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Abstract: Effectively identifying an airport from satellite and aerial imagery is a challenging task.
Traditional methods mainly focus on the use of multiple features for the detection of runways and
some also adapt knowledge of airports, but the results are unsatisfactory and the usage limited.
A new method is proposed to recognize airports from high-resolution optical images. This method
involves the analysis of the saliency distribution and the use of fuzzy rule-based classification. First,
a number of images with and without airports are segmented into multiple scales to obtain a saliency
distribution map that best highlights the saliency distinction between airports and other objects.
Then, on the basis of the segmentation result and the structural information of airports, we analyze
the segmentation result to extract and represent the semantic information of each image via the
bag-of-visual-words (BOVW) model. The image correlation degree is combined with the BOVW
model and fractal dimension calculation to make a more complete description of the airports and
to carry out preliminary classification. Finally, the support vector machine (SVM) is adopted for
detailed classification to classify the remaining imagery. The experiment shows that the proposed
method achieves a precision of 89.47% and a recall of 90.67% and performs better than other state of
the art methods on precision and recall.
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1. Introduction

Recent advances in the quality and availability of very high resolution (VHR) imagery have
opened new prospects in the field of the automatic detection of geospatial objects for multiple
purposes [1–3]. Among these objects, airports have been the focus of considerable attention because
of their significance in civil and military applications. Thus, efficiently finding airports from VHR
remote sensing imagery has attracted the attention of many researchers, and many methods for airport
detection or recognition have been proposed [4–12].

Current methods, according to their usage of semantic information, can be classified into two
major strands. One strand focuses on the use of multiple features, including line features [4–6],
or texture features [7–9], or point features [10,11], to directly extract runways or extract patches to
extract runways for airport detection. These methods, while using VHR imagery data, only focus
on the extraction of features such as line features, texture features or point features to only detect
part of the airport, such as runways, and fail to take other items of the airport into meaningful
account, so they are unable to utilize the semantic information of the complete airport to achieve better
performance. The other strand uses multiple features and the knowledge of airports to help detect or
interpret airports. McKeown et al. [12] introduced a system named system for photo interpretation of
airports using MAPS (SPAM). This system is knowledge-based and uses the MAPS database [13,14]
to coordinate and control image segmentation and to provide several capacities, including the use of
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spatial constraints, explicit camera models, image-independent metric models and multiple image
cues to help extract the semantics and to interpret the airport scenes on VHR imagery. Zhao et al. [15]
proposed a saliency-constraint method for airport detection on low-resolution aerial imagery. This
method uses a saliency-based constraint to detect the possible regions of interest (ROI) and adapts a
refined version of the popular semantic model of the BOVW model to decide whether the ROI is an
airport. These methods adapt the semantic information to improve the detection or interpretation of
the airport, but they have drawbacks that limit their usage. The drawbacks include the limit of image
resolution and the heavy dependence on external data and information, including geodetic coordinate
data and camera model parameters, which serve as a priori information and are often unavailable
for VHR imagery, for the extraction of abstract and detailed semantics. In sum, traditional methods
rely heavily on external data and information or fail to effectively combine the semantics and VHR
imagery for the efficient recognition of airports.

The efficient recognition of airports from imagery requires the understanding, learning and
expression of semantic information. Semantic information can help improve the performance of object
recognition. For a given image, regardless of the type, semantic information refers to the meanings of
an image. The meanings of an image can be further divided into four levels from the lowest level to
the highest: semantic types, object composition, abstract semantics and detailed semantics, according
to [16]. In airport recognition, the semantic types are all fixed to remote sensing imagery. What is
supposed to be done is the extraction and usage of the abstract semantics (components that make up
the object) and the detailed semantics (relationship between the component, i.e., a detailed description
of the image) to decide the object composition (whether the type of object in the image is an airport or
not). However, extracting and using the abstract semantics and detailed semantics are challenging
tasks since there exists “semantic gaps” between low-level features and the relationships between the
components (i.e., detailed semantics), and while research has been conducted to eliminate the gap
since the end of 20th century [17], it still remains a challenging topic [18–20].

