Next Issue
Previous Issue

Table of Contents

ISPRS Int. J. Geo-Inf., Volume 6, Issue 11 (November 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) We apply rapid landscape line detection to extract historic vegetable garden walls based on [...] Read more.
View options order results:
result details:
Displaying articles 1-59
Export citation of selected articles as:
Open AccessArticle Geo-Environmental Estimation of Land Use Changes and Its Effects on Egyptian Temples at Luxor City
ISPRS Int. J. Geo-Inf. 2017, 6(11), 378; https://doi.org/10.3390/ijgi6110378
Received: 31 August 2017 / Revised: 28 October 2017 / Accepted: 14 November 2017 / Published: 22 November 2017
PDF Full-text (23990 KB) | HTML Full-text | XML Full-text
Abstract
Over the years, the Egyptian temples at Luxor city have been intensely investigated, but most of these studies just focused on the classical sides of the archaeological and historical descriptions. Many of the environmental problems are the inevitable results of the unplanned urban
[...] Read more.
Over the years, the Egyptian temples at Luxor city have been intensely investigated, but most of these studies just focused on the classical sides of the archaeological and historical descriptions. Many of the environmental problems are the inevitable results of the unplanned urban crawling around the monuments temples. This paper aims at assessing the environmental changes around some temples of Luxor City using remote sensing and GIS techniques. In particular, a historical database made up of Corona and Landsat TM data have been investigated along with the new acquisitions of Quickbird 2 and Sentinel 2. Results from our investigation highlighted rapid changes in urban and agricultural areas, which adversely affected the Egyptian monumental temples causing serious degradation phenomena. Using the information obtained from our RS&GIS based analysis, mitigation strategies have been also identified for supporting the preservation of the archaeological area. Full article
Figures

Figure 1

Open AccessArticle A Virtual Geographic Environment for Debris Flow Risk Analysis in Residential Areas
ISPRS Int. J. Geo-Inf. 2017, 6(11), 377; https://doi.org/10.3390/ijgi6110377
Received: 9 October 2017 / Revised: 15 November 2017 / Accepted: 20 November 2017 / Published: 22 November 2017
Cited by 1 | PDF Full-text (4763 KB) | HTML Full-text | XML Full-text
Abstract
Emergency risk assessment of debris flows in residential areas is of great significance for disaster prevention and reduction, but the assessment has disadvantages, such as a low numerical simulation efficiency and poor capabilities of risk assessment and geographic knowledge sharing. Thus, this paper
[...] Read more.
Emergency risk assessment of debris flows in residential areas is of great significance for disaster prevention and reduction, but the assessment has disadvantages, such as a low numerical simulation efficiency and poor capabilities of risk assessment and geographic knowledge sharing. Thus, this paper focuses on the construction of a VGE (virtual geographic environment) system that provides an efficient tool to support the rapid risk analysis of debris flow disasters. The numerical simulation, risk analysis, and 3D (three-dimensional) dynamic visualization of debris flow disasters were tightly integrated into the VGE system. Key technologies, including quantitative risk assessment, multiscale parallel optimization, and visual representation of disaster information, were discussed in detail. The Qipan gully in Wenchuan County, Sichuan Province, China, was selected as the case area, and a prototype system was developed. According to the multiscale parallel optimization experiments, a suitable scale was chosen for the numerical simulation of debris flow disasters. The computational efficiency of one simulation step was 5 ms (milliseconds), and the rendering efficiency was approximately 40 fps (frames per second). Information about the risk area, risk population, and risk roads under different conditions can be quickly obtained. The experimental results show that our approach can support real-time interactive analyses and can be used to share and publish geographic knowledge. Full article
Figures

