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Abstract: Given the chaotic characteristics of the time series of landslides, a new method based on
modified ensemble empirical mode decomposition (MEEMD), approximate entropy and the weighted
least square support vector machine (WLS-SVM) was proposed. The method mainly started from the
chaotic sequence of time-frequency analysis and improved the model performance as follows: first a
deformation time series was decomposed into a series of subsequences with significantly different
complexity using MEEMD. Then the approximate entropy method was used to generate a new
subsequence for the combination of subsequences with similar complexity, which could effectively
concentrate the component feature information and reduce the computational scale. Finally the
WLS-SVM prediction model was established for each new subsequence. At the same time, phase
space reconstruction theory and the grid search method were used to select the input dimension and
the optimal parameters of the model, and then the superposition of each predicted value was the final
forecasting result. Taking the landslide deformation data of Danba as an example, the experiments
were carried out and compared with wavelet neural network, support vector machine, least square
support vector machine and various combination schemes. The experimental results show that the
algorithm has high prediction accuracy. It can ensure a better prediction effect even in landslide
deformation periods of rapid fluctuation, and it can also better control the residual value and
effectively reduce the error interval.

Keywords: modified ensemble empirical mode decomposition; approximate entropy; phase space
reconstruction; weighted least squares support vector machine; accuracy evaluation

1. Introduction

Slope displacement and instability are often encountered in natural and artificial slopes as
deformation phenomena. They have important significance in slope stability evaluation, slope
safety early warning, and slippery slope hazard control for timely grasping of the slope deformation
evolution rules and accurate prediction of future evolution rules and trends of slope deformation [1–8].
Currently the main methods of landslide deformation prediction include Grey models, neural networks,
support vector machine (SVM), least squares support vector machine (LS-SVM), and a variety of
combinations of forecasting methods [5–9]. When the original data sequence fluctuation is large and the
information is too dispersed, the prediction accuracy of Grey theory is relatively low. Neural network
models have defects that are difficult to overcome, such as easily becoming trapped into local minima,
difficulties in determining network structure, and a prerequisite to the successful application that
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the dynamic mechanism of the system has relative consistency. With the emergence of a new type
of general learning algorithm, SVM, which is based on small sample size and statistical learning
theory [9,10], many scholars have applied it in deformation prediction and achieved good results.
Zhao et al. [11] applied SVM in deformation prediction and they solved the problem of complex
deformation prediction under multi-factor impact so that its accuracy was better than that of the
traditional forecasting methods. However SVM has limitations of slow computing speed and weak
robustness. LS-SVM as an extension of SVM, can reduce the computational complexity, can speed up
the solving speed, and has a strong anti-interference ability, but it loses the standard SVM robustness
problem [12,13]. Due to the combined effects of groundwater, human activities and other factors, it is
difficult to establish a relatively accurate model of the complex nonlinear relationship between the
deformation and the influence factors. The displacement of landslides often has the characteristic of
being controlled by the time scale, with a trend of growing at large time scales and having considerable
randomness and volatility at small time scales. The fluctuations also have a certain periodicity and
regularity at a certain time scale. A landslide displacement time series signal generally consists
of the following four parts; the deterministic tendency item, the periodic item, the pulsation item
and the random item with uncertainty [14–17]. The landslide system belongs to a nonlinear energy
dissipation system, which shows a very obvious chaotic state in the long-term evolution of the
system [14–17]. From the perspective of time-frequency analysis, Wang et al. [18,19] combined the
wavelet decomposition and SVM and applied it in deformation prediction. This prediction model
could further improve the prediction accuracy after decomposing deformation series into narrowband
signals with different characteristic scales. However the key to wavelet analysis is the selection of the
wavelet function and the decomposition scale. It is difficult to avoid the influence of human factors, and
it is not easy to achieve the global optimal decomposition of the signal. Therefore, through the chaotic
analysis of landslide deformation sequences, digging out the implicit time-frequency information,
providing more effective data for modeling prediction, and establishing a reasonable combination
model to improve the prediction performance have certain research significance.

Based on the characteristics of landslides and the above research, this paper started from the two
aspects of how to effectively separate the time-frequency information of the chaotic sequence and
improve the model performance, and we proposed a landslide chaotic time series prediction algorithm
based on modified ensemble empirical mode decomposition (MEEMD), approximate entropy and
weighted least squares support vector machine (WLS-SVM). First MEEMD [20–22] was used to
decompose the non-stationary landslide time series into a series of different characteristic scales of
intrinsic mode function (IMF). Then the approximate entropy [23,24] was adopted for the complexity
analysis of each component, producing a new subsequence through combination stacking according
to the different entropy values. Finally WLS-SVM was used to model [12,13] and analyze the new
subsequence. At the same time, phase space reconstruction theory [25] and grid search [26] were
used to determine the optimal input dimension of the model and the optimal parameters. Taking the
Danba landslide deformation data as an experimental example, we compared the wavelet neural
network, SVM, LS-SVM and seven other combination schemes, through different prediction steps,
to further explore and verify the feasibility and effectiveness of the new algorithm in the landslide’s
chaotic sequence.