In this paper, a content-based method is proposed to recognize and retrieve airports from VHR
remote sensing imagery. The proposed method combines the semantics and VHR imagery and adapts
image-based analysis of the structural information of airports, which will be further discussed in
Section 2.2, as well as the use of features to extract semantic information to recognize airports from
VHR remote sensing imagery. This method is suitable for VHR imagery, and it does not require heavy
dependence on external data or information. It is based on the learning of features of the VHR image
to extract semantics for a better representation and recognition of airports.

The outline of this paper is as follows. Section 1 introduces the background of the research.
Section 2 introduces the details of the proposed method. Section 3 introduces the experiment and
compares the result with competing methods. Section 4 concludes about the efficiency of the proposed
methods and presents the plan for future research.

2. Proposed Method

The proposed method is based on the use of VHR remote sensing imagery. It uses saliency
detection to derive the best segmentation to describe the structural information of the airport. The
BOVW model and the segmentation result are combined to help describe the airport from features.
The image correlation degree is combined with the BOVW model and fractal dimension analysis
to extract the object composition under fuzzy rules for preliminary classification. SVM is used for
detailed classification. The overall procedure of the proposed method is shown in Figure 1.
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Figure 1. Overall procedure of the proposed method.

2.1. Segmentation for Saliency Detection

Saliency detection helps to detect the salient regions in the image. The result of saliency detection
benefits many other fields, such as computer vision and remote sensing. For a scene on the given
image, the kind of objects forming the scene and the spatial-context relationship between the scenes
are important parts of both abstract semantics and detailed semantics according to the definition
in [16]. The objects contained in an image of an airport can be briefly classified into runway, terminals,
tarmacs and other accessories. These objects are on the patch-level scale, i.e., their sizes in the image
exceed the pixels, but are still smaller than the entire image, and vary in number, size and other
low-level features; and they may be mixed together, but their consistency is uniform with a relatively
distinct saliency distribution from other object or scenes in VHR images. According to [21], there are
three major strands for the definition of saliency: interest points, class-specific saliency and generic
saliency. Among these three methods, class-specific saliency aims to best distinguish a particular class
of objects from others. Considering the complexity and hybridization between airports and other
objects, saliency detection methods should emphasize such a difference from other objects and scenes
in the form of differences in the saliency distribution. Currently, many state of the art saliency detection
methods belong to generic saliency and are mainly used for close-range target detection or simple
target detection [22–24]. In this study, we focus on class-specific saliency detection. First, the sample
images are grouped into two collections, namely one with airports and one without airports. Then,
each image is segmented into patches, and multiple sizes of segmentation patches are employed to
derive different segmentations for each image. Next, for each image and each segmentation result,
we apply a saliency detection method via joint embedding of spatial and color cues [25] for detecting
the best segmentation scale that best highlights the saliency differences between airports and other
objects. We adapt the saliency detection method from the pixel level to the patch level. Each patch is
considered as a pixel, and we combine the spatial-constraint-based saliency, color-double-opponent
saliency and similarity-distribution-based saliency to derive the saliency values for each patch. Finally,
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for each image in the two collections, and for each scale, the saliency values of the patches are ranked.
The number of salient image patches is set as follows:

Num “ rMˆM{2s (1)

where Num is the number of salient patches and M is the parameter defining how segmentation will
be applied.

For one value of M, one image is segmented into M ˆ M segmentation patches with the same
size. For all images, we can count how many times each segmentation patch is ranked among salient
patches and generate the M ˆM saliency distribution maps for each collection. The intensity of each
pixel in the saliency distribution map equals the times of the appearance among salient patches of the
corresponding patch.

Different values of M lead to different segmentations and distinct saliency distribution maps.
These maps are different, and the differences between the frequencies of their patches can be salient.
In this study, we use the following equations to assess the performance of the segmentation of
different levels:

AD1 pMq “ |MaxS1´MinS1| (2)

AD2 pMq “ |MaxS2´MinS2| (3)

Sa pMq “ AD1 pMq {AD2 pMq (4)

where AD1(M) is the absolute value of the difference between MaxS1 and MinS1; MaxS1 and MinS1
are the maximum and minimum sums, respectively, of each row in the M ˆM saliency distribution
map of the collection of images with airports; AD2(M) is the absolute value of the difference between
MaxS2 and MinS2; MaxS2 and MinS2 are the maximum and minimum sums, respectively, of each row
in the M ˆM saliency distribution map of the collection of images with other objects; and Sa(M) is the
ratio of AD1(M) to AD2(M). Here, a larger Sa(M) indicates a better performance of highlighting the
saliency distribution difference between two collections. The relationship between variable M and
Sa(M) is shown in Figure 2. Each test collection contains 50 images.
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Figure 2 shows that when scale variable M is set as 6, segmentation exhibits the best performance.
However, when scale variable M is set above 9, the saliency distribution maps of the two collections
become uniform. Therefore, M is set as 6 to obtain the best performance.

