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Abstract: In the fields of geographic information systems (GIS) and remote sensing (RS),
the clustering algorithm has been widely used for image segmentation, pattern recognition,
and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling,
traditional clustering methods are limited due to computational complexity, noise resistant ability
and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context,
which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this
paper, a new method, cell-dividing hierarchical clustering (CDHC), is proposed based on convex hull
retraction. The main steps are as follows. First, a convex hull structure is constructed to describe
the global spatial context of geospatial objects. Then, the retracting structure of each borderline is
established in sequence by setting the initial parameter. The objects are split into two clusters (i.e.,
“sub-clusters”) if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly
split and the initial parameter is updated until the terminate condition is satisfied. The experimental
results show that CDHC separates the multi-density objects from noise sufficiently and also reduces
complexity compared to the traditional agglomerative hierarchical clustering algorithm.

Keywords: spatial clustering; convex hull retraction; multi-density point cluster; CDHC

1. Introduction

Clustering analysis is the task of grouping a set of objects in such a way that the objects in
the same group (called a cluster) are more similar to each other than to those in other groups (clusters).
The clustering of geospatial objects has found wide applications in the fields of image segmentation,
pattern recognition, and cartographic generalization [1–5]. One of the main applications of clustering
in Hyperspectral Remote Sensing is dimensionality reduction [6–8]. The clustering analysis can
be used in map generalization and vectorization [9,10] and some new clustering algorithms are
applied to the segmentation of noise and signals in time-variant scenarios [11]. However, in reality,
clustering analysis is not a specific algorithm, but a task to be solved, which can be achieved by various
algorithms that differ significantly in their definitions of cluster constituents and efficiency in finding
them [12]. The popular notion of clustering in geographical information is to classify geospatial objects
with small distances between clusters, called spatial clustering.

Generally, spatial clustering classifies objects according to their topological, geometric or
geographic properties. There are four types of traditional spatial clustering methods: the hierarchical
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clustering method, partitioning clustering method, grid density clustering method and clustering
method based on preference information [13]. Selecting an appropriate clustering method depends on
the individual dataset and intended use of the results. Zhou [14] suggested an N-best pruning strategy
to minimize the search space in the working flow of the hierarchical clustering method. Gelbard [15]
employed the Binary-Positive method for combining attribute information in the hierarchical structure.
In addition, Chen [16] proposed revealing latent spatial information using spatial clustering of points
in direction. Most of the abovementioned methods are not automatic processes. Instead, they are
limited by the users’ prior knowledge and rather sensitive to noise. As a result, little attention is paid
to the identification of multi-density geospatial objects and noise.

The multi-density clustering approach has been widely discussed in spatial data-mining research.
The traditional Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm
was improved to cluster multi-density data, such as Knowledge Discovery and Data Clustering
(KDDClus), and an incremental clustering based on automatic Eps estimation [17,18]. The differences
between multi-density objects and noise are mainly embodied in the spatial context. Gold [19] defined
the spatial context as the “extent” of an entity, including discrete objects, networks, and surfaces,
while the extent usually refers to the metric proximity between neighbouring objects in the model
space. In this paper, the spatial context can be interpreted as local spatial context only. To distinguish
multi-density objects from noise, it is necessary to proceed from the global spatial context of geospatial
objects. The hierarchical clustering method is a process of aggregating or splitting by building
a hierarchy [20]. In general, hierarchical clustering strategies fall into two categories: agglomerative
hierarchical clustering (AHC) and divisive hierarchical clustering (DHC). DHC is a “top–down”
approach, that is, all the geospatial objects start in one cluster and are split into two sub-clusters by
the hierarchy. Geospatial objects are seen as a whole prior to cluster splitting. The clustering strategy
is very close to the global spatial context of geospatial objects.

In this paper, an unsupervised clustering algorithm is proposed to handle geospatial objects,
which takes the global context characteristics into consideration, depends less on prior knowledge,
and enjoys a great advantage in identifying multi-density objects and noise.

The major contributions of this paper include:
(1) Introducing the global spatial context of geospatial objects to distinguish between noise points

and multi-density points.
(2) A novel divisive hierarchical clustering algorithm is proposed to manage multi-density

discrete objects, designing the boundary retraction structure to implement the whole divided into
two sub-clusters.

