
 International Journal of

Geo-Information

Article

Integrating Logistic Regression and Geostatistics for
User-Oriented and Uncertainty-Informed Accuracy
Characterization in Remotely-Sensed Land Cover
Change Information

Jingxiong Zhang 1,* and Yingying Mei 2

1 School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
2 School of Remote Sensing Information Engineering, Wuhan University, Wuhan 430079, China;

myy2014@whu.edu.cn
* Correspondence: jxzhang@whu.edu.cn; Tel.: +86-276-877-8683; Fax: +86-276-877-8371

Academic Editors: Qiming Zhou, Zhilin Li and Wolfgang Kainz
Received: 12 May 2016; Accepted: 8 July 2016; Published: 14 July 2016

Abstract: Accuracy is increasingly recognized as an important dimension in geospatial information
and analyses. A strategy well suited for map users who usually have limited information about map
lineages is proposed for location-specific characterization of accuracy in land cover change maps.
Logistic regression is used to predict the probabilities of correct change categorization based on local
patterns of map classes in the focal three by three pixel neighborhood centered at individual pixels
being analyzed, while kriging is performed to make corrections to regression predictions based on
regression residuals at sample locations. To promote uncertainty-informed accuracy characterization
and to facilitate adaptive sampling of validation data, standard errors in both regression predictions
and kriging interpolation are quantified to derive error margins in the aforementioned accuracy
predictions. It was found that the integration of logistic regression and kriging leads to more
accurate predictions of local accuracies through proper handling of spatially-correlated binary
data representing pixel-specific (in)correct classifications than kriging or logistic regression alone.
Secondly, it was confirmed that pixel-specific class labels, focal dominances and focal class occurrences
are significant covariates for regression predictions at individual pixels. Lastly, error measures
computed of accuracy predictions can be used for adaptively and progressively locating samples to
enhance sampling efficiency and to improve predictions. The proposed methods may be applied for
characterizing the local accuracy of categorical maps concerned in spatial applications, either input
or output.

Keywords: land cover change; accuracy; local; geostatistics; logistic regression; patterns of class
occurrences; standard errors; adaptive sampling

1. Introduction

The provision of spatio-temporal land cover information is becoming increasingly important
for landscape ecology and environmental monitoring. For example, it is necessary to have accurate
information about land cover dynamics in order to quantify the extent and rate of land cover change
and develop models to relate change-driving processes to observed landscape changes. Relevant case
studies from the northern Mediterranean Basin, the European Alps and Inner Mongolia can be found
in Millington et al. [1], Rutherford et al. [2] and Wu et al. [3], respectively.

Spatio-temporal land cover information may be acquired and derived from the combined use of
field survey data and remotely-sensed images through statistical and other pattern analysis techniques
in a semi-automatic fashion. Fuller et al. [4] examined issues concerning the detection, measurement
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and characterization of landscape changes by remote sensing and other means, while Chen et al. [5]
described an effective and feasible strategy for operational global land cover mapping at 30-m
resolution. Land cover information can be represented as categorical maps (or area-class maps) [6],
either by polygons in vector format or contiguous blocks of grid cells in raster format.

While land cover is often static or persistent, information about land cover dynamics is also
frequently consumed. Change detection results include binary maps of change and no-change types
and categorical maps depicting specific “from-to” change classes; here, we refer to the latter case as
change categorization, which can be considered a synonym to change detection, without causing
confusion. Clearly, classification here refers to categorization of both static and changing cover types
and is thus used interchangeably with change categorization in this paper, unless stated otherwise.

Land cover information is, however, imperfect, because it is not directly measurable, but results
from interpretative and predictive processes that are subject to inherent subjectivity, inaccuracy and
complexity. Lechner et al. [7] demonstrated the urgency to address spatial uncertainty in classification
maps as standard practice in landscape ecology. Congalton et al. [8] highlighted the need for clear
and uniform definitions of the classification scheme in global land cover mapping. It is thus crucial to
characterize and analyze accuracy in land cover information so that derivatives, and analysis results
based on such imperfect information can be scrutinized in terms of scientific replicability and practical
usability. Olofsson et al. [9] provided practitioners with a set of “good practice” recommendations for
designing and implementing accuracy assessment for change maps and estimating areas of different
classes based on the reference sample data.

Issues of accuracy concern metrics, description, propagation and management of accuracy in
land cover information. In this paper, we focus on the accuracy description. Accuracy in categorical
maps can be described using epsilon error bands for the boundary position and confusion matrices
for labeling, respectively. Although epsilon bands are useful for describing boundary inaccuracy,
they are viewed as by-products of uncertainty in classification; thus, they will not be treated in this
paper. The focus here is classification accuracy. Statistical measures of accuracy in land cover and
other categorical information are mostly probabilistic (i.e., percent correctly-classified (PCC) pixels
and per-class user’s accuracy). Such statistical measures of accuracy imply crisp sets in class definition
and labeling, although fuzzy sets [10] may be used for measuring and representing uncertainty, in
particular that concerning inherently vague classes, such as ecotones.

Accuracy measures derived from error matrices are usually global (e.g., PCCs and kappa
coefficients of agreement) or class-stratified ones (e.g., user’s accuracy for individual classes) [9,11],
without acknowledging spatial variation in classification accuracy, which is known to be spatially
varied, as shown by Foody [12]. This paper seeks to quantify local classification accuracy in the context
of change categorization. Location-specific predictions of classification accuracy provide information
about the spatial variation of accuracy and can support exploratory and diagnostic analysis of factors
influencing classification accuracy.

In general, there are two broad types of approaches to local accuracy quantification in land
cover change information, depending on the availability and variety of source data and metadata,
which can be used to assist accuracy characterization in addition to the maps being tested. One is
producers’ approaches by which accuracy measures are derived from various source data involved in
the production of land cover information, including multi-date images, training and testing samples,
ancillary data and the derived maps of classification and change categorization. The other is users’
approaches in which data available for accuracy assessment are barely more than certain validation
samples (for accuracy assessment) and the maps to be assessed. For the former, there are methods of
probabilistic intervals (derived from single-date probabilistic classification accuracies) [13], maximum
posteriori probabilities (used as surrogates of classification accuracy measures) [14,15] and re-sampling
(which can map misclassification probabilities based on training samples and kriging) [16]. This paper
extends the strategy of the latter, as follows.
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For the users’ approaches, there are methods based on interpolation and regression analysis.
Firstly, interpolation may be performed to predict probabilities of correct classification at unsampled
locations, given a set of validation data. For this, indicator kriging, a kind of geostatistical interpolation
method, can be used on the basis of validation samples and their indicator transforms to generate
probability surfaces. For example, kriging was employed for mapping misclassification probability by
Steele et al. [16]. Clearly, kriging will be a valuable tool for mapping local classification accuracy as
spatial dependence is incorporated, with measures of uncertainty in predictions derived as kriging
variance. Such uncertainty information will be useful, as we will discuss later. Secondly, logistic
regression based on landscape pattern indices and other explanatory variables (covariates) has been
proposed for estimating the probabilities of (in)correct classification, as described by researchers,
including Smith et al. [17], Smith et al. [18] and Oort et al. [19]. It was found that certain landscape
characteristics, such as high land cover heterogeneity and small patch size, result in pixels being harder
to classify (thus lower accuracy) [17–19]. Clearly, both kriging and logistic regression may be explored
for location-specific quantification of accuracy in change categorization.

