromatic sensors, Pan-Aft and Pan-Fore with
´5° and 26° view angles, respectively. The satellite captures in-orbit stereo images simultaneously that
can be used to generate a DEM.

In this study, the pre-processed satellite image data and DEM with its derivatives were sourced
from [28]. The satellite image from ResourceSat-1 was orthorectified using the 10 m DEM created from
stereoscopic Cartosat-1 data. The spectral features such as NDVI (Normalized Difference Vegetation
Index), brightness from optical data and DEM derivatives such as slope, terrain, curvature, and hill
shade were calculated to characterise landslides and false positives.
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2.4. Study Area

The study area covers a landslide prone area of about 28 km2 bounded between 30°311302 N and
30°341302 N latitude and 79°6102 E and 79°9102 E longitude as depicted in Figure 1. It is located on
the Madhyamaheshwar sub-catchment of Okhimath in the Uttarkhand state of India and situated at
the confluence of the Mandakini and Madyamaheshwar rivers. The average elevation of Okimath is
1300 m ranging from 1047 m to 2620 m. The region experiences a subtropical temperate climate with
annual rainfall between 1200 mm to 1500 mm. This study area has a high potential for rainfall and
earthquake-induced landslides with past landslide occurrences [32,33].

79°9'0"E

79°9'0"E

79°7'30"E

79°7'30"E

79°6'0"E

79°6'0"E

30°34'30"N 30°34'30"N

30°33'0"N 30°33'0"N

30°31'30"N 30°31'30"N

±
0 0.5 1 1.5 2Kilometers

1:50,000

India

Figure 1. Study area located on the Madhyamaheshwar sub-catchment of Okhimath in the Uttarkhand
state of India.

3. Methodology

Based on the principle of modularity, the proposed classification framework is broadly categorised
into five different modules: (1) Segmentation and feature extraction; (2) Developing an ontology;
(3) Extracting threshold value; (4) Ontology based classification; and (5) Validation. Figure 2 outlines
the overall workflow for ontology-based image classification.
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Figure 2. Workflow diagram for ontology based image classification with 5 modules; Module (1):
Segmentation and Feature Extraction; Module (2): Developing an Ontology; Module (3): Extracting
Threshold Value; Module (4): Ontology based Classification; and Module (5): Validation.

3.1. Segmentation and Feature Extraction

In GEOBIA, segmentation is the first essential step where an image is partitioned into objects
that can be characterised and classified. Several image segmentation techniques exist and the
proposed framework permits the use of any segmentation techniques because of its modular design.
The segmentation process results in the creation of image objects featuring different characteristic
attributes such as spectral, geometrical, or contextual. Here, a significant improvement over a per-pixel
approach can be realised, where an image object can feature spectral information in terms of mean,
standard deviation, minimum and maximum values. The segmented object as a collection of pixels
can have geometric attributes such as shape and size. Additionally, partitioned objects are contextually
related by spatial relationships such as distanceTo, hasBorderWith, etc.

Feature extraction is the next step in which different feature values are calculated for each of the
image object segments. In our workflow, the calculated feature values are exported from the module 1
(See Figure 2) in CSV (Comma Separated Values) format. The output of this module is segmented
image objects with feature values.

In this case study, two different segmentation techniques were implemented using eCognition
Developer Version 9.0.2 (Arnulfstrasse, Munich, Germany), namely, multiresolution [6] and chessboard
segmentation [34]. Initially, a multiresolution segmentation was carried out based on multi-spectral
(green, red, near-infra-red) data to extract image objects. The segmentation was performed using
a scale parameter of 10 and with shape and compactness parameters of 0.1 (shape + colour = 1)
and 0.5 (compactness + smoothness = 1), respectively. Later, chessboard segmentation was used to
further split the classified landslides into square objects with the size parameter of 2 pixels to eliminate
small patches of vegetation or barren land from larger landslide objects. Finally, multiresolution
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segmentation based on terrain curvature data instead of spectral data with a scale parameter of 10,
shape parameter of 0.1 and compactness parameter of 0.5 was used on those image segments classified
as rock slides. This curvature based segmentation highlights variations in concavity and convexity
features, which is used to classify rotational and translational rock slides [28].

In general, there is a semantic connection between image objects, segmentation parameters and
data used. Thus, it is not just the classification that is driven by the ontology, it is the size and the
shape of the segments as well (e.g., when we imagine a landslide of a particular class, we define it
in terms of shape and size as well). The size and shape of the segments are outcomes of the chosen
segmentation parameters as described above. As this work is focussed on the classification problem,
the segmentation approach used in the previous work [28] is adopted and the segmentation parameters
are not triggered by any rules based on ontology.