(3) A comparison between the traditional agglomerative hierarchical clustering algorithm and
the dividing hierarchical clustering algorithm is presented in this paper.

In Section 2, we will describe the algorithm flowchart of novel clustering. This is followed by
a description of the key step of the algorithm, boundary retraction, which is used to find the boundary
of different clusters. Then, the splitting processing of discrete points will be presented, and clustering
of multi-density discrete objects based on the less prior knowledge is achieved. Section 3 will describe
a series of experiments, including the comparison with the clustering algorithms, multi-density objects
clustering and spatial analysis on Wuhan’s business circle. The subject of every experiment is different.
Section 4 will conclude the paper with a summary and outlook.

2. Methods

Wu [21] proposed a global structural method to approximate aggregation characteristics of point
cluster using the convex hull hierarchical structure. The global structure of geospatial points is aimed
at revealing characteristics of points by ignoring individual differences. In this section, we first
introduce the design thought and principle of the clustering algorithm in Section 2.1. We then propose
a hierarchical clustering method based on the global structure analysis by establishing the boundary
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retraction structure in Section 2.2 and implement the divisive clustering of multi-density geospatial
objects in Section 2.3.

2.1. Design Concept and Principle

Compared to AHC algorithms, DHC algorithms start at the top with all objects in one cluster.
The cluster is split based on the global structure analysis of geospatial objects. In the process of
geospatial objects clustering, the convex hull is used to describe the global structure by regarding
the objects as an “organism”. Considering that spatial differentiation characteristics of the “organism”
are mainly embodied between the adjacency connected clusters, the following strategies are adopted
in order to explore the underlying differences of spatial clusters and split the ”organism” with
an appropriate terminate condition. At first, the retracting structure of geospatial objects is built
based on the convex hull borderline. Then, similar to the process of cell division, the borderline is
concave so that a cluster is split into two sub-clusters when the boundaries intersect.

2.2. Boundary Retraction

Zhou [22] took the mean distance of geospatial objects as the constraint for convex hull boundary
retraction. However, it is difficult to build a retracting structure of multi-density objects using invariant
parameters. In this paper, the parabola-based convex hull retraction method is proposed, which is
an adaptive way to obtain a cluster boundary for multi-density geospatial objects.

Li [23] used an arc as a boundary to generate a retraction area. The concept of retracting accuracy
(RA) is introduced to limit the accuracy of a clustering boundary. Thus, the retracting accuracy of
a discrete point set P is obtained as follows:

(a) the convex hull Pc of the discrete point cluster P is constructed;
(b) an arc with the radian of α towards the inside of the convex hull is drawn through two consecutive

points Pm and Pn in the convex hull Pc (Figure 1);
(c) the retracting accuracy α is made from the arc and line PmPn, and the retracting depth is h.
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Figure 1. Arc-limited retracted structure with retracting accuracy α, with PmPn as one of the convex
hull borderlines, O is the centre and h is the retracting depth.

According to the arc-limited retracted method, during discrete boundary detection, the range of
the retracting accuracy is in [0, π] and retracting depth is h ≤ |PmPn |

2 . The retracting depth will decrease
with the length of the borderlines; therefore, using the arc-limited retracted method, it is difficult to
make the borderlines intersect.

In this study, we modified the range of retracting accuracy in [0, 2π]. At the same time,
we compared the arc-based method with the new parabola-based convex hull retraction method.
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The calculation of retracting accuracy in the parabola-based convex hull retraction method is
similar to the arc-based convex hull retraction method. The procedure is as follows:

(a) construct the convex hull Pc of the discrete point cluster P;
(b) draw a parabola towards the inside of the convex hull through two consecutive points Pm

and Pn in the convex hull Pc (Figure 2). The midpoint of PmPn is the origin of the parabola,
and the parabolic function complies with Equation (1);

2(h− y) = γ · x2(|x| ≤ |PmPn|
2

) (1)

(c) obtain the retracting accuracy made from retracted boundary PmPn and parabola PmPn, its value
is γ, and the retracted depth is h.
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Even with the same retracting accuracy for the boundary, the retracting area will vary because
the boundary retracting depth is different. Therefore, we can adjust the retracting area according to
the objects’ density around the boundary when managing multi-density discrete geospatial objects.