2.2. Semantic Information Extraction

Sample images are used to extract the semantic information of an airport to guide the recognition
of airports on testing images. For complex scenes, such as airports, salient patches can be the most
representative, whereas other non-salient objects and backgrounds can also correspond to the given
scenes [26]. Therefore, after segmenting sample images with airports, we combine the patches in the
same row into six major patches for each image. Then, we proceed to analyze the major patches.

The airport is a hybrid of relatively simple components, including runways, terminals, tarmacs
and other accessories. They are components of the airport (abstract semantics) and have a certain
spatial relationship [27]. The segmentation result can describe their spatial relationship, which is part
of the detailed semantics. Figure 3 shows the segmentation result of the airports with runways on one
side of the terminal, and Figure 4 shows the segmentation result of airports with runways on more
than one side of the terminal. The six major patches are marked from 1 to 6.
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(a) Original image; (b) segmentation result.

We can see from Figures 3 and 4 that in Major Patch 1 and Major Patch 2, terminals and tarmacs
appear together, while runways and other objects also appear when the airport has runways on more
than one side of the terminal. We can also concluded from Figures 3 and 4 that in Major Patch 3 and
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Major Patch 4, tarmacs, terminals and runways appear together with other objects. Besides, it can be
observed form Figures 3 and 4 that in Major Patch 5 and Major Patch 6, runways begin to be the major
component, while other accessories also appear. In general, while the components of airports mix with
each other, they have certain spatial distribution rules, and when the image is segmented, these rules
become obvious. These six major patches contain part of the airport scene, and we can have a complete
description of the airport scene by describing them. Based on the analysis of major patches, we can
extract semantic information to better describe the airport. In this paper, the BOVW model is used to
describe features from the major patches to help extract and express the semantic information.

The BOVW model is an effective and traditional way of representing the semantic information of
objects [28,29]. The BOVW model was first introduced for text analysis [30] and was soon adopted for
image classification and retrieval. It requires the extraction and the rearrangement of primitive features
into visual “words” to help extract, analyze and express the semantic information. When using BOVW,
the image scene is considered as a collection of visual “words”. In this paper, considering the variation
in spatial resolution, illumination and rotation, we extract the robust scale-invariant feature transform
(SIFT) [31] features for the BOVW model and generate the 6 corresponding dictionaries to encode the
SIFT features.

2.3. Fuzzy Rule-Based Method for Preliminary Classification

When the number of visual “words” is very large, the BOVW model will encounter the drawback
of being unable to effectively encode the low-level features [32], which limits its ability to express the
object composition (what object is on the given image) completely and accurately. Since the BOVW
model was proposed, studies on the improvement of the BOVW model for accurately finding and
expressing the object composition in a given image have been conducted. Many methods assume
that the BOVW model has the object composition directly expressed in the statistical distribution of
visual “words” [33,34]. These methods rely on a prior statistical assumption and are only practical for
close range imagery, such as medical imagery. Fuzzy-rule classification provides a new and effective
approach to express the object composition.

In recent decades, fuzzy-rule classification has been the focus of considerable attention from
researchers worldwide [35–37]. Fuzzy-rule classification is characterized by its ability to deal with
incompleteness of knowledge, which indicates that this method is capable of deriving potential
semantic information from different scenes on VHR images. For various purposes, different types of
knowledge and rules are selected. Among these types of knowledge and rules, the image correlation
degree stands out because of its efficiency in deriving the object composition from features [38].
Therefore, we select the image correlation degree and utilize the visual words generated to build the
fuzzy classifier for preliminary classification.