3.2. Developing an Ontology

Ontology development is essentially a process of identifying concepts and the relationships
between concepts within a domain of knowledge. In module 2 (See Figure 2), we defined domain
concepts, taxonomical structure, and properties to formally represent domain knowledge from experts.
Protégé 5.2.0, an open source tool from Stanford University, was used to construct this ontology [35].

Studer [36] made a refinement to Gruber’s [12] definition describing ontology as a “formal,
explicit specification of a shared conceptualization”. In elaboration of this definition, conceptualisation
is an abstract model of world phenomenon identified by the concepts; shared means an ontology is
a consensual knowledge agreed by experts; explicit means the concept types and the constraints on
their use are explicitly defined; and formal means that the ontology should be machine-readable. In this
study, we have used OWL as a knowledge representation language for ontological formalism.

In our work, we followed the generalised steps proposed in [37]. The steps for ontology-development
method were developed for frame-based formalism, whereas we use description logic-based formalism
(e.g., OWL) in our work. Taking the differences between two formalisms into account [38], no facets and
slots are created in steps 5 and 6 described below.

The following seven steps were conceived in developing the landslide ontology:

Step 1 Determine the domain and scope of the ontology

The formal representation of a landslide was determined as a domain with scope limited to
slope movement and material type.

Step 2 Consider reusing existing ontologies

To reuse ontology, we searched for a relevant ontology with concepts that can define a
landslide domain. No formalised ontology existed but Varnes’ landslides classification [39]
shown in Table 3 does provide a taxonomy of landslides.

Step 3 Enumerate important terms in the ontology

Ontology uses terms to define the concepts and relationships that describes and represents
the domain area. In addition, an identification of key terminology used in our domain of
interest is a vital step. Table 1 defines different types of landslides. From these definitions,
firstly we identify different terms for landslide types. Furthermore, we can extract terms as
shallow depth, elongated shape, rocky land, soil, moderate slope, etc.
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Table 3. Types of landslides based on Varnes’ classification of slope movements [39].

Type of Movement

Type of Material

Bedrock
Engineering Soils

Predominantly Coarse Predominantly Fine

Falls Rock Fall Debris fall Earth fall

Topples Rock topple Debris topple Earth topple

Slides
Rotational

Rock slide Debris slide Earth slide
Translational

Lateral Spreads Rock spread Debris spread Earth spread

FLOWS
Rock flow Debris flow Earth flow

(deep creep) (soil creep)

Complex Combination of two or more principal types of movement

Step 4 Define the classes and the class hierarchy

The terms created in the last steps provide the basis for creating new classes that describes
domain concepts. A class hierarchy can be created using top-down, bottom-up or
a combination of both the approaches. The structure of the hierarchy depends on the usage
and scope of ontology. Varnes’ landslides classification [39] is followed when constructing
the class hierarchy.

Step 5 Define the properties of classes

Within the feature extraction process, different attributes based on spectral, spatial,
geometrical and morphological features characterising geographical objects in satellite images
are extracted. These attributes are represented as datatype properties in the ontology, and link
individuals (image segments) to their data values. In OWL, a datatype property is defined
as an instance of the built-in OWL class owl:topDataProperty [40]. The datatype properties
created are shown in Figure 3.

owl:topDataProperty

hasAsymmetry

hasGeom

hasLength

hasMeanCurvature

hasMeanProfCurvature

hasMeanSlope

hasRelBorderToNonRockyAgr

Figure 3. Datatype properties to represent extracted attributes.

Step 6 Define the restrictions associated with a class directly

In this step, we defined restrictions like domain and range of the concepts. For example,
the value of property hasMeanSlope is restricted to be of datatype double.

Step 7 Create instances

The instances are created from the output of the segmentation and feature extraction module.
The segmented image objects with all low level features were treated as instances to be
categorised into respective landslides classes.
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3.2.1. Modularisation of Ontology

In our work, the modularisation of ontology resulted in two modules, namely a domain and
a feature ontology. Modularisation enables ontology transferability and avoids the reuse of a whole
domain ontology when only a fragment of it is needed. With ontology modularisation, only relevant
concepts and relations are used in an ontology being modelled [41].