Figure 3 shows the arc and parabola retraction structure at different limiting conditions.
According to the comparison, we can draw the following conclusion. With the same retracting
depth, the retraction area based on arc retraction structure is larger than that based on parabola
retraction structure. There are 10 points that need to be inspected in the retraction area based on arc
retraction structure, but only four points need to be inspected in the retraction area based on parabola
retraction structure. Therefore, the new parabola retraction structure has higher detection efficiency
than that of arc retraction structure. In addition, the point chosen to retract the cluster borderline
using these two methods is different. In Figure 3, the chosen point is too close to the right side around
the boundary line using the arc retraction structure, and the retracted boundary will form a big twist.
Compared with the arc retraction structure, the point chosen to retract the boundary in the parabola
area is more reasonable.

The causes of this difference can be summarized as follows. The angle of the boundary line and
the tangent of the points in the parabola is smaller than 90◦, and the arc retraction structure is more
divergent in the geographical space. As a result, the parabola retraction structure is used to form
the retraction area and implement the clustering method.
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Figure 3. The same retracting depth at a different limiting condition.

2.3. Clustering Processing

After constructing the convex hull of geospatial points and determining the value of the retracting
accuracy γ, we establish the parabola retraction area for each borderline of the convex hull.
For longer borderline lengths, the cluster is easier to split between geospatial points of the borderline.
It becomes possible to continuously retract the line segments where two different sub-clusters connect.
The borderline retraction will not stop until the cluster is split. In Figure 4, the flow diagram displays
the divisive hierarchical clustering algorithm based on convex hull retraction.
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The following is the complete procedure of the algorithm:
Step 1: construct the minimum convex hull of geospatial points;
Step 2: construct the borderline retraction structure in sequence by traversing the geospatial

points starting from the longest boundary line in the convex hull;
Step 3: assign the initial parameter value α.
The value of retracting accuracy γ is determined according to the point density near the convex

hull borderlines. The estimation method of point density is shown as Equation (2):

ρ =

√
S
N

, (2)

where ρ is the estimated point density in the convex hull, S is the area of the convex hull, and N is
the quantity of points inside the convex hull. The calculation of boundary retracting accuracy is shown
as Equation (3):

γ =
α

ρ
(3)

After setting the initial value of parameter α, it will be applied to the clustering algorithm.
Each time a new sub-cluster is obtained, the convex hull area and the quantity of geospatial objects in
the sub-cluster will change. The clustering process homogenizes the object distribution in geographical
space and guarantees that retracting accuracy γ converges with changing ρ. The best clustering
results appear when the initial value of parameter α ranges between [1,2] based on a large number
of experiments.

Step 4: retracting borderlines
There are two purposes for constructing the parabola retracting structure. One is to limit the search

area to improve efficiency, and the other is to define it as a termination condition of the split clustering.
We construct the retraction structure in sequence according to the length of the convex hull borderlines.
The procedure is shown in Figure 5. First, we construct the retracted structure of the longest borderline
of the convex hull. Second, we find all points inside the retracting area and set the point, which is
closest to the borderline as the retracting point. If objects in the area are empty, the borderline is marked
as “0”. Figure 5 shows a complete process of borderline retracting and the cluster division. If the nearest
point inside the retracting area belongs to the borderline point, as shown in Figure 5c, the cluster will be
divided into two sub-clusters. Figure 5d shows the result of division. We can find that two sub-clusters
share a common point after dividing. We can determine which sub-cluster the common point belongs
to based on the distance from the point to the nearest point of the sub-cluster.

Step 5: sub-cluster partitions
The sub-cluster obtained by the points division can be regarded as an independent cluster.

Then, we repeat Steps 2 to 4 until all the borderlines of the sub-clusters are marked as “0”. If there
are no more than three points in a sub-cluster and it is not able to build a convex hull, the points are
regarded as noise.