First, we divide the sample images into two groups, namely Group 1 with airports and Group 2
without airports, and calculate the average wordlist Ave1 of Group 1. As for Group 2, since the
non-airport objects are too complicated to be expressed with a single average wordlist, an improved
fractal dimension calculation method [39] is adapted to get the estimated fractal dimension of each
image with other objects. The improved fractal dimension calculation method is based on box-counting
strategies and considers the image as a 3D continuous surface. Its procedures can be summarized
as follows:

1. Divide the image into blocks of size s ˆ s with two adjacent blocks overlapping at the
boundary pixels.

2. Assign a column of boxes starting with the pixel with the minimum gray level in the block.
3. For different sizes of boxes, compute Ns, the corresponding total number of boxes covering the

entire image surface.
4. Plot the least squares linear fit of log(Ns) versus log(s ´ 1) for the calculation of the

fractal dimension.
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5. After calculation of the fractal dimension, fuzzy C mean is used to further divide Group 2 into
several smaller groups. To assess the classification, we use the Xie-Beni index [40] to decide the
number of classes. The Xie-Beni index identifies overall compact and separate fuzzy C partitions,
and a smaller Xie-Beni index indicates a better classification. Figure 5 shows the performance of
different numbers of classes.
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From Figure 5, it can be concluded that when class number is 5, the Xie-Beni index is the smallest,
and that when the class number exceeds 20, the Xie-Beni index is larger than 1. Therefore, we divide
Group 2 into 5 classes and generate the corresponding average wordlists. Then, the Euclidean distance
from the wordlist of each image to the two mean wordlists is calculated as follows:

Edi pj, kq “ |Avek´wordlist pj, iq|
i “ 1, 2, 3, 4, 5, 6
j “ 1, 2, . . . , n
k “ 1, 2, 3, 4, 5, 6

(5)

where wordlist(j i) is the wordlist of image j in group i and Edi(j k) is the Euclidean distance between
the wordlist of image j in group i and Avek.

Next, we calculate the relational degrees of each image to its own group and the other group by
using the following equations:

Ri pj, kq “ 1´ Edipj, kq
řk“1

6 Edipj, kq
,

i “ 1, 2, 3, 4, 5, 6
j “ 1, 2, . . . , n
k “ 1, 2, 3, 4, 5, 6

(6)

where Ri(j, k) is the correlation degree of image j in group i to group k.
Finally, we calculate the average value of the relational degrees of Group 1 and the threshold for

further use, as follows:

f 1 “

ři“1
NUMgroup 1

R1 pi, 1q

NUMgroup 1
(7)

TH1 “ 2

g

f

f

e

ři“1
NUMgroup 1

r f 1´ R1 pi, 1qs2

NUMgroup 1
(8)



ISPRS Int. J. Geo-Inf. 2016, 5, 115 8 of 18

where TH1 is the threshold of Group 1, NUMgroup1 is the number of images in Group 1 and f1 is the
average image correlation degree of Group 1.

Given f1 and TH1, the fuzzy classifier can be built to start the preliminary classification. The test
image is rotated clockwise to 0˝, 90˝, 180˝ and 270˝ to segment it and to generate the corresponding
wordlists. Then, for each direction, the Euclidean distance and the correlation degree of each test
image are generated. Given that the object on the test image is unknown, we suppose that an airport
exists on the test image to obtain the variable of each direction via the following equation:

D11 “ |R1 pi, 1q ´ f 1| (9)

where D11 is the variable.
For one direction, if D11 is smaller than TH1, then this direction is considered to contain an airport.

If D11 is larger than TH1, then this direction is considered to contain other objects. If all four directions
have D11s that are smaller than TH1, then the test image is classified as an image that contains an
airport. If all four directions have D11s that are larger than TH1, then the test image is classified as an
image that contains other objects. Otherwise, the test image is not classified and left for the detailed
classification. The complete procedure is shown below (Figure 6).
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2.4. Detailed Classification

Scenes with airports and scenes with other objects are complex. In this case, airports may be
mixed with other non-airport objects. As such, fuzzy classification methods are able to find only a
part of the imagery with airports. Thus, conducting a second classification taking multiple aspects
into account and giving a definite classification result is necessary. In this paper, we use SVM in
conducting this classification, and this classification is defined as “detailed classification”, since this
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classification will provide a definite classification result for the image that cannot be classified by
preliminary classification. The four wordlists of the corresponding directions of each sample image
with airports are set as positive samples to increase the rotational stability, whereas the wordlists of
other sample images are set as negative samples. We use the sampling data to generate a classifier and
use it for detailed classification. For each test image, if two or more of its four wordlists are classified as
having airports, then the image is considered to contain an airport. Otherwise, the image is identified
to contain other objects.