This paper seeks to integrate the users’ approaches mentioned previously by combing regression
and kriging for accuracy prediction in the context of change detection. This is done by predicting
local probabilistic accuracy measures based on logistic regression followed by kriging for deriving
corrections to regressed probabilities based on regression residuals evaluated at validation samples. In
combined logistic-regression-kriging, logistic regression works by exploring and utilizing information
conveyed by covariation between observed classification (in)correctness and local patterns of class
occurrences in the map being evaluated, while kriging seeks to extract additional information
contained in spatially-correlated regression residuals. The combined logistic-regression-kriging can be
implemented either with fuller treatment of spatial correlation in both regression and kriging or just
partially through kriging of regression residuals, as will be tested in this paper.

There is some research on using logistic regression to derive probabilistic estimates of accuracy in
a change detection context by exploring relationships between the occurrences of erroneous change
detection and various covariates, including single-date classification accuracy estimates, spectral
data, spatial locations and landscape characteristics, as reported in Burnicki [20]. There is rarely any
research on using, directly, local patterns of land cover change in the map being assessed as covariates
for accuracy prediction based on logistic regression in the context of limited metadata, let alone
those research efforts that explore spatial correlation through combined logistic-regression-kriging
for improved accuracy predictions. In kriging with the regression residual, we need to clarify how
nonstationary regionalized variables, such as the occurrences of (in)correct classification, should be
handled. These provide important impetus for the paper and represent its major novelty.

It is important to recognize that accuracy measures derived from regression and kriging are only
approximate, subject to validation samples (their numbers, distributions and accuracy), regression
validity (model selection and covariates’ accuracy) and the presence and handling of spatial correlation
in spatial binary data. Thus, it is important to demarcate how consistently the estimated accuracy
measures are derived from predictions. This can be done by quantifying uncertainty, as measured by
variance or its square root, standard error (SE), in predicted local accuracies. We can then use such
information to identify locations where extra samples may be optimally placed to reduce uncertainty
in accuracy predictions, and to build up adaptive sampling strategies for collecting validation data
progressively, given existing validation samples, budgets for extra sampling and required precision in
predictions. In this paper, variance values in regression predictions and residual kriging are estimated
and combined to indicate uncertainty concerning local accuracy predictions.

In summary, the major contributions of this paper include:

(1) Promoting a user-oriented strategy for local accuracy characterization in land cover change
information through combined logistic regression and kriging based on validation samples and
local-scale patterns of class occurrences in the maps being assessed.
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(2) Exploring significant covariates used to predict local accuracy by logistic regression, while
logistic-regression-kriging procedures (with or without treatment of spatial correlation in logistic
regression) are compared for their flexible use in applications depending on the range and
strength of the spatial correlation in observed (in)correct classifications.

(3) Investigating the effectiveness of adaptive sampling based on standard errors computed of
accuracy predictions to enhance sampling efficiency and to increase prediction accuracy.

In Section 2, we will first describe indicator geostatistics for predicting local accuracies. This is
followed by a description of logistic regression, by which probabilities of correct change categorization
are predicted. Combined logistic-regression-kriging is described, in which spatial correlation in binary
data concerning (in)correct classification is accommodated for the estimation of regression coefficients
and variogram parameters. Methods for SE estimation are also described along with different methods
of accuracy predictions. Section 3 will describe an empirical study aiming to test alternative methods
for accuracy predictions using sample data collected in the study area. Section 4 will conclude the
paper with some summaries and outlooks.

2. Methods

2.1. Indicator Geostatistics

Spatial dependence is characteristic of many geospatial distributions, such as land cover types
and transitions. Misclassification and erroneous change categorization derived from remotely-sensed
images are also likely spatially correlated. In geostatistics, such spatially-correlated distributions are
described and modeled as regionalized variables [21,22]. Further, we can call an ensemble of random
variables {Z(x1), . . . , Z(xn)} (xPA, A being the problem domain) a random field (RF), if n locations
{x1, . . . , xn | xPA} are used to discretize the problem domain A; at a particular location x, Z(x) is
a random variable (RV). Without causing confusion, we may denote the RF {Z(x), xPA} simply by
Z. To better differentiate interval/ratio RFs from nominal/ordinal RFs, we often denote the latter
(e.g., land cover and other nominal fields [6]) as C as opposed to Z for the former. A nominal field
C takes values in a series of class labels say {1, 2, . . . , K}, if K denotes the number of classes deemed
possible in the domain A. Usually, a scalar RF is denoted in upper case, say C, with lower case c for its
realizations (values).

As the focus of this paper is on binary correctness/incorrectness in categorical data (i.e., land
cover change types), we need to discuss indicator geostatistics [21]. Below, we describe indicator
variables and variograms briefly. For a categorical variable C(x), the indicator variable I(x) can be
defined, in general, over a domain A by:

I pxq “

#

1, if Ĉ pxq “ C pxq
0, otherwise

(1)

where C pxq and Ĉ pxq represent true and predicted land cover change types, respectively, at location
x (x P A). Equation (1) states that I(x) is 1 if x is correctly classified, 0 otherwise. This is essentially a
binary coding of (in)correct classifications of sampled locations.

According to the theory of regionalized variables, a geostatistical data model for I(x) at x is such
that I(x) is a sum of deterministic mean π and stochastic residualε pxq:

I pxq “ π` ε pxq (2)

If validation sampling is done properly, we may assert that the PCC measure calculated from
a confusion matrix is a good estimation of the stationary and deterministic component, π, as
π = E[I(x)] = prob{I(x)} = 1.
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Assuming second-order stationarity (which we will revisit in Section 2.3) in RF I, spatial covariance
function, covI(h), for locations separated by a lag h is defined as:

covI phq “ E rpI pxsq ´ πq pI pxs1q ´ πqs “ E rε pxsq ε pxs1qs (3)

for xs ´ xs1 “ h, where the RF I, its deterministic component π and stochastic residual ε are defined
as in Equation (2). A variogram model γI phq is related to the covariance model covI phq via:
γI phq “ covI p0q ´ covI phq “ covI p0q p1´ ρI phqq, where covI p0q is the variance (sill) of RF I and
ρI phq is the correlogram for I. Note that the subscripts in the notations above may be omitted without
loss of clarity as they refer to RF I implicitly, unless otherwise indicated.