The clustering process above is similar to the process of cell division in biology. Therefore, we name
the clustering algorithm Cell-dividing Hierarchical Clustering (CDHC for short).
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3. Experiments and Results

A series of experiments are conducted to validate the efficiency of the CDHC algorithm in
comparison to the traditional AHC algorithm and the Delaunay triangulation clustering algorithm.
We also verify the superiority of the CDHC algorithm in dealing with the multi-density objects.

3.1. Experiment 1—Comparison of Clustering Algorithms

The experiment is designed to test the effectiveness through comparison of different calculation
results. A set of points with edge noises, as shown in Figure 6a, are chosen as the experimental data.
It is clear that there are two point clusters, which are surrounded by noisy points. The CDHC algorithm
is used to cluster the experimental data with the initial parameter of α = 1.45 and the clustering result
is shown in Figure 6b.

The traditional AHC algorithm takes each object as an independent class. For a given set of N
objects (N = 0, 1, 2, . . . , n), there are N classes and each class contains one object at the beginning.
Therefore, an N × N distance matrix can be obtained. The distance between two classes is computed as
the distance between objects in the two classes. The nearest two classes are merged, and the distance
between the new class and the original classes are recalculated. The remainder is done in the same
manner until all the classes are merged into a class or the distance between two classes reaches a given
threshold. Figure 6c shows the clustering result using the traditional AHC algorithm with 5.0 as
the threshold.

Li [24] proposed the clustering algorithm based on Delaunay triangulation (CBDT). The clustering
of the experimental data using the CBDT algorithm is accomplished in three steps. First, the Delaunay
triangulation is constructed for the point set. Second, all triangles are classified into three categories,
i.e., small triangles, long–narrow triangles and big triangles, according to the ratio of the triangle
area to the side length. Finally, the clustering result is generated by deleting long–narrow triangles
and big triangles. Figure 6d shows the Delaunay triangulation of the experimental data. Figure 6e
shows the clustering result using the CBDT algorithm with K = 2.5 (K is the ratio of the longest side to
the shortest side of the triangle).
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K < n. A personal computer with a Windows 32-bit operating system, 2.6 GHz processor and 1G 
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between CDHC and AHC algorithms is shown in Table 1. 

According to Table 1, the CDHC algorithm is superior to the traditional AHC algorithm in 
dealing with a large number of geospatial points. However, the noise points are processed as a cluster 
when the CDHC algorithm is adopted. Thus, the efficiency of the CDHC algorithm is lowered due to 
the noise points. 

The spatial clustering using the CBDT algorithm is based on the identification of the triangle 
shape after Delaunay triangulation. The clustering result is sensitive to the noise points between two 
sub-clusters. In addition, an improper K will lead to a combination of two sub-clusters or separation 
of a sub-cluster. To avoid the merging of two sub-clusters, a small K is used in Figure 6e. It appears 
that some points in the same sub-cluster are classified as noise. 

Figure 6. Experimental results. (a) Experimental data; (b) Clustering result using the cell-dividing
hierarchical clustering (CDHC) algorithm; (c) Clustering result using the traditional agglomerative
hierarchical clustering (AHC) algorithm; (d) Delaunay triangulation of the experimental data;
(e) Clustering result using the clustering algorithm based on Delaunay triangulation (CBDT).

Through a comparison of clustering results using the CDHC algorithm, the CBDT algorithm and
the traditional AHC algorithm, it can be inferred that the CDHC algorithm can handle the clustering
analysis of spatial data well and is capable of resisting noise.

To compute an N × N distance matrix, the time complexity using the AHC algorithm is O(n2),
and the time complexity using the CDHC algorithm is O(Kn), where K is the number of clusters
and K < n. A personal computer with a Windows 32-bit operating system, 2.6 GHz processor and
1G physical RAM serves as the experimental platform. The comparative result of time complexity
between CDHC and AHC algorithms is shown in Table 1.

According to Table 1, the CDHC algorithm is superior to the traditional AHC algorithm in dealing
with a large number of geospatial points. However, the noise points are processed as a cluster when
the CDHC algorithm is adopted. Thus, the efficiency of the CDHC algorithm is lowered due to
the noise points.