3. Experiment and Analysis

3.1. Comparison and Analyses between the Proposed Method and Other Methods

We used imagery with and without airports from Google Earth and Tianditu. We collected
150 images with airports from Google Earth. These airports are for civil use and are in different
construction standards and at multiple scales and ranges. The airports in the images are located in
various parts of the world, including the Far East, the Middle East, Europe and North America. We
also randomly obtained 250 images containing various scenes, such as harbors, waters, residential
areas, farmland, forests and bare land, from Google Earth and Tianditu in various parts of the world.
The spatial resolutions range from 1 m to 4 m. We set 75 images with airports and 100 images without
airports for building the classifier and the remaining images for testing and assessment. Figures 7
and 8 show examples of the images used in the experiment.
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In the experiment, several state of the art methods are chosen for comparison. They are BOVW,
the probabilistic latent semantic analysis (PLSA) method [41], a fractal fuzzy C means method adapted
from [42] and the traditional recognition methods based on image matching via SIFT and speeded up
robust features (SURF) [43].

We first use precision, recall and the F-measure, denoted as P, R and Fβ, to assess the proposed
method’s performance of recognizing airports and to compare it to other previous methods. P, R and
Fβ are as follows:

P “
TP

TP` FP
(10)

R “
TP

TP` FN
(11)

Fβ “

`

1` β2˘ Pˆ R
β2 ˆ P` R

(12)

where TP is the number of images correctly classified as having airports, FP is the number of images
wrongly classified as having airports, FN is the number of images wrongly classified as having other
objects and β is a is a non-negative real number that serves as an indicator for the relative importance of
precision and recall. High recall means that a method returns most of the targets, while high precision
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means that a method returns substantially more targets than other non-relevant objects. The F-measure
is the harmonic mean of precision and recall. A larger β weights recall higher than precision, while a
smaller β puts more emphasis on precision than recall. In this application, high precision and high
recall are both required. Therefore, we should take precision and recall as equally important and
choose β = 1.

In the experiment, considering the amount and complexity of the image, some necessary steps
are adapted for each method.

For SIFT and SURF matching method, random sample consensus (RANSAC) is applied to refine
the matching key points.

For the fractal fuzzy C means method and the PLSA method, the F-measure is chosen as the
assessment to choose the number of classes that leads to the largest F-measures for these two methods.
Figure 9 shows the influence of the number of classes on the F-measure of the fractal fuzzy C
means method, and Figure 10 shows the influence of the number of classes on the F-measure of
the PLSA method.
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We can see from Figure 9 that when the number of classes equals two, the fractal fuzzy C means
method gets the largest F-measure, and that when the number of class exceeds 10, the F-measure is
below 0.4. We can also observe from Figure 10 that when the number of classes equals two, the PLSA
method gets the largest F-measure, and that when the number of class exceeds two, the F-measure
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is below 0.5. Therefore, we choose the number of classes as two for both the fractal fuzzy C means
method and the PLSA method.

For the BOVW method and our proposed method, the F-measure is chosen as the assessment to
choose the number of visual “words” that can lead to the largest F-measures for these two methods.
Figure 11 shows the influence of the number of visual “words” on the F-measure of the BOVW
method, and Figure 12 shows the influence of the number of visual “words” of each major patch on
the F-measure of our proposed method.

ISPRS Int. J. Geo-Inf. 2016, 5, 115 12 of 18 

 

Figure 11 shows the influence of the number of visual “words” on the F-measure of the BOVW 

method, and Figure 12 shows the influence of the number of visual “words” of each major patch on 

the F-measure of our proposed method. 

 

Figure 11. Influence of the number of visual “words” for the F-measure of the BOVW method. 

 

Figure 12. Influence of the number of visual “words” of each major patch for the F-measure of our 

proposed method. 

We can find from Figure 11 that for the BOVW method, when the number of visual “words” 

reaches 700, the F-measure reaches the peak, and when the number of visual “words” increases, the 

F-measure begins to remain stable. We can also conclude from Figure 12 that when the number of 

visual “words” for each major patch reaches 100, our proposed method gets the largest F-measure. 