With variogram or covariance models fitted from empirical data properly, geostatistical prediction
(commonly known as kriging) of RF I at unsampled locations may be performed. In general, kriging
provides the best linear estimate Î px0q for the unknown value of I at unsampled locations x0, which is
determined by ensuring unbiasedness and minimum dispersion of the estimator. Simple (indicator)
kriging may be performed when a stationary mean π over A is known. Specifically, this can be
written as:

Î px0q “ ptĈ px0q “ C px0qu “ π`
n
ÿ

s“1

λ pxsq pi pxsq ´ πq (4)

where Î px0q and i pxsq present the predicted value at x0 and the data value at xs, respectively, and λ(xs)
represents the weight assigned to data location xs. Kriging variance, as a measure of the uncertainty in
the prediction of ptĈ px0q “ C px0qu conditional to the data available, is computed:

varr Î px0qs “ var pIq ´
n
ÿ

s“1

λscov px0 ´ xsq (5)

where var pIq “ covI p0q represents the sill of RF I’s variogram.
However, it is often the case that classification accuracies are varied by location, so that π in

Equation (2) is better redefined by local means π pxq(xPA), which are found to be related in part to
landscape shape indices in the neighborhood centered at the locations being assessed [19,20]. Thus, we
should prescribe local means properly for geostatistical analysis of RF I and its prediction at unsampled
locations, with Equation (2) re-written as:

I pxq “ π pxq ` ε pxq (6)

where π pxq and ε pxq stand for the local mean and residual of I at x, respectively.
There are methods of incorporating some relevant covariates for the estimation of local means

π pxq, as prescribed in Equation (6). In linear geostatistics, the so-called universal kriging refers to
the situations where local means are functions of spatial coordinates, while kriging with an external
drift uses functions of an auxiliary RF as the locally-defined means, as discussed by Hengl et al. [22].
For indicator RF I, we cannot apply universal kriging directly, but may explore logistic regression to
predict π pxq in Equation (6) based on relevant covariates, as shown in the next subsection.

2.2. Logistic Regression

As a kind of generalized linear modeling approach, logistic regression is a quantitative technique
that can relate dependent binary variables (e.g., (in)correct classifications) with certain co-registered
covariates. Past research has shown that class labels, heterogeneity, patch size and landscape
dominance are significant covariates for predicting local accuracies, as described in Smith et al. [17],
Smith et al. [18] and Oort et al. [19]. Here, we adapt some of the well-researched landscape shape
indices and quantify them at a local scale (center pixel labels plus the4 focal 3 by 3 pixel neighborhood)
to make them commensurate with the paper’s research objective of local accuracy quantification.
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The underlying rationales are that covariates quantified at the focal scale are more conformal to the
dependent variable being analyzed, because the indicators registering (in)correct classification at
individual pixels can be informed better within a focal neighborhood than further away and because
accuracy-pattern relationships may not be linearly transferable across scales.

We propose using change class occurrence frequencies in the focal neighborhood as candidate
covariates for regression analysis, while such pattern indices as heterogeneity and dominance can
be derived from them. The class occurrences at pixel x are represented by the class probability
vector p(x) in the focal neighborhood: p(x) = (p1(x), p2(x), . . . , pK-1(x))T, where the subscripts
1, 2, .., K-1 represents the class labels, pk(x) the proportion of pixels in the 3 by 3 focal neighborhood
belonging to class k, with superscript T indicating transpose and assuming that there are a total of K
candidate classes under consideration. We need only to specify K´ 1 of them, as there is a redundancy:
pK(x) = 1 ´

řK´1
k“1 pk pxq.

Several focal-scale metrics of class occurrence patterns can be derived from the probability vector
p defined above. Focal heterogeneity (HET) measures the heterogeneity of the focal neighborhood
around each cell and equals the number of classes present in the focal neighborhood centered at the
pixel being analyzed. A heterogeneity value of 1 indicates that the central pixel is located within a
homogeneous block of pixels, while any value greater than 1 indicates that the pixel was located on
a patch edge or in the class boundaries. Block size is defined as the number of contiguous pixels of
the same class as the central pixel being analyzed, measuring the extent to which the local block is
fragmented and reflecting class purity in a focal neighborhood, denoted L10B. Thirdly, we confine
landscape dominance (DMG), which refers to landscape scale in Oort et al. [19], to a focal neighborhood,
defining it as the difference between the logarithm of heterogeneity and the entropy of class occurrences
in the focal neighborhood:

DMG pxq “ logHET`
K
ÿ

k“1

pk pxq logpk pxq (7)

where pk is the marginal probabilities of individual classes k in the focal neighborhood.
The candidate covariates mentioned previously are denoted as a vector F of length 1 + Q > 1:

F(x) = (F0(x) = 1, F1(x), . . . , FQ(x))T, where Q is the total number of covariates used, except for the
constant 1. For instance, we may have F1 = HET and F2 = DMG, etc. The locator x may or may not be
specified along with F’s without loss of clarity in the text below.

For the indicator RF {I(x), xPA} described in the previous subsection, its local means are
related through logit models to the vectors F, a set of covariates (e.g., pattern indices of local class
occurrences). In other words, the probability of correct classification at a location (say pixel x),
π pxq “ prob tI pxq “ 1u, depends on F(x) through a corresponding set of coefficients,
β “

`

β0,β1, ¨ ¨ ¨ ,βQ
˘T. The log odds, called the logit (denoted η) of π pxq, are linearly related to

covariates F(x) = (1, F1(x), . . . , FQ(x))T at location x:

η pπ pxqq “ logit pπ pxqq “ log
π pxq

1´ π pxq
“ F pxqT β (8)

Estimates of the coefficients’ vector β, β̂, can be obtained by the Newton–Raphson method or
through iterative re-weighted least squares with a linearized form of the logit link function for the
sample data, as described in Agresti [23]. The system of equations is:

FTW Fβ “ FTWη˚ (9)

where W “ DTV´1D, η˚ “ η`D´1 pi´πq, with vectors η˚, η, i and π being the column vectors of
η˚, η, i and π at sample locations (suppose there are n sampled locations; these vectors are of length n
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each). Here, matrix D “ diag rπs p1´ πsqs, and assuming independence in the set of RVs (represented
by I) at sampled locations, the variance and covariance matrix V is specified as:

V “ var pIq “ diag pv pxsqq “ diag rπ pxsq p1´ π pxsqqs (10)

where subscript s represents locations xs., s = 1, . . . , n, with n being the number of sampled locations
in regression analysis. An iterative process of least squares provides the solution to β. Further detail
can be found in Agresti [23] and Gotway et al. [24]. In the limit of the iterative process, β̂ converges to
its maximum likelihood estimate, with its variance and covariance matrix derived as:

covpβ̂q “
´

FTWF
¯´1

(11)

as described in Agresti [23].
With β̂ estimated, we can compute η̂ px0q for an unsampled location x0 using (8). Then, we can

predict π̂ px0q by the inverse of Equation (8):

π̂px0q “ exppFTβ̂q{p1` exppFTβ̂qq (12)

Obviously, different sets of covariates F give rise to different logit models, pointing to the issue of
significance testing about covariates’ selection for regression analysis. For model selection, there is the
deviance statistic:

D “ ´2log^ “ ´2
nl
ÿ

l“1

rilln
ˆ

π̂l
il

˙

` p1´ ilq lnp
1´ π̂l
1´ il

qs (13)

where il denotes the binomial variate for the l-th setting of the covariates, l “ 1, ¨ ¨ ¨ , nl(with nl being
the maximum number of settings for vectors F’s), and π̂l denotes the model estimate corresponding to
probability pil “ 1|Flq . Differences in the deviance values for the models were used to test the effect
of incorporating additional covariates. The difference follows a chi-square distribution with degrees
of freedom (df ) equal to the difference in the numbers of covariates used in the base model and the
alternative model, as described in Agresti [23]. Statistical significance is judged at a certain significance
level, say 0.05.

As with the kriging variance shown in Equation (5), we can also compute variance (or standard
error SE =

?
variance) in π̂ pxq predicted from logistic regression. Variance in logistic regression

predictions can be calculated as follows. For estimated values of the logit as by Equation (8), its
variance is:

var pη̂ px0qq “ var plogit pπ̂ px0qqq “ FTcovpβ̂qF (14)

where covpβ̂q is computed using Equation (11). Variance for the predicted probabilities π̂ px0q can then
be obtained by the delta method, as shown in Agresti [23]. Specifically, variance in π px0q is computed
from the variance of η px0q using:

var rπ px0qs “
`

π1 pη px0qq
˘2 var pη px0qq (15)

where π1 pηq is evaluated as (referring to Equation (12)):

π1 pη px0qq “
Bπ

Bη
“ π px0q p1´ π px0qq (16)

Variance in π̂ px0q can be computed by substituting η̂ px0q and π̂ px0q for η px0q and
π px0q, respectively.
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2.3. Integrating Logistic Regression and Kriging while Accommodating Spatial Correlation

RF I’s variance and covariance matrix V (for a set of sampled locations) shown in Equation (10)
is assumed to be diagonal, as binary data {i pxsq, s = 1, ..., n} involved there are considered to be
uncorrelated. However, (in)correctness in change categorization (represented by RF I) is often spatially
correlated, and its proper handling is important for the estimation of both local accuracies and their
stand errors in the context of logistic regression. The strategy promoted in this paper is a kind
of regression-kriging tailored for binary data registering (in)correct change categorization: logistic
regression for local probabilities of (in)correct classification is performed on certain covariates, with
simple kriging applied for regression residuals. Specifically, after local means are determined through
regression analysis, the residuals are transformed to standardized residuals to facilitate variogram
modeling and kriging implementation; the kriged residual values and their variance estimates are
back-transformed to the original data space. The corrected local predictions of RF I will be the sum of
regressed local means and kriged residuals, while variance in corrected predictions will also be the
sum of variances in predicted means and predicted residuals. In both logistic regression and kriging,
spatial correlation is accommodated by proper variogram modeling via standardized residuals; for the
regression part, V in Equation (10) can be specified iteratively with variogram modeling based on the
standardized residuals. We describe the procedures below.

For logistic regression with spatial binary data, variogram modeling needs to be considered in
combination with the specification of the nonstationary means. Indeed, when π pxq representing local
means is spatially varied, as shown in Equation (6), the variance of ε pxqwill be non-constant, and as
a consequence, we cannot model ε pxq as a stationary RF [25]. In Section 2.1, stationarity in RF I was
assumed, taking the whole problem domain as a whole and viewing the occurrences of (in)correct
classification across the problem domain A as if they were realizations of an RV I(x) at any particular
location x within A (because of the assumption of stationarity regarding RF I).

It is possible to compute standardized residuals:

e pxq “ pI pxq ´ π pxqq {
a

π pxq p1´ π pxqq “ ε pxq {
a

π pxq p1´ π pxqq (17)

where we can replace π pxqwith π̂ pxq to get ê pxq (i.e., the estimated version of e pxq). With standardized
residuals, we can model their variograms say cove(h) and hence correlograms ρe phq, which can then be
exploited to obtain variance and covariance matrix V of the RF I (as opposed to that in Equation (10)):

V “ V1{2
π RV1{2

π (18)

in which:
V1{2

π “ diagr
a

π1 p1´ π1q, ¨ ¨ ¨ ,
a

πn p1´ πnqs

R “
`

Rs,s1

˘

“ pρe pxs, xs1qq

where n is the number of sampled locations as implied in Equation (10) and ρe pxs, xs1q indicates the
correlogram between data locations xs and xs1 , which is obtained from standardized residuals, as
shown in Equation (17).

With spatially-correlated binary data, regression coefficients β and correlation parameters α (e.g.,
range, nugget and sill describing variograms) can be estimated using generalized estimating equation
(GEE) approaches [26,27]. They are iterative procedures, alternating between updating estimates of
β and those ofα, until convergence. A challenge in adapting the GEE methodology to spatial data
analysis is the selection of a sensible correlation structure, as some of the assumed correlation structures
supported in existing GEE software systems are not designed for spatial data. In practice, we can
iteratively update estimates of β based on iteratively-updated variogram model parameters, as in [24].

With the solution to regression coefficients β and correlation parameters α (hence, R and V in
Equation (18)) obtained as above, local accuracy measures can then be derived from applying the
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coefficient vector β̂ to Equation (12). As in conventional logistic regression, we can apply the delta
method (Equation (15)) to compute variance in predicted probabilities of correct classification at
individual locations.