The spatial clustering using the CBDT algorithm is based on the identification of the triangle
shape after Delaunay triangulation. The clustering result is sensitive to the noise points between
two sub-clusters. In addition, an improper K will lead to a combination of two sub-clusters or
separation of a sub-cluster. To avoid the merging of two sub-clusters, a small K is used in Figure 6e.
It appears that some points in the same sub-cluster are classified as noise.
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Table 1. A comparison of time complexity between CDHC and AHC algorithms.

Number of Points

Time(s) Algorithms

CDHC Algorithm AHC Algorithm

355 1.45 1.24
773 2.25 16.11
1198 9.27 55.75
1432 29.52 21.01
2089 60.44 397.27

11,550 3.61 × 103 4.07 × 104

3.2. Experiment 2—Clustering of Multi-Density Objects

The objective of this experiment is to highlight advantages of the proposed CDHC algorithm.
The first sets of data, multi-density points without noise, are clustered using the CDHC algorithm,
and two additional sets of data with noise are processed using different clustering methods in
the following manner.

We manage multi-density objects with noises using the CDHC algorithm in experiment 2.
The first experimental data are multi-density objects without noise, as shown in Figure 7a, and there
are three geospatial point sets with different densities. The CDHC algorithm is used to process
the multi-density points with the initial parameter of α = 1.75. The clustering result is shown in
Figure 7b.

As shown, the CDHC algorithm identifies multi-density objects well. To clarify this point further,
two other experiments are carried out using CDHC algorithm, while the CBDT algorithm, DBSCAN algorithm
and another common clustering algorithm, K-means, were taken as comparisons. For multi-density objects
and noise, these algorithms share many characteristics; therefore, the two experiments are to test sufficient
separation of the multi-density objects from noise. There are two clusters in one of the experimental data
with abundant noise in Figure 8a, and the other experimental data are multi-density objects with a little noise,
as shown in Figure 9a. The cluster analysis has been applied to the experimental data using CDHC, CBDT,
DBSCAN and K-means algorithms.
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Through a comparison of clustering results, CDHC, CBDT and DBSCAN algorithms can
resist noise while managing general experimental data in spite of the noise. The three methods
have the advantage of good anti-noise ability with a recognition rate of 95% in Figure 8b–d.
However, the traditional clustering method, K-means algorithm, does not have the ability to identify
effective data and noise, as shown in Figure 8e. Then, the three algorithms are applied to multi-density
objects with a little noise. The results show that the three clusters with different-density objects can
be identified from the noise in Figure 9b. The CDHC algorithm adopts the variable of retracting
accuracy and enjoys a strong advantage in dealing with multi-density geospatial points. However, it is
difficult to apply the CBDT algorithm to cluster the multi-density points based on the triangle shape
in Figure 9c, and the recognition rate is reduced up to 70%, that is, because the method does well
in identifying the internal structure of clusters through triangle subdivision and ignores the global
spatial context of geospatial objects. Compared with the clustering result using the CDHC algorithm,
we find that one noise point in the dashed circle is not identified correctly using DBSCAN algorithm in
Figure 9d. DBSCAN can find non-linearly separable clusters and even more complex shapes, but it
cannot cluster data sets well with large differences in densities. If the distance between the points
of the right cluster is enlarged, we will not obtain satisfactory results such as the clustering result
above. The K-means algorithm is a general clustering method to find cluster centres that minimize
intra-class variance. Although the cluster centres can be accurately identified, the geospatial objects
with multi-density are challenging, and partitioned into the wrong cluster. As is shown in Figure 9e,
the clustering result is far from the expected goal.

3.3. Experiment 3—Application of CDHC Algorithm for Spatial Analysis

This experiment is aimed at performing the spatial analysis of retail agglomeration in business
circles in Wuhan, China, using the CDHC algorithm. The main function of a business circle is
to convince customers to make purchases. Whatever the business circle orientation, the food
service industry can generally represent the commercial prosperity in Chinese cities and towns.
Hence, the restaurants in Wuhan’s Central District are chosen as the experimental data (as shown in
Figure 10), which are divided into five types: Chinese restaurant, Western restaurant, hot-pot restaurant,
fast food and supermarket. The spatial distribution of these restaurants reflects a wide variety of
consumption activities.
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Figure 10. Spatial distribution of restaurants in Wuhan. (a) Wuhan’s Central District; (b) Chinese
restaurant; (c) Western restaurant; (d) Fast food; (e) Hot-pot restaurant; (f) Supermarket.