2. Landslide Prediction Model Based on MEEMD, Approximation Entropy, and WLS-SVM

2.1. Modified Ensemble Empirical Mode Decomposition

By adding white noise to the signal, the ensemble empirical mode decomposition (EEMD) [27]
can solve the problem of the boundary effect of traditional empirical mode decomposition to a certain
extent, and the real signal can be preserved to the maximal extent. However EEMD also has some of
the following problems [28,29]: if the amplitude of white noise added to EEMD is too low it cannot
restrain the mixed mode stack well; if it is too large it would increase the average total amount of
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calculation, easily cause the decomposition of the high-frequency components, and make the white
noise residual too large. Moreover the result of EEMD decomposition is not necessarily the standard
IMF, but the problem of mode splitting may also occur, that is, the same physical process is divided into
multiple IMF components. Therefore, given the chaotic sequence of landslide deformation, this paper
uses MEEMD to decompose, and the detailed decomposition process is shown in the literature [20–22].

2.2. Approximate Entropy Principle

Pincun et al. [23] proposed the approximate entropy method for measuring the degree of
complexity in 1991. This method can yield stable values with less data and is suitable for engineering
applications. The value of approximate entropy can reflect the complexity of the sequence. The greater
the value is the more complex the sequence is. The detailed calculation steps are as follows [23]:

(1) Setting a landside sequence as {x(i), i = 1, 2, · · · , n}, constructing an m-dimensional vector
according to the sequences order:

X(i) = [x(i), x(i + 1), x(i + 2), · · · , x(i + m− 1)], (i = 1, 2, · · · , n−m + 1) (1)

(2) Assume that the maximum difference between X(i) and X(j), (j = 1, 2, · · · , n−m + 1, j 6= i)
is Dm[X(i), X(j)]:

Dm[X(i), X(j)] = max
0∼m−1

|x(i + k)− x(j + k)| (2)

Here calculating the distance between vector X(i) and other vectors X(j) according to i to obtain
the maximum distance.

(3) Setting the similar tolerance as r(r > 0), counting the numbers of Dm[X(i), X(j)] < r,
calculating the ratio Cm

i (r) of the numbers of Dm[X(i), X(j)] < r to the total numbers of distance
(n−m + 1):

Cm
i (r) =

1
n−m + 1

sum{Dm[X(i), X(j)] < r} (3)

Here, (j = 1, 2, · · · , n−m + 1, j 6= i), sum is the number of Dm[X(i), X(j)] < r.
(4) Calculating the logarithm of Cm

i (r), and then computing the average φm(r) of all i:

φm(r) =
1

n−m + 1

n−m+1

∑
i=1

ln Cm
i (r) (4)

(5) Adding the dimension to m+ 1, repeating steps (1) to (4), Cm+1
i (r) and φm+1(r) can be obtained.

(6) Setting approximate entropy as ApEn(m, r):

ApEn(m, r) = lim
n→∞

[
φm(r)− φm+1(r)

]
(5)

Generally n is a finite value, and then the approximate entropy value is obtained:

ApEn(m, r, n) = φn(r)− φm+1(r) (6)

Obviously the value of ApEn relates to m, r and n. Normally the value of ApEn mainly depends
on m and r, and less depends on n. Generally m is 2 and r is a value between 0.1 and 0.25SD, where
SD is the standard deviation of sequence. Therefore m is 2 and r is 0.2SD in this paper.

2.3. Phase Space Reconstruction Theory

Kennel et al. proposed phase space reconstruction theory [25] and introduced chaos theory into
the nonlinear time series analysis. Using this method, the nonlinear dynamic characteristics of the
deformation sequence of the side slope were excavated. Optimizing the learning samples of the
prediction model based on this method has been considered an effective and novel method, which
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has a certain significance. At the same time, Takens [30] proved that the proper selection of delay
time and large enough embedding dimension can make the reconstructed phase space reflect the
rule of the system status with time evolution correctly, and it has the same properties as the actual
dynamical systems.