After derivation of local accuracy measures and associated variance by logistic regression,
regression residuals can be densified over unsampled locations through kriging. Due to
non-constant local means π pxq and variances π pxq p1´ π pxqq, we cannot, however, do kriging
with residuals {ε pxq} directly. Instead, we perform simple kriging using Equation (4) in the
space of standardized residuals {e(x)}. We should use the fitted variogram model for e, ρe phq,
to compute the elements of the variance and covariance matrix between the data locations
xs (s = 1, . . . , n): Repn,nq “ pρe pxs, xs1qq. Elements of the vector of covariances between a location
to be predicted (i.e., x0) and the data locations xs (s = 1, . . . , n) can be calculated similarly:
Rep0,nq “ pρ px0, x1q , ¨ ¨ ¨ , ρ px0, xnqq. Variance in ê px0q can be computed using Equation (5), but in
the space of standardized residuals {e(x)} and with sill = cov(h = 0) = 1. The kriged residuals e(x0) (by
Equation (5)) are then back-transformed to ε px0q via the inversion of Equation (17):

ε̂ px0q “
a

π̂ px0q p1´ π̂ px0qqê px0q (19)

Variance in ε̂ px0q is computed as:

var pε̂ px0qq “ π̂ px0q p1´ π̂ px0qqvar pê px0qq (20)

Kriged residuals at unsampled locations are used as corrections to regression predictions of local
accuracies. Specifically, prediction of I at an unsampled pixel x0, p̂ px0q, was done by adding the
predicted residual ε̂ px0q (using Equation (19)) to the regression prediction π̂ px0q:

p̂ px0q “ π̂ px0q ` ε̂ px0q (21)

where the local means are estimated using Equation (12), but with β̂, which should be obtained from
procedures that can handle spatial correlation via matrix V (Equation (18)). The value of SE in the
corrected accuracy measures p̂ px0q is:

SErp̂ px0qs “

b

varrp̂ px0qs “
a

varrπ̂ px0qs ` varrε̂ px0qs (22)

where varrπ̂ px0qs and varrε̂ px0qs are computed using Equations (15) and (20), respectively

3. Experiments

3.1. The Study Area and Datasets

Honghu municipality, Hubei Province, China, which is shown in Figure 1a, is situated in the north
of the middle reaches of the Yangtze River and the southeast of the Jianghan Plain. It spans N Latitude
29˝391–30˝121 and E Longitude 113˝071–114˝051, enjoys a subtropical humid monsoon climate and
features lowlands with elevations mostly in the range of 23 m to 28 m above mean sea level. About 30%
of its total areas are water bodies comprising a dense network of rivers, streams, lakes and aqueducts
(interestingly, both “hu” in “Honghu” and “Hu” in “Hubei” mean lakes in Chinese). Precipitation
occurs mostly in the spring and summer, resulting in frequent floods.

Historically, arable land and water bodies are Honghu’s major land resources. From 2011, there
was about 40% to 60% less rainfall in the middle and lower reaches of the Yangtze River. Honghu faced
the danger of lakes drying up. There were significant changes in land cover types there due to excessive
reclamation and cultivation and the situation of more people and less land, such as the transitions from
water bodies to mixed land and from natural vegetation (e.g., grasslands) to arable land, suggesting
ecological and environmental degradation. With the implementation of lake protection measures by
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encouraging land reclamation, improving land resources utilization and developing water resources
from 2012 through 2015, mixed land cover, which was previously un-used, was gradually restored to
water bodies and wetlands. This helped to meet local demands for water resources and restore local
ecological environment.
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Figure 1. The study area, the images used and the maps derived: (a) the study area; (b,c) sub-scene
Landsat ETM+ images for 2012 and 2013, respectively; (d,e) land cover classification maps showing 4
classes of land cover for 2012 and 2013, respectively; and (f) land cover change map derived from the
bi-temporal image data, showing 7 classes including 4 unchanged and 3 changed classes. In (d,e,f), A,
G, M and W indicate arable land, grass land, mixed land cover and water bodies, respectively.

Two sub-scene Landsat ETM+ images of Honghu municipality, flown on 17 May 2012 (Time 1)
and 8 August 2013 (Time 2) with Bands 1 to 5 and 7 at 30-m resolution, respectively, were used to
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derive land cover change information. Composite images for the 2012 and 2013 sub-scene Landsat
ETM+ images using Bands 5, 4 and 3 are shown in Figure 1b,c, respectively. The rectangular study
area, which is marked in Figure 1a, covers 9964 pixels (94 rows by 106 columns), each of a size of 30 m
by 30 m.

Given the aforementioned characteristics of the study area (and land use therein) and the limited
spatial resolution of the satellite images employed, for studies of local land cover and its dynamics, we
adopted a four-class classification scheme: arable land, grass land, mixed land and water bodies. The
mixed land cover type includes abandoned lands and may represent a mixture of all candidate land
cover types, which are not easy to discern from satellite image data alone. The type of water bodies
includes wetlands and is thus likely a mixture of wetlands with growing habitats and water bodies,
per se.

In change detection based on post-classification comparison, images of Times 1 and 2 were
classified separately, generating classification maps for Times 1 and 2, as shown in Figure 1d,e,
respectively. The classification maps were then compared to create a change map with specific
“from-to” change information. A land cover change map with 16 possible combinations of “from-to”
change information could be derived for a single-date four-class classification scheme: arable, grass,
mixed and water. As there are some non-existing and unlikely change categories, we only kept 7
categories in the final land cover change map, including 4 unchanged or persistent classes and 3 change
classes, as shown in Figure 1f.

The 3 change classes shown in Figure 1f are grass land to arable land, mixed land cover to water
bodies and water bodies to mixed land cover. Explanations for these changes are: (1) some grasslands
changed to arable land because of the increasing demand for agriculture (due to pressure to feed
people on limited agricultural land); (2) due to decreased rainfalls during the period, parts of the lakes
started to dry out, leading to increased mixed land cover; and (3) ecological restoration led to some
restored water bodies from previously-abandoned mixed land.

Reference data corresponding to the image data were collected from a combination of field
visits and photo-interpretation based on high (spatial) resolution images. Reference cover types for
sampled sites in 2013 were ground checked on several dates in October, 2013, while those for 2012
were confirmed using photo-interpretation based on the high-resolution images considered to be in
the temporal proximity of the 2012 ETM+ image subset. Photo interpretation was assisted by field
surveys and local knowledge to ensure reasonable accuracy in the acquired reference data. The class
labeling of all sample locations, whether single-date cover types or bi-temporal change types, were
double-checked, with those deleted if the labeling was questionable. Reference data collected were
used to determine whether the corresponding pixels on the land cover change map were correctly
classified or not.