• Domain Ontology

Domain Ontology defines concepts that describe entities found in that particular domain.
Different types of landslide concepts represent a domain ontology. In a domain ontology,
each class and their sub-class relationship are represented with subset notation (Ď) as below.
For instance, the relationship (1) describes that engineering_soils and bedrock are the subsets
of material_type. Similarly, relationships (2)–(4) show the sub-classes of classes landslides,
rock_slide and translational_rock_slide, respectively. In Figure 4a, the hierarchical relationships
of domain ontology are presented in graphical form:

engineering_soils, bedrock Ď material_type, (1)

debris_ f low, debris_slide, rock_slide Ď landslides, (2)

rotational_rock_slide, translational_rock_slide Ď rock_slide, (3)

shallow_translational_rock_slide Ď translational_rock_slide. (4)

• Feature Ontology

Feature ontology defines concepts that describe the characteristics of different attributes identified
during the feature extraction process based on spectral, spatial, geometrical and morphological
features. Feature classes and their sub-class relationship are represented below. The subsets of
classes features, curvature, length, slope and shape is shown in relationships (5)–(9), respectively.
The feature ontology graph with hierarchical relations is presented in Figure 4b:

curvature, length, slope, shape Ď f eatures, (5)

concave_upward, planar Ď curvature, (6)

large_in_length, low_in_length Ď length, (7)

moderate_slope, steep_slope Ď slope, (8)

high_asymmetry, low_asymmetry Ď shape. (9)

Next, we developed rules using SWRL to determine which concept instances (in our case, image
segments) belong to which domain and feature classes. The rules for assigning domain classes depend
on the feature classes. This means that we need to assign feature classes prior to assigning domain
classes. For associating instances with feature classes, we used feature values extracted from the image
segments (e.g., the length feature can be determined by measuring the length of the image segment).
In this process, we have categorised ontological rules into generalised and localised rules.
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(a) (b)

Figure 4. Landslide ontology (a) domain ontology; (b) feature ontology.

3.2.2. Ontological Rules

Modularisation of ontological rules is performed to separate domain and feature classes
identification rules. The aim of this modularisation is to isolate generic rules from localised rules that
change with datasets provided.

• Generalised Rules

These rules involve the use of classes from the feature ontology to identify classes from the
domain ontology. We have coined this as generalised rules in the sense that these rules are
domain specific but are applicable to any datasets from that domain. To develop such rules,
expert domain knowledge must be extracted from domain experts or the literature. In our case,
we have extracted these rules from the definition of the landslide classes (Table 1). The definition
of a debris slide states that they are found in thickly covered soil of moderate slope and low
length. The rules extracted based on this definition are shown as SWRL rule (Rule (10)) below:

landslidesp?xq ˆ engineering_soilsp?xq ˆ moderate_slopep?xq ˆ low_in_lengthp?xq

Ñ debris_slidep?xq.
(10)

• Localised Rules

These are rules that define the threshold values for determining which instances belong to their
respective feature classes. The feature ontology shows that feature concept curvature is further sub
classified into concave_upward and planar. To identify these feature concepts, we have developed
rules based on the different variables available with the datasets. For instance, we can identify
whether an image segment instance is engineering soils or bedrock using (Rules (11) and (12)):

hasRelBorderToNonRockyAgrp?x, ?yq ˆ swrlb : greaterThanOrEqualp?y, ”0.5”ˆ ˆxsd : doubleq

Ñ engineering_soilsp?xq,
(11)

hasRelBorderToNonRockyAgrp?x, ?yq ˆ swrlb : lessThanp?y, ”0.5”ˆ ˆxsd : doubleq

Ñ bedrockp?xq.
(12)

The instances with the value of hasRelBorderToNonRockyAgr greater than or equal to 0.5 will
determine it as engineering soils or as bedrock. Such rules are termed as localised rules because
their attribute threshold value changes with the change in datasets. This modularisation of
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generalised and localised rules benefits the transferability of the rules. The generalised rules
are completely transferable while localised rules are transferable but may require an adaptation
to new threshold values. This is the challenging task for rules based image classification in
identifying threshold values of the attributes used to identify feature concepts. To deal with this
issue, we employed machine learning (ML) techniques.

3.3. Extracting Threshold Value

The rules that can classify instances of segmented image objects into respective landslide classes
on the basis of their parameter values are extracted in this module. For each parameter, a threshold
corresponding to each feature class (e.g., high_in_length, high_asymmetry) is determined.

For this task, an ML technique is used, as it is difficult for operators to extract rules from data.
Moreover, ML techniques are routined and structured than human-crafted rules. This also reduces
human involvement in the whole classification. The overall process of rules extraction is depicted
in Figure 5.

Random
Forest

Threshold 
Values

Range Value 
Extraction

Segmented 
Image Objects

.CSV

inTrees Rulesets

Figure 5. Workflow process for rules threshold extraction.

3.3.1. Implementation of Random Forest Method

With this aim, we employed Random Forest (RF) as a ML method for extracting rule based
knowledge. Random forest (RF) [42] is an ensemble learning method that constructs multiple decision
trees using bootstrapping for classification. The outputs of all trees are aggregated via plurality voting
in order to classify a new input.