Located at the intersection of the middle reaches of the Yangtze River and the Han River, Wuhan is
divided into three districts, i.e., Wuchang, Hankou and Hanyang, and sprinkled with many lakes in
the central district. It can be observed that many restaurants are divided or gathered by the natural
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topographic conditions and water systems. At first, the spatial clustering analysis of the five types of
restaurants is performed using the CDHC algorithm. Then, the clustering result is subject to the overlay
analysis, which gives rise to a thematic map shown in Figure 11a.

In the map, 0 to 5 represent the number of overlaying layers, respectively. For example, the regions
where the number of overlaying layers is 5 are displayed on the satellite image of Wuhan in Figure 11b.
By referring to the map, there are two main regions: the left region (I) is near the Yangtze River and
Han River in Hankou, and the right one (II) is located at the centre of Wuchang. The results are
compared with the planning and development of the business circles. We find that the WuGuang and
Jianghan Road business circles are located in region I, and region II contains the Xudong, Zhongnan and
Jiedaokou business circles. The two regions are within the most economically developed areas in
Wuhan, and the results of this experiment match well with the current commercial development
situation in Wuhan.
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4. Discussion and Conclusions

Spatial clustering algorithms are developed to group a set of objects in such a way that discrete
objects in the same group, which are close to each other, are separate from those in other groups.
However, there is a similarity of spatial structure between multi-density objects and noise data.
Thus, it becomes more difficult to distinguish between the two in the local spatial context. It is necessary
to address multi-density discrete objects based on a global spatial structure. In this paper, a modified
convex hull structure is presented to describe the global spatial context of discrete objects. A boundary
retraction is used to mine spatially stratified heterogeneity between clusters in our clustering method.
Then, the boundary structure of each sub-cluster describes the global spatial context of the new subset.
The density of spatial objects is used as the termination condition of the algorithm, so the CDHC
algorithm can easily distinguish noise from multi-density objects.

Algorithmic efficiency has long been one of the issues in clustering analysis when dealing
with large amounts of data. Many clustering algorithms work well in processing a small amount
of data, but algorithm performance becomes worse as the data volumes grow. After comparison
with two hierarchical clustering algorithms in experiment 1, we find that the CDHC algorithm has
advantages in dealing with a large amount of spatial objects. The CDHC algorithm is a divisive
hierarchical clustering, applying a “top–down” approach: all spatial objects start in one cluster and are
split into two sub-clusters by the hierarchy. This avoids computing the position of each object at each
iteration, so the CDHC algorithm can significantly improve efficiency of clustering analysis.

This paper proposes a new spatial clustering algorithm: cell-dividing hierarchical clustering
(CDHC), which manages multi-density geospatial points. The CDHC algorithm can describe the global
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spatial context of geospatial points by establishing a minimum convex hull structure. After a cluster is
split into two sub-clusters due to boundary retraction, each sub-cluster will be split again in the same
way. Thus, it can be seen that geospatial points can be classified based on global structure at all
times. Then, the algorithm uses a parabolic-limited retracted method to split the points, and achieve
the requirements of split hierarchical clustering.

The experimental results show that the noise points and multi-density point sets are well
identified using the CDHC algorithm. In addition, the CDHC algorithm can extract the internal
differentiation regularity of a geospatial objects cluster using a variable parameter strategy according
to the characteristics of spatial clusters. The CDHC algorithm avoids the uncertainty resulting from
deterministic parameters, as well as the high computational complexity required by traditional
hierarchical clustering algorithms. Although the CDHC algorithm has the ability to identify the points
at boundaries, it is unable to address the clusters contained within another cluster. The improved
DBSCAN methods are able to handle this challenge, although there are still some problems and
limitations. Future work will continue research in this area, combining the two clustering methods to
solve the multi-density clustering problem.
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RA Retracting Accuracy
AHC Agglomerative Hierarchical Clustering
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CDHC Cell-dividing Hierarchical Clustering
CBDT Clustering algorithm based on Delaunay Triangulation
DBSCAN Density-Based Spatial Clustering of Applications with Noise
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