We should follow statistical principles regarding spatial sampling [28] for collecting references
samples, which were used for building models and validating the built models (for local accuracy
prediction), respectively. The former set of samples were called training samples, the latter testing
samples (which were for the comparison of alternative methods and will be addressed in Section 3.3),
in line with the tradition in remote sensing image classification. For collecting both training and testing
samples, sampling was carried out using class stratification, with each map class sampled at a fixed
proportion or in minimum numbers in the case of minority classes. We set 25 as the minimum number
of sample points for minority classes (e.g., the mixed cover type), resulting in 400 and 350 samples
for training and testing, respectively. Numbers of samples for individual classes are shown in Table 1,
while their distributions are shown in Figure 2.

Testing of the randomness of sample locations was performed based on the “spatial statistic
tool” in ArcGIS software system. Using the module of “analyzing patterns”, the Z-test was applied to
determine whether the average distance to the nearest neighbors was significantly different from the
mean random distance. Z-scores of 0.72 and 0.85 were obtained for the training and testing samples,
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respectively, which correspond to p-values of 0.46 and 0.39, respectively. Thus, the null hypothesis is
accepted that the pattern of the two sets of samples is random at a significance level α = 0.05.
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Table 1. Numbers of sample pixels for individual land cover change classes.

Land-Cover
Change Detection

Number of
Training Samples

Number of
Testing Samples Description

No-change classes

A 48 36 Arable
G 32 29 Grass
M 26 21 Mixed
W 186 179 Water

Change classes
G to A 26 20 Grass to arable
M to W 37 29 Mixed to water
W to M 45 36 Water to mixed

There were a set of 215 extra samples that were used for testing the effectiveness of adaptive
sampling by locating a number of further training samples (say 30) according to SEs evaluated at
candidate sample locations. This set of 215 samples was set aside, because the so-called adaptive
sampling was compared to a random sampling alternative, which requires a larger pool for randomness
in sample locations. We will describe this in Section 3.2.

3.2. Results

Based on the training samples, we constructed an error matrix. It was summarized to derive PCC
and users’ accuracies for individual classes, as shown in Table 2.

Table 2. Error matrix for change detection (A: arable, G: grass, M: mixed, W: water, GA: grass to arable,
MW: mixed to water, WM: water to mixed). PCC, percent correctly classified.

A G M W GA MW WM

Users' Accuracy (%) 70.83 71.88 53.85 85.48 57.69 59.46 57.78
PCC (%) 73.25

Simple kriging was used to predict the probabilities of correct classification at unsampled locations
from training samples. The global mean of RF I indicating classification correctness was assumed to
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be the PCC measure estimated from training samples, as shown in Table 2. The variogram model for
RF I was fitted with indicator data, which coded the (in)correctness in change detection as 1/0. The
surface of the probabilities of correct classification at individual pixels is shown in Figure 3a, where
it is apparent that predicted probabilities are more similar to sampled values in closer proximity to
sampled locations while they appear uniform elsewhere due to the relatively short influence range
indicated by the variogram model (fitted with indicator training data) and the nature of simple kriging.
As understood, simple kriging predictions will be the known mean value at locations where no sample
data are within the specified search radius or where sample data are beyond the influence range.
The variogram range was 2 pixels for the datasets here, with the search radius set to equal the range
parameter. There were 6967 unsampled locations (i.e., pixels to be predicted), which were beyond the
influence range of sample data and, hence, assigned the mean value, which is 73.25%, as shown in
Table 1. Consequently, there was a uniform appearance of predicted probabilities at the majority of
unsampled locations, as shown in Figure 3a, although local variability in predicted values can be seen
clearly by a properly-enlarged version of Figure 3a (or zooming in its softcopy). Kriging variance was
also computed, generating a surface showing SEs (the squared root of kriging variance) at individual
locations, as shown in Figure 4a, which depicts the typical appearance of kriging variance: SEs increase
with greater distance from sampled locations.
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Figure 3. The probability maps generated by different methods: (a) indicator kriging; (b,c) logistic
regression, without and with spatial correlation considered, respectively; (d,e) logistic regression
and kriging, without and with spatial correlation considered in regression, respectively; (f,g) logistic
regression (without considering spatial correlation) and kriging, with extra training samples collected
by random and adaptive sampling, respectively; (h,i) logistic regression (considering spatial correlation)
and kriging, with extra training samples collected by random and adaptive sampling, respectively.

For logistic regression, land cover change class (Class), block contiguity size (L10B), heterogeneity
(HET), dominance (DMG) and probability vector of class occurrences in the focal neighborhood
(PROB = (p1(x), p2(x), . . . , p6(x))T) were used as covariates in different combinations (as shown in
Table 3) to predict per-pixel probabilities of correct change categorization. Class was coded by 6 binary
variables to indicate the presence of one of the 7 classes (as there is one redundancy in the coding of
classes). PROB represents the probabilities of individual classes in the focal neighborhood of each pixel
(note there is also one redundancy in the probabilities of 7 possible classes as their sum equals 1.0). The
models tested are shown in Table 3. Model numbers indicate how many sets of covariates (in addition
to the intercept β0) are employed for logistic regression: Models 1a to 1e account for the effects of Class,
L10B, HET, DMG and PROB on the accuracy of change categorization, respectively; Models 2a to 2d
accommodate the effects of L10B, HET, DMG and PROB, respectively, when Class is already taken into
account; Models 3a to 3c account for the effects of L10B, HET and PROB, respectively, when Class and
DMG are already incorporated; Models 4a and 4b seek to quantify the effects of all L10B and HET,
respectively, when Class, DMG and PROB are already included. In other words, the addition of L10B
or HET to Model 3c creates Model 4a or 4b, as shown in Table 3.

An exhaustive model selection procedure was applied for finding the model containing the
highest number of significant (at α = 0.01) explanatory variables. At each step in the procedure, the
significance of the addition of a covariate to a model was tested. The difference between the deviances
of two models follows a χ2

df distribution, where df is the number of covariates additional to those
shared by the two models. A χ2-test can thus be used to test if adding these df variables to the model
significantly improves the fit of the model.
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Figure 4. Maps of prediction standard errors for different methods (the same set of methods as listed in
Figure 3): (a) indicator kriging; (b,c) logistic regression, without and with spatial correlation considered,
respectively; (d,e) logistic regression and kriging, without and with spatial correlation considered in
regression, respectively; (f,g) logistic regression (without considering spatial correlation) and kriging,
with extra training samples collected by random and adaptive sampling, respectively; (h,i) logistic
regression (considering spatial correlation) and kriging, with extra training samples collected by
random and adaptive sampling, respectively.