Figure 1

Open AccessArticle An Automated Processing Algorithm for Flat Areas Resulting from DEM Filling and Interpolation
ISPRS Int. J. Geo-Inf. 2017, 6(11), 376; https://doi.org/10.3390/ijgi6110376
Received: 13 September 2017 / Revised: 19 November 2017 / Accepted: 20 November 2017 / Published: 21 November 2017
PDF Full-text (6232 KB) | HTML Full-text | XML Full-text
Abstract
Correction of digital elevation models (DEMs) for flat areas is a critical process for hydrological analyses and modeling, such as the determination of flow directions and accumulations, and the delineation of drainage networks and sub-basins. In this study, a new algorithm is proposed
[...] Read more.
Correction of digital elevation models (DEMs) for flat areas is a critical process for hydrological analyses and modeling, such as the determination of flow directions and accumulations, and the delineation of drainage networks and sub-basins. In this study, a new algorithm is proposed for flat correction/removal. It uses the puddle delineation (PD) program to identify depressions (including their centers and overflow/spilling thresholds), compute topographic characteristics, and further fill the depressions. Three different levels of elevation increments are used for flat correction. The first and second level of increments create flows toward the thresholds and centers of the filled depressions or flats, while the third level of small random increments is introduced to cope with multiple threshold conditions. A set of artificial surfaces and two real-world landscapes were selected to test the new algorithm. The results showed that the proposed method was not limited by the shapes, the number of thresholds, and the surrounding topographic conditions of flat areas. Compared with the traditional methods, the new algorithm simplified the flat correction procedure and reduced the final elevation increments by 5.71–33.33%. This can be used to effectively remove/correct topographic flats and create flat-free DEMs. Full article
(This article belongs to the Special Issue Leading Progress in Digital Terrain Analysis and Modeling)
Figures

Figure 1

Open AccessArticle A 3D Digital Cadastre for New Zealand and the International Opportunity
ISPRS Int. J. Geo-Inf. 2017, 6(11), 375; https://doi.org/10.3390/ijgi6110375
Received: 31 August 2017 / Revised: 9 November 2017 / Accepted: 15 November 2017 / Published: 21 November 2017
PDF Full-text (4284 KB) | HTML Full-text | XML Full-text
Abstract
New Zealand has a legal 3D cadastre, and has done since the inception of its cadastral survey and tenure systems around 150 years ago. However, the digital representation of the cadastre is 2D with 3D situations handled via static plan, section and elevation
[...] Read more.
New Zealand has a legal 3D cadastre, and has done since the inception of its cadastral survey and tenure systems around 150 years ago. However, the digital representation of the cadastre is 2D with 3D situations handled via static plan, section and elevation images and supporting textual information. Work is currently underway to develop a 3D digital cadastre that will enable the 3D spatial extents of property rights, restrictions and responsibilities to be captured, validated, lodged, integrated with existing data, visualised, and made available for use in other systems. This article presents the approach that is being promoted by regulators of New Zealand’s cadastral survey system in discussions with suppliers of land administration systems. Previous research concluded that the most appropriate way for New Zealand to develop a 3D digital cadastre is to build upon its existing system. The 2D digital cadastre would continue to be the default layer with 3D situations incorporated as and where necessary. To enable this requires a new approach to handling parcels defined in 3D. The representation of a 3D parcel as a spatial object is being proposed to allow parcels limited in height to be integrated into the digital cadastre and subsequently maintained. While the authors discuss how New Zealand’s digital cadastre may be transitioned to 3D, it is suggested that the generic nature of spatial objects could be applied to other jurisdictions. For this reason, the international appeal of the approach is considered as other jurisdictions and providers of software applications may benefit from New Zealand’s efforts. Full article
(This article belongs to the Special Issue Research and Development Progress in 3D Cadastral Systems)
Figures

Figure 1

Open AccessArticle Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion
ISPRS Int. J. Geo-Inf. 2017, 6(11), 374; https://doi.org/10.3390/ijgi6110374
Received: 13 October 2017 / Revised: 8 November 2017 / Accepted: 15 November 2017 / Published: 21 November 2017
PDF Full-text (23175 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet
[...] Read more.
Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM) has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes. Full article
Figures