Therefore, we set the number of visual “words” as 700 for the BOVW method and set the number of 

visual “words” for each major patch as 100 for our proposed method. 

Then, we proceed to compare the largest F-measure and the corresponding precision and recall 

of each method. Figure 13 shows the precision, recall and F-measure of the performance of the 

proposed method and the competing models. 

Figure 11. Influence of the number of visual “words” for the F-measure of the BOVW method.

ISPRS Int. J. Geo-Inf. 2016, 5, 115 12 of 18 

 

Figure 11 shows the influence of the number of visual “words” on the F-measure of the BOVW 

method, and Figure 12 shows the influence of the number of visual “words” of each major patch on 

the F-measure of our proposed method. 

 

Figure 11. Influence of the number of visual “words” for the F-measure of the BOVW method. 

 

Figure 12. Influence of the number of visual “words” of each major patch for the F-measure of our 

proposed method. 

We can find from Figure 11 that for the BOVW method, when the number of visual “words” 

reaches 700, the F-measure reaches the peak, and when the number of visual “words” increases, the 

F-measure begins to remain stable. We can also conclude from Figure 12 that when the number of 

visual “words” for each major patch reaches 100, our proposed method gets the largest F-measure. 

Therefore, we set the number of visual “words” as 700 for the BOVW method and set the number of 

visual “words” for each major patch as 100 for our proposed method. 

Then, we proceed to compare the largest F-measure and the corresponding precision and recall 

of each method. Figure 13 shows the precision, recall and F-measure of the performance of the 

proposed method and the competing models. 

Figure 12. Influence of the number of visual “words” of each major patch for the F-measure of our
proposed method.

We can find from Figure 11 that for the BOVW method, when the number of visual “words”
reaches 700, the F-measure reaches the peak, and when the number of visual “words” increases, the
F-measure begins to remain stable. We can also conclude from Figure 12 that when the number of
visual “words” for each major patch reaches 100, our proposed method gets the largest F-measure.
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Therefore, we set the number of visual “words” as 700 for the BOVW method and set the number of
visual “words” for each major patch as 100 for our proposed method.

Then, we proceed to compare the largest F-measure and the corresponding precision and recall of
each method. Figure 13 shows the precision, recall and F-measure of the performance of the proposed
method and the competing models.ISPRS Int. J. Geo-Inf. 2016, 5, 115 13 of 18 
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According to Figure 13, the fractal fuzzy C means method has a very high recall of 90.67%, but
the lowest precision of 54.40%, which leads to a small F-measure. The PLSA method has a low recall
of 53.33%, and the precision is 55.56%; therefore, the F-measure is small. The SIFT matching method
has a moderate recall of 65.33%, but a relatively low precision of 59.04%, which also leads to a small
F-measure. The SURF matching method has a moderate precision of 65.31% and the lowest recall of
42.67%, and the F-measure is the smallest. The BOVW method has a relatively high precision of 73.63%
and a high recall of 89.33%, so the F-measure is the second largest. Our proposed method, while having
a recall as high as the fractal fuzzy C means method, has a high precision of 89.47%, which is much
higher than the competing methods. Therefore, the F-measure of our proposed method is the largest.
This means that our method can not only extract semantic information to have a good representation
of airports, but also highlight the difference between airports and other objects effectively to avoid a
relatively low precision, which is the major drawback of those competing methods with high recalls.

In addition, we use receiver operator characteristic (ROC) curves to quantitatively compare the
methods’ performance. The ROC curves were generated by using the classification result of each
method under different thresholds of prediction values. The prediction values range from zero to one,
and 0.5 is chosen as the threshold to distinguish between positive and negative. The ROC curves and
the corresponding area under curve (AUC) values can illustrate the performance of our method and
the competing methods. In this application, we are only interested in the analysis of situations where a
high true positive rate and a low false positive rate are realized at the same time, i.e., only the left part
of the ROC curves is of practical interest to us. Therefore, according to [44,45], we compare the partial
AUC values under only a portion of the ROC curves. In the experiment, we choose the part of the
ROC curves corresponding to false positive rates ranging from zero to 0.1 according to the experiment
in [46] for the assessment of the competing methods and our proposed method. Figures 12 and 13
show the partial ROC curves and the AUC values corresponding to false positive rates ranging from
zero to 0.1 of the methods.