Table 4 shows the significance testing regarding the improvement of the fit of the models by
adding an additional covariate (or set of covariates, as for Class and PROB) F+1. As shown by Table 4,
all of the sets of covariates were significant at α = 0.01. The impact of local pattern indices (L10B, HET,
DMG and PROB) was relatively small, but significant (at α = 0.01) if the model contained Class, which
indicates that part of the impact of these variables was already accounted for by Class. DMG was the
most significant at α = 0.01 if Class were already in the model. Therefore, the analysis was continued
with Class and DMG. Adding L10B or HET to a model containing Class and DMG was not significant at
α = 0.01. Adding PROB to a model with Class and DMG (Model 3c) was significant at α = 0.1. Finally,
it was tested that adding to Model 3c covariate L10B or HET would not significantly (at α = 0.1 or
0.01) improve the fit. Thus, Model 3c (1&Class&DMG&PROB) was the model containing the highest
number of significant covariates.
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Table 3. Description of models.

Model Number (m) Model

0 β0
1a β0 `β1´6¨ Class
1b β0 `β1¨ L10B
1c β0 `β1¨ HET
1d β0 `β1¨ DMG
1e β0 `β1´6¨ PROB
2a β0 `β1´6¨ Class `β7¨ L10B
2b β0 `β1´6¨ Class `β7¨ HET
2c β0 `β1´6¨ Class `β7¨ DMG
2d β0 `β1´6¨ Class `β7´12¨ PROB
3a β0 `β1´6¨ Class `β7¨ DMG `β8¨ L10B
3b β0 `β1´6¨ Class `β7¨ DMG `β8¨ HET
3c β0 `β1´6¨ Class `β7¨ DMG `β8´13¨ PROB
4a β0 `β1´6¨ Class `β7¨ DMG `β8´13¨ PROB `β14¨ L10B
4b β0 `β1´6¨ Class `β7¨ DMG `β8´13¨ PROB `β14¨ HET

Table 4. Chi-square tests for selected models.

Chi-Square Test
(df )

Description: Significance of an
Additional Covariate F+1 to a Model

Already Containing Variables Fq

Difference in
Chi-Square Values

Significance at
α = 0.01 Unless

Stated Otherwise

Fq F+1
D0-D1a (6) 1 Class 88.940 Yes
D0-D1b (1) 1 L10B 74.720 Yes
D0-D1c (1) 1 HET 89.382 Yes
D0-D1d (1) 1 DMG 98.068 Yes
D0-D1e (6) 1 PROB 93.268 Yes

D1a-D2a (1) 1&Class L10B 19.511 Yes
D1a-D2b (1) 1&Class HET 28.452 Yes
D1a-D2c (1) 1&Class DMG 33.511 Yes
D1a-D2d (6) 1&Class PROB 29.526 Yes
D2d-D3a (1) 1&Class&DMG L10B 0.548 No
D2d-D3b (1) 1&Class&DMG HET 0.296 No
D2d-D3c (6) 1&Class&DMG PROB 11.269 Yes (α = 0.1)
D4a-D3c (1) 1&Class&DMG&PROB L10B 1.467 No
D4b-D3c (1) 1&Class&DMG&PROB HET 0.059 No

Dm represents the deviance of model m; models are described in Table 3; F0 = 1 is multiplied by the intercept β0.

With Model 3c (1&Class&DMG&PROB) selected using significance testing as above, logistic
regression was performed using this model for the pixel-level prediction of classification accuracy. A
probability surface was generated assuming spatial independence in binary samples of (in)correct
classification, as shown in Figure 3b. Furthermore, SEs in logistic predictions were computed using
Equation (15), with the resulting map of SEs shown in Figure 4b.

As described in Section 2.3, binary data indicating the (in)correctness in change categorization
are often spatially correlated. A challenge in logistic regression involving spatially-correlated binary
data is to model spatial dependence in binary response data while estimating regression coefficients
β1s. For this, an iterative procedure was undertaken to estimate both logistic model coefficients and
variogram parameters via standardized residuals. Upon convergence of the estimates of variogram
model parameters and logistic model coefficients, we obtained variogram model parameter values (as
shown in Table 5, the final set of parameters values) and logistic model coefficients β1s. β1s were used
to predict pixel-level accuracies of change categorization with spatial dependence accommodated.
Furthermore, standard errors can be estimated using Equation (15). The predicted accuracies and
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associated SEs are shown in Figures 3c and 4c, respectively. The differences between the results
obtained by logistic regression with spatial correlation accommodated and those without in terms
of predicted probabilities and prediction errors are hardly appreciable. The reason is that the range
of spatial correlation is just at the scale of about 3 pixels, far less than the average spacings between
sampled locations.

Table 5. Variogram parameters estimated based on standardized residuals of logistic regression.

Model Nugget Sill Range (pixels)

Initial Spherical 0.201 1.000 2.210
Final Spherical 0.156 1.000 2.950

After logistic regression, the residuals of logistic regression at sample pixels were used for
estimating corrections to regression predictions through simple kriging and then added to the
regression predictions (i.e., local means, π̂ pxq) to obtain the corrected probabilistic measures of
classification accuracies for individual pixels. Equations (21) and (22) were the formulas applied for
computing the corrected probabilities of correct classification and the corresponding standard errors,
respectively. For kriging of regression residuals, two approaches were implemented: one without
consideration for spatial correlation in logistic regression (Table 5, the initial set of variogram parameter
values) and the other with consideration for spatial correlation therein, as shown in Section 2.3 (see
Table 5, the final set of variogram parameter values as mentioned previously). To aid the interpretation
of the results, Figure 5a shows variogram model parameters with no spatial correlation incorporated
in logistic regression (corresponding to the initial set of parameters in Table 5), while Figure 5b shows
variogram model parameters fitted iteratively with those of logistic regression where spatial correlation
was considered (pertaining to the final set of parameters in Table 5). The sills shown in Figure 5a,b,
which are the sum of nugget and structural variances, were set to 1.0 because standardized residuals
were used to compute experimental variograms. Results with the former were meant to provide
a baseline for the latter, which is computationally more expensive due to the iteration involved in
parameter estimation and variogram modeling.
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Figure 5. Experimental variograms (shown as small squares) and their fitted models (shown as curves)
based on the standardized residuals when: (a) no spatial correlation is considered in logistic regression;
and (b) considering spatial correlation in logistic regression; (a,b) corresponding to the initial and final
set of parameters in Table 5, respectively.