In this work, we used the R package ‘randomForest’ that implements Breiman’s random forest
algorithm. The necessary training data were created using the classification rulesets from [28] in
eCognition. The predictor variables used in the RF model are asymmetry, length, curvature, profile
curvature, slope, and relBorderToNonRockyAgr.

The issue in using RF is that the ease of interpretation is lost as compared to a single decision tree
model. The rules extracted from RF tree ensembles are high in number. Hence, RF cannot be used for
threshold value extraction of attributes. To resolve this issue, we used the inTrees (interpretable trees)
framework [43] that can extract reduced sets of rules.

3.3.2. Rules Simplification Using inTrees Framework

Random forest is a good predictive model, but it does behave as a black box. The capacity to
interpret a single tree is lost with such an ensemble algorithm where hundreds of decision trees are
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created. The inTrees framework assists in model interpretation and gives reduced rulesets for model
prediction that matches with RF.

The inTrees framework is used to extract an interpretable and reduced set of rules from the RF
model. This framework takes a tree ensemble as an input. The rules governing the splits in each of the
ensembles are extracted. The extracted rules are measured and ranked based on their length, frequency,
and error metrics. Next, the irrelevant and redundant rules are pruned. Finally, the pruned rules are
simplified into a set of if/then rules [43]. The R implementation of this framework ‘inTrees’ package is
used in this work.

3.3.3. Feature Attribute Threshold Value Extraction from Rules

The threshold value for each attribute were extracted from the simplified rules pruned from
RF results. Such rules extracted from classification trees are used to identify concepts for automatic
ontology building [44]. In our work, we have developed an algorithm using a similar approach to
determine the threshold values for pre-defined feature concepts. The algorithm used for threshold
value extraction is shown in Algorithm 1.

Algorithm 1 : Threshold value extraction algorithm

Input: Pruned rules from inTrees
Output: Threshold values for each attributes

1: Identify attributes used in the rules
2: Identify all the span values (SV1,SV2, SV3, ... SVn) for each attributes
3: for i “ 1 to n do
4: for j “ 1 to n do
5: if SVi ‰ SVj and SVi Ď SVj then
6: SVi is a subspan of SVj
7: end if
8: end for
9: end for

10: Select span hierarchy level based on feature attribute level
11: Map threshold value with feature sub classes
12: return thresholdvalues

At first, the values of the attributes (Ex. length, shape, curvature) used in the rules were identified.
For each attribute, their span values were determined as shown in Table 4.

Table 4. Determining span values of attributes used in rules.

Attribute from Rules Span Values
curvature ď ´0.99 SV1: r´8,´0.99s
curvature > ´0.99 SV2: p´0.99,8s
curvature > ´0.91 SV3: p´0.91,8s

Next, each span was checked to determine if it was contained by other spans, in order to determine
the span hierarchy as shown in Table 5.

Table 5. Span hierarchy for curvature attribute.

Span hierarchy
r´8,´0.99s p´0.99,8s
r´8,´0.99s p´0.99,´0.91q p´0.91,8s
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From the ontological knowledge, we know that feature class curvature has two subclasses
(concave_upward and planar), so we will now select two spans from the hierarchy.

r´8,´0.99s p´0.99,8s

Finally, we identify the threshold values for two curvature subclasses, as illustrated in Table 6.

Table 6. Identification of threshold values.

Attributes with Threshold values Feature Classes
curvature > ´0.99 planar
curvature ď ´0.99 concave_upward

3.4. Ontology Based Classification

This module is the ontology-driven rule-based image classifier. The ontological rules were written
using SWRL. In SWRL, a rule consists of an antecedent and a consequent, each of which is composed of
a set of atoms. Atoms can be of the form C(x), P(x,y), sameAs(x,y) differentFrom(x,y), or builtIn(r,x,...),
where C is an OWL description or data range, P is an OWL property, r is a built-in relation, and x and
y are either variables, OWL individuals or OWL data values, as appropriate [18]. Both antecedent and
consequent are conjunctions of atoms written as a1 ˆ a2 ... ˆ an. The variables are indicated using the
standard convention of prefixing them with a question mark (e.g., ?x). SWRL allows the use of the
built-ins greaterThanOrEqual and lessThan whose role is to restrict the numeric value of the variables
accordingly. For instance, we have rule to identify ’debris_slide’ as:

landslidesp?xq ˆ engineering_soilsp?xq ˆ moderate_slopep?xq ˆ low_in_lengthp?xq

Ñ debris_slidep?xq.
(13)