For the landslide deformation sequence in this paper, {y(t), t = 1, 2, · · · , n}, n is the sequence
length. According to Takens’ theory, the function f (·) exists and the reconstructed phase space is [25]:

Yt+1 = f
(

Yt, Yt−τ , · · · , Yt−(m−1)τ

)
(7)

Here τ is the delay time, and m is the number of embedded dimensions.
The correct selection of delay time and embedded dimension directly relates to the accuracy

of the reconstruction of the sequence. The common methods are the GP algorithm, the complex
self-correlation method, the C-C method and so on. In this paper, the C-C method was used to
reconstruct the phase space of each new subsequence. The basic principle of the C-C method is to
estimate the time delay τ and the time window τw(m− 1)τ using the correlation integral function of
the embedding time series.

2.4. Weighted Least Squares Support Vector Machine

2.4.1. Least Squares Support Vector Machine

Suppose that the given sample training set is {(xi, yi)|i = 1, 2, · · · , N}. Here xi ∈ Rn is an
n-dimensional input data; Rn is an n-dimensional vector space which is composed of real numbers;
yi ∈ R is an output data and R is a real number. The optimal linear decision function in this space is
constructed as follows:

f (x) = wTφ(x) + b (8)

Here φ(x) : Rn → Rnh is a nonlinear mapping function which maps the input space data to
high dimensional feature space, w ∈ Rnh is the weight vector of original weight space, Rnh is a high
dimensional space vector composed of real numbers, b ∈ R is offset item, and wT is the transpose of
vector w.

According to the principle of structural risk minimization (SRM), the objective function Q and
constraint condition yi are as follows: min

w,b,e
Q(w, e) = 1

2 wTw + γ
2

N
∑

i=1
e2

i

yi = wTφ(xi) + b + ei (i = 1, 2, · · · , N)
(9)

Here γ > 0 is the regularization parameter (or penalty coefficient), ei is the error variance, and e is
a vector consisted of the error variances.

Introducing the Lagrange multiplier function, αi ∈ R, the Lagrange function is obtained as follows:

L(w, b, e, a) = Q(w, e)−
N

∑
i=1

ai

{
wTφ(xi) + b + ei − yi

}
(10)

Here a = [a1, a2, · · · , aN ]
T . According to the KKT (Karush–Kuhn–Tucker) condition, the optimal

solution is obtained by calculating the partial derivatives of the Lagrange function:
∂L
∂ω = 0 → W = ∑N

i=1 aiφ(xi)
∂L
∂b = 0 → −∑N

i=1 ai = 0
∂L
∂ei

= 0 → γei = ai
∂L
∂ai

= 0 → wTφ(xi) + b + ei − yi = 0

(11)
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Through eliminating ω and e in formula (11), the optimization problem is transformed into a
linear equation as follows: [

0 AT

A K(xk1, xk2) + γ−1 I

][
b
a

]
=

[
0
y

]
(12)

Here y = [y1, y2, · · · , yN ]
T ; A = [1, · · · , 1]T ; I is an N-order identity matrix; and K(xk1, xk2)

is a kernel function satisfying the Mercer condition, K(xk1, xk2) ∈N×N . At present, there
are 3 kinds of commonly used kernel functions: (1) linear function K(xk1, xk2) = xT

k1xk2; (2)

polynomial function K(xk1, xk2) =
(

xT
k1xk2 + 1

)d, d = 1, 2, · · · ; and (3) radial basis function (RBF)
K(xk1, xk2) = exp

(
−‖xk1 − xk2‖/2σ2).

Since B = K(xk1, xk2) + γ−1 I is a symmetric positive definite matrix, a and b in formula (12) can be
calculated by using least square principle; thus the nonlinear prediction model of LS-SVM is obtained:

y(x) =
N

∑
i=1

aiK(x, xi) + b (13)

2.4.2. Weighted Least Squares Support Vector Machine

LS-SVM converts the quadratic programming problem of SVM to the problem of solving
linear equations, which can reduce the computational complexity and improve the solving speed.
However LS-SVM has lost its original robustness, which makes the weights of the training samples
given by the objective function become the same. That is to say, the role of the sample in training is
the same. However, in practice, the characteristics of the data of different samples are different or
the influence of various external factors is not the same; therefore the weight in training is not the
same. Therefore to regain robustness and establish a more accurate prediction model, this paper uses
the improved LS-SVM; that is, the WLS-SVM [12,13]. This model gives different weight factor vi to
each error ei = ai/γ on the basis of LS-SVM, so then the optimization problem of the formula (9) is
converted to:  min

w∗ ,b∗ ,e∗
Q(w∗, e∗) = 1

2 w∗Tw∗ + γ
2

N
∑

i=1
vie∗2i

yi = w∗Tφ(xi) + b∗ + e∗i (i = 1, 2, · · · , N)
(14)

The Lagrange function is transformed into:

L(w∗, b∗, e∗, a∗) = J(w∗, e∗)−
N

∑
i=1

a∗i
(

w∗Tφ(xi) + b∗ + e∗i − yi

)
(15)

In the same way, the linear equations are obtained as follows:[
0 AT

A K(xk1, xk2) + Vγ

][
b∗

a∗

]
=

[
0
y

]
(16)

Here Vγ is the diagonal matrix, Vγ = diag
{

1
γv1

, · · · , 1
γvn

}
. Then;

vi =


1,
∣∣ei/Ŝ

∣∣ ≤ c1
c2−|ei/Ŝ|

c2−c1
, c1 ≤

∣∣ei/Ŝ
∣∣ ≤ c2

10−10, else

(17)

Here Ŝ is the robust estimation of the standard deviation of the error, which can measure the deviation
degree of ei from the following Gaussian distribution; Ŝ = IQR

2×0.6745 . IQR is the interquartile range of
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the error ei; that is, after arranging them according to the size of value, the difference between value
[0.75n] and value [0.25n]. According to the literature [11], c1 is 2.5 and c2 is 3.

2.4.3. Parameters Optimization of WLS-SVM

The performance of WLS-SVM is largely determined by the optimal selection of the kernel
function k( ), the kernel parameter σ, and the regularization parameter γ. Because the RBF can better
reflect the complexity of the model and its prediction performance is better. Therefore, this paper
selected the RBF as the kernel function of WLS-SVM. Considering the parameter selection problem,
the grid search method was used to optimize the parameters, and its basic principle was to divide
the mesh grid in a certain range of σ and γ, traverse all of the mesh grid points, and define values.
According to the values of σ and γ, the training root mean square error (RMSE) obtained by using the
cross-validation method was taken as the objective function of grid point calculation [26]. Finally the
(σ, γ) values were selected as the optimal parameter by minimizing the RMSE of the training set.
The steps of parameter optimization are as follows [26]:

(1) Setting the value range, the step size, and grid spacing of parameters (σ, γ), the optimization
process in this paper is divided into two steps of coarse selection and accurate selection.
The parameters are set as follows; the optimization interval of σ and γ is

[
0, 1010], the number of

grid points is 1010 × 1010, the search step size of coarse selection is 1, and the search step size of
accurate selection is 0.1.

(2) Since the optimization process is a traversal process, the selection of parameter initial value
has no effect on the result. The initial values of this search process are σ = 0 and γ = 1.
Selecting the position of the first cross-validation grid point, obtaining the training RMSE using
the cross-validation method as the objective function of the grid point calculation, and calculating
all of the grid point values.

(3) Selecting the (σ, γ) with the smallest RMSE as the optimal parameters. If the selected parameters
cannot satisfy the accuracy requirement, then take the selecting parameters as the center grid
point, build a new 2-dimensional grid plane in a smaller range to recalculate the objective function,
and select the parameter (σ, γ) with the smallest RMSE again as the optimal parameter. If the
accuracy requirement is satisfied, stop or repeat the above steps, acquire the accurate parameters
(σ, γ), and take them as the optimal values.

2.4.4. Computational Procedure of WLS-SVM

(1) According to the given sample of landside deformation data {(xi, yi)|i = 1, 2, · · · , N},
determining the optimal parameter (σ, γ), obtaining ai from formula (12), and then calculating
ei = ai/γ;

(2) Calculating the robust estimation Ŝ according to the distribution of error ei;
(3) Determining the corresponding weight values vi according to ei and Ŝ through formulation (17);
(4) Finally a∗ and b∗ can be got by formulation (16). Accordingly the final nonlinear prediction model

can be obtained as follows:

y(x) =
N

∑
i=k1

a∗i K(x, xi) + b∗ (18)

It can be seen that the LS-SVM calculated from formula (12) is the optimal solution under the
assumption that error ei obeys Gaussian distribution, while WLS-SVM corrects the deviation caused
by non-Gaussian distribution of error ei through defining the weight in formula (17), which makes
WLS-SVM regression robust and improves the prediction accuracy.
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3. Analysis of Examples