Figure 1

Open AccessArticle Optimizing Cruising Routes for Taxi Drivers Using a Spatio-Temporal Trajectory Model
ISPRS Int. J. Geo-Inf. 2017, 6(11), 373; https://doi.org/10.3390/ijgi6110373
Received: 26 September 2017 / Revised: 2 November 2017 / Accepted: 13 November 2017 / Published: 19 November 2017
Cited by 2 | PDF Full-text (7864 KB) | HTML Full-text | XML Full-text
Abstract
Much of the taxi route-planning literature has focused on driver strategies for finding passengers and determining the hot spot pick-up locations using historical global positioning system (GPS) trajectories of taxis based on driver experience, distance from the passenger drop-off location to the next
[...] Read more.
Much of the taxi route-planning literature has focused on driver strategies for finding passengers and determining the hot spot pick-up locations using historical global positioning system (GPS) trajectories of taxis based on driver experience, distance from the passenger drop-off location to the next passenger pick-up location and the waiting times at recommended locations for the next passenger. The present work, however, considers the average taxi travel speed mined from historical taxi GPS trajectory data and the allocation of cruising routes to more than one taxi driver in a small-scale region to neighboring pick-up locations. A spatio-temporal trajectory model with load balancing allocations is presented to not only explore pick-up/drop-off information but also provide taxi drivers with cruising routes to the recommended pick-up locations. In simulation experiments, our study shows that taxi drivers using cruising routes recommended by our spatio-temporal trajectory model can significantly reduce the average waiting time and travel less distance to quickly find their next passengers, and the load balancing strategy significantly alleviates road loads. These objective measures can help us better understand spatio-temporal traffic patterns and guide taxi navigation. Full article
(This article belongs to the Special Issue Geospatial Big Data and Urban Studies)
Figures

Figure 1

Open AccessArticle A Representation Method for Complex Road Networks in Virtual Geographic Environments
ISPRS Int. J. Geo-Inf. 2017, 6(11), 372; https://doi.org/10.3390/ijgi6110372
Received: 29 August 2017 / Revised: 14 November 2017 / Accepted: 15 November 2017 / Published: 18 November 2017
PDF Full-text (14366 KB) | HTML Full-text | XML Full-text
Abstract
Road networks are important for modelling the urban geographic environment. It is necessary to determine the spatial relationships of road intersections when using maps to help researchers conduct virtual urban geographic experiments (because a road intersection might occur as a connected cross or
[...] Read more.
Road networks are important for modelling the urban geographic environment. It is necessary to determine the spatial relationships of road intersections when using maps to help researchers conduct virtual urban geographic experiments (because a road intersection might occur as a connected cross or as an unconnected bridge overpass). Based on the concept of using different map layers to organize the render order of each road segment, three methods (manual, semi-automatic and mask-based automatic) are available to help map designers arrange the rendering order. However, significant efforts are still needed, and rendering efficiency remains problematic with these methods. This paper considers the Discrete, Crossing, Overpass, Underpass, Conjunction, Up-overlap and Down-overlap spatial relationships of road intersections. An automatic method is proposed to represent these spatial relationships when drawing road networks on a map. The data-layer organization method (reflecting road grade and elevation-level information) and the symbol-layer decomposition method (reflecting road covering order in the vertical direction) are designed to determine the rendering order of each road element when rendering a map. In addition, an “auxiliary-drawing-action” (for drawing road segments belonging to different grades and elevations) is proposed to adjust the rendering sequences automatically. Two experiments are conducted to demonstrate the feasibility and efficiency of the method, and the results demonstrate that it can effectively handle spatial relationships of road networks in map representations. Using the proposed method, the difficulty of rendering complex road networks can be reduced. Full article
Figures