In the above Syntax (13), a rule asserts that the composition of ‘landslides’ individuals that are
instances of ‘engineering_soils’, ‘moderate_slope’ and ‘low_in_length’ are the ‘debris_slide’ individuals.
The rule set for rest of the landslides classes namely ‘debris_flow’ (Syntax (14)), ‘rotational_rock_slide’
(Syntax (16)), ‘translational_rock_slide’ (Syntax (17)), and ‘shallow_translational_rock_slide’
(Syntax (18)) are shown below:

landslidesp?xq ˆ engineering_soilsp?xq ˆ moderate_slopep?xq ˆ large_in_lengthp?xq

Ñ debris_ f lowp?xq,
(14)

landslidesp?xq ˆ bedrockp?xq Ñ rock_slidep?xq, (15)

rock_slidep?xq ˆ concave_upwardp?xq Ñ rotational_rock_slidep?xq, (16)

rock_slidep?xq ˆ moderate_slopep?xq ˆ planarp?xq Ñ translational_rock_slidep?xq, (17)

translational_rock_slidep?xq ˆ high_asymmetryp?xq Ñ shallow_translational_rock_slidep?xq. (18)

These SWRL based rules were executed using a Pellet reasoner [15] to classify the landslides
instead of eCognition. In [21], eCognition was a classification platform and hence a simple XSLT
(Extensible Stylesheet Language Transformations) was used to translate from OWL into eCognition
class descriptions. However, in this study, a Pellet reasoner was used for classification platform
independent from eCognition. Pellet is an OWL-DL (Web Ontology Language-Description Logic)
reasoner that supports reasoning with individuals. This feature was required to associate every
image segment instance to different domain classes. This way, we classified every image segment to
respective landslide classes. The classification results were exported into CSV (Comma Separated
Values) and Shapefile format. The classification result also serves as high-level input for segmentation
and this process is termed classification-based segmentation in GEOBIA [7]. For classification-based
segmentation, the classified shapefile was used as input for re-segmentation.
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3.5. Validation

Validation is performed by comparing the classification result with ground truth data.
The accuracy of classification results is assessed using a standard error matrix (confusion matrix)
to calculate Total Accuracy (Equation (19)), Random Accuracy (Equation (20)) and Kappa Statistic
(Equation (21)) [45]. User and producer accuracy are calculated to evaluate omission and commission
errors for each class. To evaluate these metrics, True Positives (TP), True Negatives (TN),
False Positives (FP) and False Negatives (FN) are calculated by validating the classification results
against the ground truth data. In our study, we used the kappa statistic because it is widely employed
by the remote sensing community as a standard measure for accuracy assessment, although we
acknowledge criticisms of this technique [46,47]. The validation process was carried out using ENVI
image analysis software Version 5.2 (Boulder, Colorado, USA) [48].

TotalAccuracy “
TP` TN

TP` TN ` FP` FN
, (19)

RandomAccuracy “
pTN ` FPq ˚ pTN ` FNq ` pFN ` TPq ˚ pFP` TPq

TotalAccuracy ˚ TotalAccuracy
, (20)

Kappa “
pTotalAccuracy´ RandomAccuracyq

p1´ RandomAccuracyq
. (21)

4. Results

4.1. Knowledge Extraction Results

The Random Forest analysis resulted in a number of rules that were pruned and reduced using
inTrees Framework. The reduced set of rules is shown in Table 7.

Table 7. Pruned rules from random forest using framework.

Pruned Rules Class
length > 1053.04 debris flow

length ď 1053.04 & relBorderToNonRockyAgr > 0.48 debris_slide
relBorderToNonRockyAgr > 0.46 debris_slide
length ď 1053.04 & slope ď 30.71 debris_slide
relBorderToNonRockyAgr > 0.51 debris_slide

slope ď 23.25 & relBorderToNonRockyAgr > 0.36 debris_slide
curvature ď ´0.99 & relBorderToNonRockyAgr ď 0.45 rotational_rock_slide

asymmetry > 0.93 & slope > 31.25 shallow_translational_rock_slide
asymmetry ď 0.88 & curvature > ´0.99 &

relBorderToNonRockyAgr ď 0.55
translational_rock_slide

curvature > ´0.91 & relBorderToNonRockyAgr ď 0.51 translational_rock_slide
curvature > ´0.99 & relBorderToNonRockyAgr ď 0.36 translational_rock_slide

The rules from Table 7 are used as an input to Algorithm 1 to extract the threshold values
of the feature variables. As explained in Section 3.3.3, for each feature variable, the span values
are determined and threshold values are calculated. For instance, length has a two value range
(length ď 1053.04 and length > 1053.04). These serve as the threshold values for the feature classes
‘low_in_length’ and ‘large_in_length’, respectively. We apply Algorithm 1 to extract threshold values
of other variables as shown in Table 8.
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Table 8. Extracted threshold values from rules.