3.1. Basic Characteristics of Landside

The landslide area is located in the alpine and gorge region near the Dadu River in the eastern
margin of the Tibetan Plateau. This area is characterized by undulating hills and steep mountains.
The landslide is located on the right bank of the Dadu River, namely the high and steep slope at the
bottom of Baixia Mountain, which is on the south side of Jianshe Street, Danba County, as shown in
Figure 1. This landside is formed and developed on the basis of ancient landsides. It is a massive
accumulative landslide. The elevation of its frontend is between 1881 m and 1892 m; the elevation of
its back end is between 2070 m and 2110 m. The frontend of the landslide reaches to Jianshe Street
at the slope foot. The perimeter of the landside is very clear. The relative altitude of its anterior and
posterior edge is 223 m. The widths of its front, middle, and back ends are about 250 m, 230 m and
280 m, respectively. The length of landside is about 290 m, the area is about 0.08 km2, the thickness is
18–45.23 m, the average thickness is about 30 m, and the volume is about 2.2 million m3. According
to the investigation and dynamic monitoring of the ground, the deformation of the landslide surface
is very obvious, including the tensile crack in the back, the bulging deformation on the front edge,
the shear crack on both sides of the landslide, and so on. The displacement of the landslide surface is
more than 30 mm/day; the displacement velocity in the middle and front of the landslide is more than
35 mm/day. Cracks in the landslide perimeter are connected. All as shown in Figure 2.

3.2. Experimental Data

In this study, the experimental data are derived from the Danba landslide surface
displacement [31]. Considering the Sixth Mirror monitoring points is the key and its monitoring
data are relatively complete. Thus, in this paper, the monitoring data of the Sixth Mirror monitoring
points are selected to be forecasted and analyzed. There are 76 periods of observation data, as shown
in Figure 3.
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Figure 3 shows that the landslide deformation was relatively violent, nonlinear, very
non-stationary, and random. The magnitude of deformation was relatively large. A sharp convex peak
was formed during the rising trend, and it changed into a downward trend. The difference between the
maximum and minimum deformation value was 29.4 mm. It has a certain representativeness. Clearly it
is very difficult to reflect the trend of landslide deformation if using the traditional forecasting method.

3.3. Modeling Process

To verify the feasibility of the prediction model based on MEEMD, approximate entropy
and WLS-SVM, the following 11 types of schemes were established for comparison with each
other; Scheme 1 (Wavelet neural network prediction model), Scheme 2 (SVM prediction model),
Scheme 3 (LS-SVM prediction model), Scheme 4 (Wavelet neural network prediction model taking the
reconstructed phase space of the original sequence as samples), Scheme 5 (LS-SVM prediction model
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taking the reconstructed phase space of the original sequence as samples), Scheme 6 (Wavelet neural
network prediction model taking each new subsequence as a sample), Scheme 7 (Wavelet neural
network prediction model taking the reconstructed phase space of the new subsequence as samples),
Scheme 8 (LS-SVM prediction model taking each new sequence as a sample), Scheme 9 (LS-SVM model
taking the reconstructed phase space of the new subsequence as samples), Scheme 10 (WLS-SVM
prediction model taking the new subsequence as samples), and Scheme 11 (the algorithm of this paper).
To reduce the modeling error, the landslide deformation data were pre-processed, and the data were
normalized to the [−1, 1] interval and reverted to the original interval after using the model to predict.
In this paper, the data of the first 56 periods were taken as a training sample, and the data of the last
20 periods were taken as the test sample; the prediction steps were 5, 10, and 20. For example, when
the prediction step was 5, the model was established to forecast the 57th to the 61st period data based
on the data of the 1st to the 56th period; then the model was established to predict the 62nd to the
66th period data based on the data of the 6th to 61st period and so on, until the data of the 76th period
were predicted. The modeling processes in this paper were as follows:

(1) To make the complex sequence smooth, the landslide sequence was decomposed to obtain a finite
number of IMF components and a margin using MEEMD.

(2) Analyzing the complexity of each component using approximate entropy, combining the adjacent
components with a small difference in entropy, and obtaining a new subsequence to reduce the
size of the calculation.

(3) Reconstructing the phase space of each new subsequence using the C-C method, which could
avoid the random selection of the input dimensions of the prediction model.

(4) Establishing the WLS-SVM prediction model based on the reconstructed phase space of the new
subsequences by Step 3 to make a forecast.

(5) Superposing the prediction result of each new subsequence to obtain the final forecast value of
landslide deformation, and then evaluating the accuracy of each model.