From Figure 14, we observe that under the range of zero to 0.1 for the false positive rate, our
method achieves the largest partial AUC value. We can also conclude from Figures 14 and 15 that
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when both the low false positive rate and the high true positive rate are required, our method can meet
the requirement with the best performance.ISPRS Int. J. Geo-Inf. 2016, 5, 115 14 of 18 
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In general, all of these analyses mean that our method performs better than the
competing methods.

3.2. Analyses of the Performance of the Proposed Method on Different Types of Airports

In this part, we continue the analysis of the proposed method. Recall is used to analyze the
proposed method’s performance for recognizing different types of airports. Table 1 shows the total
numbers, the correctly-classified numbers and the corresponding recalls of different types of airports
in the testing imagery. In this paper, we classify the airports in the testing imagery into two types:
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Type 1 for those with runways on one side of the terminal and Type 2 for those with runways on more
than one side of the terminal.

Table 1. Number and recall of different types of airports.

Name Total Number Correctly-Classified Number Recall

Type 1 60 54 90.00%
Type 2 15 14 94.12%

It can be concluded from Table 1 that the proposed method does better at detecting airports with
runways on more than one side of the terminal. Airports with runways on more than one side of the
terminal are usually large, international airports with higher demand for land than smaller airports.
They require large areas of open field, and this leads to less hybrid non-airport objects with airports.

Then, the false positive rate is used to analyze what kind of non-airport objects may be more
likely to be wrongly classified as airports. Table 2 shows the total numbers, the wrongly-classified
numbers and the corresponding false positive rate of each type of non-airport object. In this paper,
according to the analysis in Section 2.3 and the testing data, we classify the non-airport objects in the
testing imagery into five classes: farmland, residential area, forest, bare land and harbor.

Table 2. Number and false positive rate of different types of non-airport objects.

Name Total Number Wrongly-Classified Number False Positive Rate

Farmland 27 4 0.1481
Residential Area 85 2 0.0235

Forest 12 0 0.0000
Bare land 15 2 0.1333
Harbor 11 0 0.0000

From Table 2, it can be observed that farmland has the highest false positive rate, while forest and
harbor have zero false positive rates. Mountain has a high false positive rate, while residential area has
a low false positive rate. Airport has a high demand for open field and usually has to be located in the
suburbs or even wild areas. Such areas belong to sparsely-populated residential areas, farmland or
bare land, and they may be mixed with airports.

4. Conclusions

VHR images have been extensively used in recent years. Recognizing and retrieving objects or
scenes from VHR images is a challenging task. Among the objects that are often detected, airports
play a key role because of their significance in civil and military fields. Traditional methods are
ineffective; thus, a new method was proposed. The new method adapts the traditional pixel-based
saliency detection method into the patch-based method for class-specific saliency to find the best
segmentation to highlight the differences between airports and other objects and to analyze the spatial
relationship between components of the airport to help with the abstract and detailed semantics. The
new method also combines the traditional BOVW method with fractal dimension estimation, fuzzy C
means clustering and image relational degree on the basis of fuzzy rule-based classification to extract
the object composition for better representation of airports. The experiment proves that the proposed
method outperforms the traditional methods in terms of precision and recall.

However, there is still room for improvement. First, the proposed method can tell whether there
is an airport in the given image or not when the airport takes up the dominant part of the image, but
when an airport only takes up a small part of the given image, the method cannot tell the possible
locations. Second, the proposed method can extract abstract semantics and detailed semantics from
BOVW features and fractal features with analysis of the general knowledge of the airport, but lacks the
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ability to use more specific knowledge of the airport or other mid-level or low-level features for more
efficient analysis and extraction of abstract semantics and detailed semantics. Finally, the two-step
classification of the proposed method should be further improved to reduce the false positive rate and
to realize higher recall and precision.

Therefore, for future research, we will focus on the following aspects. First, we will focus on the
extraction and usage of multiple features based on more specific knowledge of the airport to express
the semantic information of the airport more precisely. Second, we will propose improved saliency
detection methods to extract the possible area of airports on optical imagery and present class-specific
saliency more precisely. Finally, we will perform further research into the use of the image correlation
degree and adapt the concept of deep learning to improve the precision and recall.
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