Feature Class Subclass Original Extracted
curvature concave_upward ď´1 ď´0.99

planar >´1 >´0.99
materials engineering_soils ě0.5 >0.46

bedrocks <0.5 ď0.55
length large_in_length >500 >1053.04

low_in_length <500 ď1053.04
shape high_asymmetry ě0.95 >0.93

low_asymmetry <0.95 <0.93

The original values derived from [28] and the extracted values from the ML rules were very
similar. Their close correspondence demonstrates how we can automate the extraction of threshold
values from data sets using ML techniques. After determining the threshold values, the classification
rules are written in SWRL, as shown in Rules 22 and 23 for feature class ‘length’. Similarly, using these
newly extracted values, the localised rules for all the feature classes were created to perform the
ontology-based classification:

hasLengthp?x, ?yq ˆ swrlb : lessThanOrEqualp?y, ”1053.04”ˆ ˆxsd : doubleq

Ñ low_in_lengthp?xq,
(22)

hasLengthp?x, ?yq ˆ swrlb : greaterThanp?y, ”1053.04”ˆ ˆxsd : doubleq

Ñ large_in_lengthp?xq.
(23)

4.2. Classification Results

Figure 6 shows ground truth polygons and classification results from both the non-ontological
and the ontological methods. Figure 6a is the result from the non-ontological method and refers
to the output of a rule-based classification using eCognition software. In the ontological method,
an assignment of image segment instance to their respective classes is performed by reasoning over
the SWRL rules as depicted in Figure 6b. Figure 6c is the reference landslide inventory prepared
by [28] using landslide inventory data from [33,49]. The landslide polygons are drawn manually with
a stereoscopic analysis of satellite data verified with detailed field investigation.

Table 9 shows the number of occurrences of landslide classes and area covered by each classified
landslide under the ontological and non-ontological methods. The results show that the classification
methods have the same number of classified landslides and area coverage. The number of different
landslides and area coverage is compared with the ground truth based inventory (Figure 7). This graph
shows no match between the ontological method and the landslide inventory ground truth data. Thus,
to further assess the accuracy and validate the classification result, a confusion matrix is generated.

Table 9. Number and area coverage of classified landslides classes.

Class Name Ontological Method Non-Ontological Method
Count Area Count Area

Shallow translational rock slide 1 1345.6 1 1345.6
Debris slide 12 51,872.88 12 51,872.88
Debris flow 1 291,591.52 1 291,591.52

Rotational rock slide 18 120,666.68 18 120,666.68
Translational rock slide 27 271,609.36 27 271,609.36
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(a) (b) (c)

Shallow	translational	rock	slide
Debris	slide
Debris	flow
Rotational	rock	slide
Translational	rock	slide

Figure 6. Landslide classification (a) results from the non-ontological method; (b) results from the
ontological method; (c) ground truth.

Figure 7. Comparison between ground truth inventory and classification results from the ontological method.

4.3. Accuracy Assessment Results

The performance of the ontology-based classification results is measured with a confusion matrix
in Table 10. The overall accuracy of 86.3% and kappa statistic value of 0.79 is achieved with both the
ontological and non-ontological method.

To visualise the inter-relationships between different landslide classes, a chord diagram is
developed (Figure 8). In this diagram, each landslide class segment is represented by a different
colour (e.g., ‘Translational rock slide’ with yellow colour). The size of the colour band represents
the proportion of classified pixels. ‘Debris flow’ has the highest value with 8793 pixels, and ‘shallow
translational rock slide’ has the least value with 363 pixels. The length of the arc of each class represents
the total number of classified pixels for that landslide class. The total number of classified pixels are
placed outside of the circle (e.g., 5979 for ‘translational rock slide’).
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Table 10. Confusion matrix.

aaaaaaaaaaaaaaa
Reference Ó

ClassifiedÑ

Shallow translational
rock slide

Debris
slide

Debris
flow

Rotational
rock slide

Translational
rock slide

Classification
overall

Producer accuracy
(Precision)

Shallow translational rock slide 0 0 113 21 229 363 0%
Debris slide 0 666 0 0 0 666 100%
Debris flow 0 197 8596 0 0 8793 97.8%

Rotational rock slide 0 0 0 2480 1699 4179 59.4%
Translational rock slide 0 0 0 477 5502 5979 92.0%

Truth overall 0 863 8709 2978 7430 19980
User accuracy (Recall) 0% 77.2% 98.7% 83.3% 74.1%

Overall accuracy 86.3%
Kappa 0.79
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The strip that remains within its own segment represents true positives, whose value is shown
inside the circle (e.g., 5502 for ‘Translational rock slide’). Strips going to different classes represent the
number of pixels of the objects that are false positives. The strip going from ‘Translational rock slide’
to ‘Rotational rock slide’ is 477 pixels and vice versa is 1699 pixels. This explains what portion of each
landslide is misclassified as another class.
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Figure 8. Confusion matrix result represented in chord diagram to display the inter-relationships
between different landslide classes.