3.4. Analysis of the Forecast Results

From the analysis in Section 3.1, the landslide is relatively complex. To better analyze the chaotic
time series of the landslide and to obtain higher prediction accuracy, MEEMD and approximate entropy
were used to analyze the landslide sequence. Each component decomposed by MEEMD is shown in
Figure 4.
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As shown in Figure 4 MEEMD can effectively decompose the time-frequency information of
the landslide sequence, and the frequency of each component is gradually decreasing. However,
due to the obviously non-stationary, the landslide sequence is decomposed into more components.
Directly establishing the prediction model to forecast each component will appreciably increase
the amount of modeling required and reduce efficiency. To predict the landslide sequence more
effectively, the approximate entropy theory was used to evaluate the complexity of each component.
The approximate entropy of each IMF is shown in Figure 5.
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As shown in Figure 5, the approximate entropy of each component decreases with the reduction
of the component’s frequency, which further illustrates that MEEMD can effectively reduce the
non-stationarity of the original sequence, decompose the component step by step with a gradual
reduction in complexity, and verify the effectiveness of applying the approximate entropy to the
complexity of the landslide sequence. Figure 5 also shows that the differences in the entropies of
IMF2, IMF3, IMF4, IMF5, and IMF6 (margin B) are not very large. To reduce the computing scale of
the modeling, they are combined and superposed. The results are shown in Table 1, and each new
subsequence is shown in Figure 6. From Figure 6; the high-frequency information and strong volatility
are fully reflected by IMF1, IMF2 represents a certain randomness of the landslide sequence, and IMF3
more obviously reflects the overall trend of the landslide deformation.

Table 1. The combined results of each component.

Intrinsic Mode Function Component Serial Number

New IMF IMF1 IMF2 IMF3

Original IMF IMF1 IMF2,IMF3 IMF4,IMF5,IMF6
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The WLS-SVM was established to make a prediction according to the new subsequences.
The optimal input dimension was determined by the reconstructed phase space of each new
subsequence. Then the grid search method was used to select the optimal parameters of WLS-SVM to
make a forecast. The superposition of each component was the prediction result. At the same time,
when the prediction step was set as 5, Schemes 1 to 11 were established for comparison and analysis.
The prediction results of Schemes 1 to 5 are shown in Figure 7, and the prediction results of Schemes 6
to 11 are shown in Figure 8. Figures 9 and 10 show the residuals of the corresponding models.
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As shown in Figures 7 and 8, the prediction results from the 57th period to the 67th period of
the 11 schemes are relatively good. For the 68th period to the 76th period, the prediction results
of Schemes 4 and 5, which used phase space to reconstruct the original sequence for modeling and
forecasting, are better than those of Schemes 1 to 3. The prediction results of Schemes 6 to 11, which
used a new subsequence combined by MEEMD and approximate entropy as sample data, are also
relatively good. Comparison of Scheme 6, 8, and 10 reveals that the prediction result of SVM is more
stable than those of the neural network. From Schemes 7, 9, and 11, the prediction effect by using
phase space to reconstruct each new subsequence is better than other schemes. The prediction values
of Schemes 9 and 11 are in good agreement with the actual values.

As further shown in Figures 9 and 10, the prediction error of Schemes 1 to 3 is relatively large
and clearly outstanding in some of the prediction periods. In addition, the prediction error increases
with the extension of forecast time. Clearly it is not easy to achieve satisfactory prediction results
directly using a single model. Comparison of Schemes 1, 4, 6, and 7 reveals that the prediction
result of the wavelet neural network is very unstable, and the fluctuation of its prediction error is
relatively large, which further demonstrates the disadvantages of the neural network itself. As shown
in Schemes 4 and 5, reconstructing the phase space of the original sequence has a certain effect on
improving the prediction accuracy of the LS-SVM model. However from the 68th period to the
76th period, the prediction error of Scheme 5 also becomes relatively large with the increase in the
forecast period. Thus, because of the mutual interference among different characteristic information,
direct modeling through raw data reconstruction can make it difficult for the model to accurately reflect
the evolution law of the landslide, and it is not conducive to a long-term prediction. The prediction
error of Schemes 8 to 11, which merged similar information using MEEMD and approximate entropy,
has very good stability. Moreover the forecast results of Scheme 9 and Scheme 11, which used phase
space reconstruction theory to select the optimal input dimension of the model, are more stable than
those of other schemes, and the change in the error curve is also relatively steady. Comparatively
the forecast result of Scheme 11 is slightly better than that of Scheme 9. Thus the landslide sequence
processed by MEEMD and approximate entropy can make the model truly reflect the deformation
rules and obtain a good prediction result. Reconstructing the sample data of the model by using
phase space reconstruction theory can avoid the randomness of the model input dimension, effectively
improve the model's performance, and further enhance the prediction accuracy of the model.

To further evaluate the model performance, the internal accordant accuracy (IAA), external
accordant accuracy (EAA) and running time in the training and testing of each scheme in each
prediction step (step 5, for example) were compared and analyzed. The results are shown in Table 2.