Figure 1

Open AccessArticle Deriving Ephemeral Gullies from VHR Image in Loess Hilly Areas through Directional Edge Detection
ISPRS Int. J. Geo-Inf. 2017, 6(11), 371; https://doi.org/10.3390/ijgi6110371
Received: 6 September 2017 / Revised: 13 November 2017 / Accepted: 15 November 2017 / Published: 18 November 2017
PDF Full-text (5659 KB) | HTML Full-text | XML Full-text
Abstract
Monitoring ephemeral gullies facilitates water planning and soil conservation. Artificial interpretation based on high spatial resolution images is the main method for monitoring ephemeral gullies in large areas; however, this method is time consuming. In this study, a semiautomatic method for extracting ephemeral
[...] Read more.
Monitoring ephemeral gullies facilitates water planning and soil conservation. Artificial interpretation based on high spatial resolution images is the main method for monitoring ephemeral gullies in large areas; however, this method is time consuming. In this study, a semiautomatic method for extracting ephemeral gullies in loess hilly areas based on directional edge detection is proposed. First, the area where ephemeral gullies developed was extracted because the weak trace of ephemeral gullies in images can hardly be detected by most image detectors, which avoided the noise from other large gullies. Second, a Canny edge detector was employed to extract all edges in the image. Then, those edges along the direction where ephemeral gullies developed were searched and coded as candidate ephemeral gullies. Finally, the ephemeral gullies were identified through filtering of pseudo-gullies by setting the appropriate length threshold. Experiments in three loess hilly areas showed that accuracy ranged from 38.18% to 85.05%, completeness ranged from 82.35% to 92.86%, and quality ranged from 35.29% to 79.82%. The quality of the remote sensing images highly affected the results. The accuracy was significantly improved when the image was used with less grass and shrubs. The length threshold in directional searching also affected the accuracy. A small threshold resulted in additional noise and disconnected gullies, whereas a large threshold disregarded the short gullies. A reasonable threshold can be obtained through the index of quality. The threshold also exhibits a strong relationship with the average length of ephemeral gullies, and this relationship can help obtain the optimum threshold in the hilly area of the Northern Loess Plateau of China. Full article
Figures

Figure 1

Open AccessArticle An Integrated Spatial Clustering Analysis Method for Identifying Urban Fire Risk Locations in a Network-Constrained Environment: A Case Study in Nanjing, China
ISPRS Int. J. Geo-Inf. 2017, 6(11), 370; https://doi.org/10.3390/ijgi6110370
Received: 23 September 2017 / Revised: 10 November 2017 / Accepted: 15 November 2017 / Published: 17 November 2017
PDF Full-text (93107 KB) | HTML Full-text | XML Full-text
Abstract
The spatial distribution of urban geographical events is largely constrained by the road network, and research on spatial clusters of fire accidents at the city level plays a crucial role in emergency rescue and urban planning. For example, by knowing where and when
[...] Read more.
The spatial distribution of urban geographical events is largely constrained by the road network, and research on spatial clusters of fire accidents at the city level plays a crucial role in emergency rescue and urban planning. For example, by knowing where and when fire accidents usually occur, fire enforcement can conduct more efficient aid measures and planning department can work out more reasonable layout optimization of fire stations. This article proposed an integrated method by combining weighted network-constrained kernel density estimation (NKDE) and network-constrained local Moran’s I (ILINCS) to detect spatial cluster pattern and identify higher-risk locations of fire accidents. The proposed NKDE-ILINCS weighted a set of crucial non-spatial attributes of point events and links, and considered the impact factors of road traffic states, intersection roads and fire severity in NKDE to reflect real urban environment. This method was tested using the fire data in 2015 in Nanjing, China. The results demonstrated that the method was appropriate to detect network-constrained fire cluster patterns and identify high–high road segments. Besides, the first 14 higher-risk road segments in Nanjing are listed. These findings of this case study enhance our knowledge to more accurately observe where fire accidents usually occur and provide a reference for fire departments to improve emergency rescue effectiveness. Full article
(This article belongs to the Special Issue Urban Environment Mapping Using GIS)
Figures