None of the pixels were classified as ‘shallow translational rock slide’ giving 0% producer accuracy.
The 0% producer accuracy of ‘shallow translation rock slide’ arises from the failure of the segmentation
algorithm to delineate the linear features. The ‘shallow translational rock slide’ class features are linear
and the generated segments were not linear. All 666 pixels classified as ‘debris slide’ are correctly
classified resulting 100% producer accuracy. In the case of ‘debris flow’, 8596 out of 8793 were classified
as ‘debris flow’ and rest 197 were misclassified as ‘debris slide’. Similarly, in the ‘rotational rock slide’,
out of 4179 pixels, only 2480 pixels were classified correctly and 1699 were classified as ‘translational
rock slide’. Chord diagram shows that 5502 pixels were classified as ‘translational rock slide’ and
remaining 477 out of 5979 pixels are classified as ‘rotational rock slide’.

5. Discussion

5.1. Ontological Approach

The adoption of an ontological approach in image classification considers construction of
the knowledge base using ontology and defining rules as its basis for image object identification.
These rules are developed using high-level information derived from domain experts and low-level
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feature value extracted from remote sensing data. The ontology-based methodology has both strengths
and limitations, which are discussed below.

The use of a knowledge representation language such as OWL for constructing formalised domain
knowledge makes it more shareable and extensible [21]. The modular approach treats the knowledge
building process as a separate module from the image analysis process. This benefits domain experts,
who are able to augment new knowledge at any moment without interrupting the classification
process. Furthermore, a bias-free knowledge developed through a consensus of domain experts
will be used in image interpretation. Incorporating human expert knowledge as ontology decreases
human intervention at the time of image classification process. This helps GEOBIA to evolve towards
becoming a more automated process.

The ontology-based framework supports and improves spatial data interoperability. The use
of open standard formats, such as OWL and SWRL, in this framework bring both syntactic and
semantic interoperability. Hence, interoperability assists in transferability of knowledge, rules or
results. In GEOBIA, the use of ontology also assists in data analysis, in addition to data discovery,
data integration, and data publication [9]. The knowledge base created in landslides can be shared
across different disciplines. In this case study, the rule sets developed to identify landslides for the
Okhimath area can be transferred and reused for different region datasets with slight modifications.

The reuse of only a certain part of an existing ontology is possible with modularisation,
which reduces the overhead of loading the whole of an ontology when only a part of it is needed.
Ontology modularisation also assists with tackling the limitation of degrading performance of
reasoners with an increase in the size of an ontology. The inferencing capability performed automatic
classification of image segments by providing the SWRL rules to the reasoner. One of the issue to
be considered when using inference based classification is that it may take a significant time when
complex SWRL rules are used.

The lack of spatial analysis capability in the ontology based classification module leads to
a requirement for more interaction with image analysis tools. This can bring complexity to the
overall process of classification. In the case study presented, we had to use eCognition software to
calculate area and distance to class for newly classified image objects that are used for classifying other
classes. The use of custom spatial built-in in SWRL rules can reduce such complexity. Remote sensing
or domain experts involved in the image analysis process might have far less or no knowledge of
ontology engineering. This methodology requires the users to possess an understanding of ontology
and knowledge engineering.

5.2. Modularity

The concept of modularity has been introduced in technological and organisation design for
tackling complexity [50]. Modularity refers to the subdivision of a system into smaller parts called
modules. The key aspect of modular programming is that we can reuse the modules at different
stages. In this work, modularisation can be seen at two stages—firstly, the modularity in framework
allowing division of steps into independent modules; secondly, the modularisation of developed
ontology and rules.

A modular approach has been adopted in GEOBIA frameworks [51–53]. Modularity ensures
a framework to become more customisable and expandable. For instance, with modularisation of
segmentation and classification as independent modules, we have an ability to use two different tools
for each module. This demonstrates the flexibility and extensibility of the proposed framework over
proprietary software with functionalities limited within their software. Using a modular approach,
Ref. [51] introduced system extension capabilities in their framework to incorporate third party
functionalities. This opens the possibility for researchers to integrate different tools or build new
algorithms on top of the existing framework.

In GEOBIA, complexity increases with the iterative process and composite workflow [54].
The modular approach follows the rule of divide and conquer to break down a complex task into
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a number of simpler tasks. This allows error assessment of output results at the end of each module,
which becomes input to the next module in a work chain.