From Table 2, when the original data are directly used for modeling, both the training error
and the prediction error of the model are relatively large and the error increases rapidly. Through
sample data analysis of the new landslide sequence processed by MEEMD and approximate entropy,
for a relatively high-frequency and a strong volatility of the IMF1 new subsequence, the training
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error and testing error of Schemes 6 to 11 are almost the same. Through comparison of the three
new subsequences of IMF1, IMF 2, and IMF3, it can be found that the training and prediction error
of the first 5 steps of each scheme are not quite different with the decrease of the frequency of each
component, and the training and testing error of each scheme are increased in varying degrees with
the increase in the forecast period. From Schemes 6 and 7, the error increment of neural network model
is the largest. Comparison of Schemes 8 to 11 reveals that selecting the optimal input dimension of
the model using phase space reconstruction theory is helpful for reducing the model training and
testing error, and the extent of the error increase is small. Comparison of Schemes 9 and 10 reveals
that the improved LS-SVM is better than the traditional LS-SVM. Therefore the robustness of SVM
plays a certain role in improving the model performance. From the running time of each scheme, less
time is used for establishing a single prediction model using the original data directly. Compared
with each component, under the same conditions, the time used for each component prediction is less
than that from using the original data directly. The running time of the model is increased with the
increase in the complexity of the combined model. For the same model, the training and prediction
time of each component is less than that from directly using the original data. When training and
forecasting for each component, the running time for the same model is increased with the decrease of
the component’s frequency. Comparison between Schemes 8 and 10 and Schemes 9 and 11 reveals
that the performance of the improved LS-SVM model is better than that of the traditional LS-SVM
model. Clearly the running time of the model is related to the complexity of the sample data and
the performance of the combined model. Therefore the algorithm in this paper is feasible through
comprehensive consideration of the accuracy and running time of the model.

Table 2. Statistics of residual sequences (unit: mm).

Sample Prediction
Model

Step Size: 1 to 5 Step Size: 6 to 10 Step Size: 11 to 15 Step Size: 16 to 20 Running
Time/sIAA EAA IAA EAA IAA EAA IAA EAA

Original
data

Scheme 1 ±0.44 ±0.53 ±0.95 ±1.22 ±1.34 ±1.66 ±1.52 ±1.93 13.92
Scheme 2 ±0.20 ±0.28 ±0.61 ±0.81 ±1.11 ±1.22 ±1.32 ±1.62 10.27
Scheme 3 ±0.13 ±0.20 ±0.50 ±0.61 ±0.84 ±0.96 ±1.24 ±1.42 8.13
Scheme 4 ±0.39 ±0.47 ±0.84 ±0.96 ±0.99 ±1.16 ±1.37 ±1.50 17.35
Scheme 5 ±0.13 ±0.19 ±0.48 ±0.57 ±0.75 ±0.86 ±1.09 ±1.20 11.97

IMF1

Scheme 6 ±0.09 ±0.13 ±0.11 ±0.15 ±0.15 ±0.19 ±0.20 ±0.23 11.42
Scheme 7 ±0.06 ±0.10 ±0.10 ±0.14 ±0.13 ±0.17 ±0.16 ±0.20 14.84
Scheme 8 ±0.03 ±0.08 ±0.06 ±0.10 ±0.10 ±0.16 ±0.13 ±0.18 7.51
Scheme 9 ±0.03 ±0.07 ±0.03 ±0.08 ±0.09 ±0.13 ±0.10 ±0.15 9.14

Scheme 10 ±0.03 ±0.07 ±0.04 ±0.09 ±0.08 ±0.13 ±0.10 ±0.15 5.84
Scheme 11 ±0.00 ±0.05 ±0.03 ±0.08 ±0.05 ±0.11 ±0.08 ±0.14 7.92

IMF2

Scheme 6 ±0.19 ±0.24 ±0.47 ±0.54 ±0.89 ±1.06 ±1.10 ±1.21 12.67
Scheme 7 ±0.16 ±0.20 ±0.36 ±0.41 ±0.60 ±0.68 ±0.67 ±0.76 16.79
Scheme 8 ±0.10 ±0.15 ±0.21 ±0.27 ±0.35 ±0.41 ±0.39 ±0.48 7.94
Scheme 9 ±0.09 ±0.13 ±0.13 ±0.18 ±0.27 ±0.33 ±0.36 ±0.41 10.97

Scheme 10 ±0.10 ±0.14 ±0.18 ±0.24 ±0.29 ±0.37 ±0.38 ±0.45 6.96
Scheme 11 ±0.07 ±0.11 ±0.06 ±0.10 ±0.19 ±0.28 ±0.29 ±0.37 8.27

IMF3

Scheme 6 ±0.31 ±0.38 ±0.56 ±0.64 ±1.01 ±1.19 ±1.15 ±1.30 13.57
Scheme 7 ±0.21 ±0.26 ±0.37 ±0.43 ±0.79 ±0.85 ±0.90 ±0.97 16.91
Scheme 8 ±0.17 ±0.22 ±0.28 ±0.34 ±0.59 ±0.67 ±0.61 ±0.69 8.10
Scheme 9 ±0.13 ±0.18 ±0.15 ±0.21 ±0.45 ±0.51 ±0.47 ±0.56 11.37

Scheme 10 ±0.16 ±0.20 ±0.23 ±0.29 ±0.55 ±0.61 ±0.57 ±0.64 7.24
Scheme 11 ±0.11 ±0.18 ±0.11 ±0.19 ±0.44 ±0.51 ±0.46 ±0.53 9.14
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Table 3. The contrast of each scheme’s accuracy with different prediction steps (unit: mm).