Figure 1

Open AccessFeature PaperArticle Mapping and Analyzing Stream Network Changes in Watonwan River Watershed, Minnesota, USA
ISPRS Int. J. Geo-Inf. 2017, 6(11), 369; https://doi.org/10.3390/ijgi6110369
Received: 30 September 2017 / Revised: 31 October 2017 / Accepted: 13 November 2017 / Published: 17 November 2017
PDF Full-text (16294 KB) | HTML Full-text | XML Full-text
Abstract
Much of the Watonwan River tributary system to the upper Mississippi River basin (UMR), and the fluvial systems to which it drains, are listed as impaired under the United States Environmental Protection Agency Clean Water Act303(d) and/or by the Minnesota Pollution Control Agency.
[...] Read more.
Much of the Watonwan River tributary system to the upper Mississippi River basin (UMR), and the fluvial systems to which it drains, are listed as impaired under the United States Environmental Protection Agency Clean Water Act303(d) and/or by the Minnesota Pollution Control Agency. In addition, eutrophic conditions and excessive sedimentation rates exist in Lake Pepin, a riverine lake to which the UMR drains. Thus, understanding the hydrogeomorphic change throughout the UMR is vital in order to establish appropriate efforts to mitigate environmental hazards downstream. This study attempts to evaluate hydrogeomorphic change at the watershed scale in the Watonwan River watershed between 1855 and the near present. Historical plat maps, digital elevation models (DEMs), aerial images, soil/topographic characteristics, land-use change, and field surveys are analyzed. Surficial hydrologic features digitized from historical plat maps are compared with contemporary stream networks extracted from high-resolution DEMs. Scale effects are investigated using multi-resolution (1 m, 3 m, 8.5 m, and 30 m) DEMs, with 8.5 m DEMs being ideal for watershed scale analysis, and 1–3 m DEMs being ideal for subwatershed analysis. There has been a substantial hydrogeomorphic change in the watershed since 1855, but most significantly, we interpret that the highest rates of erosion occur in the eastern watershed, where knickzone propagation has produced substantial relief. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Using Visual Exploratory Data Analysis to Facilitate Collaboration and Hypothesis Generation in Cross-Disciplinary Research
ISPRS Int. J. Geo-Inf. 2017, 6(11), 368; https://doi.org/10.3390/ijgi6110368
Received: 6 October 2017 / Revised: 11 November 2017 / Accepted: 15 November 2017 / Published: 16 November 2017
Cited by 1 | PDF Full-text (5143 KB) | HTML Full-text | XML Full-text
Abstract
Massive open data resources are changing the way that people do science. To make use of those data resources, data science methods and technology can be leveraged by stakeholders of various disciplines. The objective of this paper is to present our experience of
[...] Read more.
Massive open data resources are changing the way that people do science. To make use of those data resources, data science methods and technology can be leveraged by stakeholders of various disciplines. The objective of this paper is to present our experience of using visual exploratory data analysis as a method to facilitate collaboration and hypothesis generation in geoscience research. The research team consisted of both geoscientists and computer scientists. A use case-driven, iterative approach was applied to create a collaborative and communicative environment. Through several rounds of use case analysis and technological development, a data visualization pilot system was created for studying the co-relationships between chemical elements and mineral species. The exploratory data analyses conducted in those use case studies led to several research hypotheses for future work. This research illustrates the usefulness of exploratory data analysis for hypothesis generation in a data science process. Although the presented project is in geoscience, the discussed method and experience can also be translated into other disciplines. Full article
Figures