With modularity, the ontology construction process is isolated from image analysis tasks, allowing
domain experts to create the knowledge base independently. A group of domain experts can work
together collaboratively in the knowledge construction process. Thus, knowledge-based image analysis
in GEOBIA becomes less subject to the expertise of a particular analyst. Ontology modularisation
further assists in tackling transferability issues. The transferable domain ontology is developed
separately from data dependent feature ontology. The data dependent ontology or rules needs
adaptation to make them transferable.

5.3. Classification Results

We performed two rule-based classifications using the same set of rules: firstly, the ontological
method proposed in this paper and later the non-ontological method from the published literature [28].
In the experiment, the same segmentation technique was used for both cases resulting in the same
number and shapes of segmented images. The classification result of the ontological method was found
to be consistent with a non-ontological method in terms of classified object counts, thus benchmarking
the performance of the proposed method.

This shows that an ontological approach contributes a complementary classification method
in GEOBIA but with added benefits provided by knowledge formalisation. The advantages of the
ontological method over non-ontological methods are data interoperability, knowledge transferability,
semantic inferencing and more automation with less human intervention.

The numbers of classified objects and shapes did not match when compared with the reference
landslide inventory based on ground truth. Thus, a confusion matrix was calculated to assess the
accuracy of the image classification by comparing classified image segments with reference landslide
inventory. An overall accuracy of 86.3% was achieved. The discrepancy between the classification
result and reference data is dependent on the segmentation result and the threshold values for different
features defined in the rules. This demands further study in improving image segmentation, which was
not considered in this study as our work is primarily focussed on finding applicability of ontological
methodology in GEOBIA.

5.4. Limitations

The proposed ontological framework may suffer from computational inefficiency due to its
dependency on the capabilities of the reasoner. With an increase in the number of instances,
classes, relations and axiom, the reasoning time may significantly increase. To tackle this issue
in future work, we will further explore the use of OWL 2 profiles that trade expressive power for the
efficiency of reasoning.

The accuracy of the rule-based classification is influenced by the scale-level of image segmentation.
Different objects are identified at different scale levels depending on their spatial and thematic
characteristics. This means that, if the classification is carried out with the segmented image objects
at an inappropriate scale-level, there will be inaccuracy in the classification result. However, this is
an open issue in GEOBIA, which warrants further explorations and studies [55].

With machine learning, there is a need for good training data to achieve better prediction. In the
absence of adequate training data, the threshold value extracted might depart from the actual value.

6. Conclusions

This study proposes a framework for object-based image analysis using ontology and applies
the framework to landslide detection. The framework requires construction of an ontology for
a domain of interest. In the case study reported here, the ontology is based on knowledge provided
in previously published work that used GEOBIA. The use of ontology allows inference on domain
knowledge to bring semantic image analysis into GEOBIA. GEOBIA requires human intervention in
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the form of expert knowledge, for defining classification rules and the threshold values for attributes
used in those rules. To tackle this intervention, we combined machine learning into an ontological
framework for automatic extraction of threshold values used in the rule-based classification of
GEOBIA. Modularisation of ontology is introduced to separate transferable domain ontology and
non-transferable feature ontology. This study captures high level domain knowledge from experts
and low-level knowledge from data using machine learning techniques. We formalised domain
expert knowledge in the specific field of landslides and benchmarked by comparing with published
work. The scope of this study is landslide detection, which has not previously been studied using
an ontological framework.

This study helps to progress the application of ontological methods within GEOBIA.
It demonstrates a novel approach to automatically extracting threshold values for feature attributes
used in ontological classification rules. The developed approach distinguishes between transferable
and non-transferable ontologies. In addition, it demonstrates the application of these methods to a new
domain landslide detection.

An avenue for further research is incorporation of spatial rules and exploration of optimal
combinations of segmentation, classification-based-segmentation, and, in turn, the final classification
in an ontology driven GEOBIA framework.
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The following abbreviations are used in this manuscript:

ALS Airborne Laser Scanning
CSV Comma Separated Values
DEM Digital Elevation Model
DTM Digital Terrain Model
FN False Negatives
FP False Positives
GEOBIA Geographic Object-Based Image Analysis
inTrees interpretable Trees
IRS Indian Remote-Sensing Satellite
ISRO Indian Space Research Organisation
LiDAR Light Detection And Ranging
ML Machine Learning
NDVI Normalized Difference Vegetation Index
OWL Web Ontology Language
OWL-DL Web Ontology Language-Description Logic
RF Random Forest
SWRL Semantic Web Rule Language
TN True Negatives
TP True Positives
W3C World Wide Web Consortium
XSLT Extensible Stylesheet Language Transformations
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