Model
Prediction Step: 5 Prediction Step: 10 Prediction Step: 20

Max Min RMSE MAE Max Min RMSE MAE Max Min RMSE MAE

Scheme 1 −2.17 0.13 1.283 1.141 −2.31 0.34 1.312 1.273 −3.11 0.27 1.482 1.395
Scheme 2 2.04 −0.16 0.986 0.793 1.98 0.15 1.141 0.904 2.14 0.57 1.207 1.016
Scheme 3 1.70 −0.10 0.820 0.647 1.67 −0.24 0.956 0.741 1.99 0.34 1.189 0.861
Scheme 4 −1.71 −0.17 0.974 0.878 −1.83 −0.34 1.085 0.957 −2.01 0.47 1.261 1.204
Scheme 5 −1.32 0.10 0.711 0.595 −1.18 0.21 0.854 0.611 −1.57 0.29 1.097 0.773
Scheme 6 −1.34 0.21 0.973 0.857 −1.57 0.18 1.037 0.911 −1.61 −0.17 1.197 0.999
Scheme 7 −1.21 −0.16 0.673 0.599 −1.39 0.09 0.794 0.715 −1.45 −0.27 0.897 0.809
Scheme 8 1.04 −0.11 0.617 0.515 1.21 −0.10 0.698 0.601 1.28 −0.09 0.788 0.689
Scheme 9 −0.91 −0.10 0.480 0.390 −0.95 −0.10 0.492 0.397 −1.00 0.07 0.504 0.407

Scheme 10 0.98 0.10 0.496 0.417 0.89 −0.13 0.579 0.497 0.95 −0.09 0.657 0.479
Scheme 11 −0.86 0.05 0.472 0.373 −0.88 0.01 0.484 0.380 0.91 −0.04 0.495 0.397

To further explore the effectiveness of each scheme for different prediction steps, Schemes 1 to 11
were established with steps 5, 10, and 20. Additionally the minimum/maximum, RMSE, and mean
absolute error (MAE) were used to analyze the model precision, as shown in Table 3. The prediction
accuracy of each of the predicting methods has a different degree of change with the increase in the
prediction step. The prediction accuracy of Schemes 1, 2, and 3 decreases significantly. The prediction
accuracy of Schemes 8 to 11 are much better than those of other schemes, and the extents of error
increase are relatively small; the prediction accuracy of Scheme 11 is the best among Schemes 8 to 11.
From the minimum and maximum residual value, Scheme 11 can better control the minimum and
maximum residual values and effectively reduce the error interval. In conclusion, this algorithm can
not only guarantee good local prediction values, but it also has preferable global prediction accuracy.
Therefore the algorithm can obtain a better prediction result when the landslide deformation is complex
or in long-term prediction.

4. Conclusions

For a landslide with a complex deformation, it is difficult to directly establish an effective model
for analysis, and it is not conducive to long-term prediction. In this paper, a combination prediction
algorithm based on MEEMD, approximate entropy, and WLS-SVM was proposed. The theoretical
analysis and calculation examples indicate that MEEMD can retain the real signals, effectively separate
the implicit time-frequency information in the landslide deformation sequence, and reduce the mutual
interference of information associated with different features. Approximate entropy can effectively
analyze the complexity of the landslide sequence. The new subsequences with distinct complexity
are obtained by reconstructing each component based on entropy values. They can better reflect
the different time-frequency information of landslide chaotic sequences, and they can reduce the
computing scale at the same time. The selection of optimal model parameters by using chaotic
phase space reconstruction theory and the grid search method can effectively improve the prediction
precision. The algorithm in this paper can well express and reflect landslide deformation characteristics,
effectively control the extreme residual values, and reduce the error interval. This algorithm can not
only improve the global prediction accuracy of landslide deformation, but it can also ensure good local
prediction accuracy. The algorithm can describe well the characteristics of the complex chaotic system,
which provides a new way to improve the prediction accuracy of landslide deformation. Since the
algorithm in this paper combines the performance of multiple methods, it will increase the complexity
and running time of the model to a certain extent. The question of how to further improve the running
speed and performance of the combined model is the next step to be studied.
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