Figure 1

Open AccessArticle Comparison and Evolution of Extreme Rainfall-Induced Landslides in Taiwan
ISPRS Int. J. Geo-Inf. 2017, 6(11), 367; https://doi.org/10.3390/ijgi6110367
Received: 12 September 2017 / Revised: 5 November 2017 / Accepted: 13 November 2017 / Published: 16 November 2017
PDF Full-text (20325 KB) | HTML Full-text | XML Full-text
Abstract
This study analyzed the characteristics of, and locations prone to, extreme rainfall-induced landslides in three watersheds in Taiwan, as well as the long-term evolution of landslides in the Laonong River watershed (LRW), based on multiannual landslide inventories during 2003–2014. Extreme rainfall-induced landslides were
[...] Read more.
This study analyzed the characteristics of, and locations prone to, extreme rainfall-induced landslides in three watersheds in Taiwan, as well as the long-term evolution of landslides in the Laonong River watershed (LRW), based on multiannual landslide inventories during 2003–2014. Extreme rainfall-induced landslides were centralized beside sinuous or meandering reaches, especially those with large sediment deposition. Landslide-prone strata during extreme rainfall events were sandstone and siltstone. Large-scale landslides were likely to occur when the maximum 6-h accumulated rainfall exceeded 420 mm. All of the large-scale landslides induced by short-duration and high-intensity rainfall developed from historical small-scale landslides beside the sinuous or meandering reaches or in the source area of rivers. However, most of the large-scale landslides induced by long-duration and high-intensity rainfall were new but were still located beside sinuous or meandering reaches or near the source. The frequency density of landslides under long-duration and high-intensity rainfall was larger by one order than those under short-duration rainfall, and the β values in the landslide frequency density-area analysis ranged from 1.22 to 1.348. The number of downslope landslides was three times larger than those of midslope and upslope landslides. The extreme rainfall-induced landslides occurred in the erosion gullies upstream of the watersheds, whereas those beside rivers were downstream. Analysis of the long-term evolution of landslides in the LRW showed that the geological setting, sinuousness of reaches, and sediment yield volume determined their location and evolution. Small-scale landslides constituted 71.9–96.2% of the total cases from 2003 to 2014, and were more easily induced after Typhoon Morakot (2009). The frequency density of landslides after Morakot was greater by one order than before, with 61% to 68% of total landslides located in the downslope. Small-scale landslides not beside the rivers disappeared within four years, whereas those beside rivers or located in the source areas either developed into large-scale landslides or slowly disappeared. Large-scale landslides caused by Morakot were either combined from several historical small-scale landslides in the river source areas or located beside the sinuous or meandering reaches. The probabilities of landslide recurrence in the LRW during the next 5, 10, and 20 years were determined to be 7.26%, 9.16%, and 10.48%, respectively, and those beside the rivers were 10.47%, 13.33%, and 15.41%, respectively. Full article
Figures

Figure 1a

Open AccessArticle Accuracy Assessment of Landform Classification Approaches on Different Spatial Scales for the Iranian Loess Plateau
ISPRS Int. J. Geo-Inf. 2017, 6(11), 366; https://doi.org/10.3390/ijgi6110366
Received: 29 July 2017 / Revised: 10 November 2017 / Accepted: 13 November 2017 / Published: 16 November 2017
PDF Full-text (15172 KB) | HTML Full-text | XML Full-text
Abstract
An accurate geomorphometric description of the Iranian loess plateau landscape will further enhance our understanding of recent and past geomorphological processes in this strongly dissected landscape. Therefore, four different input datasets for four landform classification methods were used in order to derive the
[...] Read more.
An accurate geomorphometric description of the Iranian loess plateau landscape will further enhance our understanding of recent and past geomorphological processes in this strongly dissected landscape. Therefore, four different input datasets for four landform classification methods were used in order to derive the most accurate results in comparison to ground-truth data from a geomorphological field survey. The input datasets in 5 m and 10 m pixel resolution were derived from Pléiades stereo satellite imagery and the “Shuttle Radar Topography Mission” (SRTM), and “Advanced Spaceborne Thermal Emission and Reflection Radiometer” (ASTER GDEM) datasets with a spatial resolution of 30 m were additionally applied. The four classification approaches tested with this data include the stepwise approach after Dikau, the geomorphons, the topographical position index (TPI) and the object based approach. The results show that input datasets with higher spatial resolutions produced overall accuracies of greater than 70% for the TPI and geomorphons and greater than 60% for the other approaches. For the lower resolution datasets, only accuracies of about 40% were derived, 20–30% lower than for data derived from higher spatial resolutions. The results of the topographic position index and the geomorphons approach worked best for all selected input datasets. Full article
Figures

Figure 1

Open AccessArticle An Ensemble Model for Co-Seismic Landslide Susceptibility Using GIS and Random Forest Method
ISPRS Int. J. Geo-Inf. 2017, 6(11), 365; https://doi.org/10.3390/ijgi6110365
Received: 5 July 2017 / Revised: 4 November 2017 / Accepted: 13 November 2017 / Published: 16 November 2017
PDF Full-text (23225 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Mw 7.8 Gorkha earthquake of 25 April 2015 triggered thousands of landslides in the central part of the Nepal Himalayas. The main goal of this study was to generate an ensemble-based map of co-seismic landslide susceptibility in Sindhupalchowk District using model comparison
[...] Read more.
The Mw 7.8 Gorkha earthquake of 25 April 2015 triggered thousands of landslides in the central part of the Nepal Himalayas. The main goal of this study was to generate an ensemble-based map of co-seismic landslide susceptibility in Sindhupalchowk District using model comparison and combination strands. A total of 2194 co-seismic landslides were identified and were randomly split into 1536 (~70%), to train data for establishing the model, and the remaining 658 (~30%) for the validation of the model. Frequency ratio, evidential belief function, and weight of evidence methods were applied and compared using 11 different causative factors (peak ground acceleration, epicenter proximity, fault proximity, geology, elevation, slope, plan curvature, internal relief, drainage proximity, stream power index, and topographic wetness index) to prepare the landslide susceptibility map. An ensemble of random forest was then used to overcome the various prediction limitations of the individual models. The success rates and prediction capabilities were critically compared using the area under the curve (AUC) of the receiver operating characteristic curve (ROC). By synthesizing the results of the various models into a single score, the ensemble model improved accuracy and provided considerably more realistic prediction capacities (91%) than the frequency ratio (81.2%), evidential belief function (83.5%) methods, and weight of evidence (80.1%). Full article
Figures

Graphical abstract

Open AccessArticle Multiple Feature Hashing Learning for Large-Scale Remote Sensing Image Retrieval
ISPRS Int. J. Geo-Inf. 2017, 6(11), 364; https://doi.org/10.3390/ijgi6110364
Received: 12 September 2017 / Revised: 6 November 2017 / Accepted: 13 November 2017 / Published: 16 November 2017
Cited by 2 | PDF Full-text (7836 KB) | HTML Full-text | XML Full-text
Abstract
Driven by the urgent demand of remote sensing big data management and knowledge discovery, large-scale remote sensing image retrieval (LSRSIR) has attracted more and more attention. As is well known, hashing learning has played an important role in coping with big data mining
[...] Read more.
Driven by the urgent demand of remote sensing big data management and knowledge discovery, large-scale remote sensing image retrieval (LSRSIR) has attracted more and more attention. As is well known, hashing learning has played an important role in coping with big data mining problems. In the literature, several hashing learning methods have been proposed to address LSRSIR. Until now, existing LSRSIR methods take only one type of feature descriptor as the input of hashing learning methods and ignore the complementary effects of multiple features, which may represent remote sensing images from different aspects. Different from the existing LSRSIR methods, this paper proposes a flexible multiple-feature hashing learning framework for LSRSIR, which takes multiple complementary features as the input and learns the hybrid feature mapping function, which projects multiple features of the remote sensing image to the low-dimensional binary (i.e., compact) feature representation. Furthermore, the compact feature representations can be directly utilized in LSRSIR with the aid of the hamming distance metric. In order to show the superiority of the proposed multiple feature hashing learning method, we compare the proposed approach with the existing methods on two publicly available large-scale remote sensing image datasets. Extensive experiments demonstrate that the proposed approach can significantly outperform the state-of-the-art approaches. Full article
Figures

Figure 1

Back to Top