For the former, the map depicting corrected probabilities of correct change categorization and the
SEs in the corrected probabilistic measures are shown in Figures 3d and 4d, respectively. For the latter,
the maps depicting corrected probabilities and their SEs are shown in Figures 3e and 4e, respectively.
Unsurprisingly, the results shown in pairs (i.e., Figure 3b,c and Figure 3d,e) indicate no apparent
differences. This visual interpretation will be supported with testing results in the next subsection.
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Having undertaken experiments about significant covariates for logistic regression and the
advantages of logistic-regression-kriging (with or without full treatment of spatial correlation in the
estimation of variogram model parameters and regression coefficients) against regression or kriging
alone, we turn to the effects of adaptive sampling guided by uncertainty measures (i.e., SEs) in
current local accuracy predictions (based on existing training sample data). To test the effectiveness of
adaptive sampling (it is labeled so because further samples are selected according to SEs in existing
accuracy predictions), we used the pool of the extra 215 samples as the population to get some further
training samples. Adaptive sampling was actually undertaken based on the results obtained by
logistic-regression-kriging with or without fuller treatment of spatial correlation. We selected 30
further training samples, whose SEs were significantly larger than the rest in the set of 215 samples.
For comparison with adaptive sampling pursued here, we also applied stratified random sampling
(regardless of SEs) based on the same pool of extra 215 samples to get 30 random training samples.
Two sampling approaches and two sets of prior logistic-regression-kriging results gave rises to four
more sets of results. These four prediction results are shown in Figure 3f to Figure 3i, while their
corresponding maps of SEs are shown in Figure 4f to Figure 4i. Clearly, SEs shown in Figure 4f,g and
Figure 4h,i indicate a slight decrease as compared to those shown in Figure 4d,e, respectively.

3.3. Testing

The performance of the nine different methods described previously for accuracy prediction can
be evaluated by comparing predicted values p̂

`

xj
˘

with actual observations i
`

xj
˘

at 350 testing sample
locations using the following four measure: mean error (ME), mean absolute error (MAE), root mean
square error (RMSE) and sums-of-squares (R2

SS). They are computed as follows:
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where nt is the number of testing samples and p is the mean of observed values. As recommended
in the literature, R2

SS measures the proportion of explained variation by logistic regression [29]. As
the predictions of probabilities of (in)correct classification can be transformed to indicator data at the
threshold of 0.5, we can also compute measures of PCCs to assess the accuracy of predictions. These
measures were computed for the nine prediction methods, as presented in Table 6. The results for the
null model, which assigns 73.25% (the PCC estimate from Table 2) as the prediction of accuracy for all
pixels, are used as the baseline for the methods shown in Table 6.

As seen from Table 6, all methods register negative ME values (i.e., ME < 0). This suggested
that all of the methods of prediction used here over-estimated accuracy in change categorization
(as observed values < predicted values). Because of unbiasedness in kriging, the ME value of
predictions by indicator kriging is the closest to 0.

As indicated by Table 6, there is a tendency of better performances, as demonstrated by decreasing
MAEs and RMSEs, but increasing PCCs and R2

SS for methods shown top down in the rows in Table 6.
In particular, as shown in Table 6, indicator kriging is the worst at predicting local accuracies, while
logistic-regression-kriging accommodating spatial correlation was the best. Note that the null model,
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which sets a baseline for all other methods tested, was worse than any of the other methods tested, as
shown in Table 6.

Table 6. Comparison of methods for predicting classification accuracy.

PCC (%) ME MAE RMSE R2
SS

Null model 58.86 ´0.111 0.465 0.505 ´0.051
Indicator kriging 60.86 ´0.107 0.454 0.496 ´0.018

Logistic regression
no spatial correlation considered 69.71 ´0.146 0.341 0.441 0.200

spatial correlation considered 70.29 ´0.146 0.340 0.440 0.201
Logistic regression and kriging of residuals

no spatial correlation considered in regression 70.57 ´0.146 0.338 0.439 0.202
spatial correlation considered in regression 71.14 ´0.135 0.335 0.437 0.211

Logistic regression and kriging of residuals (with
extra training samples)

no spatial correlation considered in regression
Random sampling 72.29 ´0.127 0.328 0.422 0.266
Adaptive sampling 76.00 ´0.104 0.318 0.403 0.331

spatial correlation considered in regression
Random sampling 72.57 ´0.124 0.327 0.421 0.269
Adaptive sampling 77.43 ´0.080 0.318 0.402 0.332

However, there are only modest gains in accuracy achieved by logistic-regression-kriging
accommodating spatial correlation as opposed to the alternative implementation without considering
spatial correlation. This is also true of logistic regression with spatial correlation considered as opposed
to that without. The trade-off between computation cost and accuracy gain in prediction accuracy
is thus important. Map users must decide whether the extra cost involved in regression-kriging is
justifiable with the modest gains in prediction accuracy.

It should be noted that adequate reference samples are always important for ensuring reasonable
accuracy in predictions (about local classification accuracies) by the methods tested here regardless of
their sophistication. Given a specific sample size, the sample design will be important for optimum
predictions. As mentioned previously, SEs maps shown in Figure 4 could be used to locate densification
training samples to facilitate the developments of sampling strategies for accurate yet efficient
characterization of classification accuracy, as ground sampling is often expensive. We tested the
results (shown in subfigures (f) to (i)) obtained by adding extra training samples (adaptive and random
modes), using the same testing samples. The testing statistics are listed in Table 6’s lower block of
rows regarding the effects of extra training samples. They indicate that adaptive sampling for extra
training samples is more cost-effective than random sampling. For instance, for the case of combined
logistic-regression-kriging with the treatment of spatial correlation in regression, 7.5% more training
samples led to about 8.8% and 57.3% increases in prediction accuracy, as measured by PCCs and R2

SS,
respectively. In comparison, for random sampling, the same increase in training sample size led to only
about 2.0% and 27.5% increases in prediction accuracy, as measured by PCCs and R2

SS, respectively The
relationships between uncertainty-informed adaptive sampling and prediction performances should
be studied further, although this is beyond the scope of this paper.

3.4. Discussion

The proposed methods for mapping local accuracies in land cover change maps can be usefully
explored in combination with work on landscape dynamics monitoring and modelling, such as that
described by Millington et al. [1] and Rutherford et al. [2], and related research efforts [28,30–32]. Firstly,
results from maps of predicted changes using methods developed in [1,2] may well be evaluated with
respect to their local accuracies by using the methods proposed in this paper. This would provide
useful information about local variations of accuracies in predicted changes, which would in turn be
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valuable for improving model performances. Secondly, the accuracies of the predicted change maps
using models developed in [1,2] are subject not only to model performances, but also accuracies of
the input datasets that are used as covariates in modeling. If other categorical maps are included as
covariate map layers, it is possible to apply the methods proposed in this paper to quantify their local
accuracies, which can be used along with information about accuracies in other types of input maps to
analyze inaccuracies from the input, through the modeling process, to the output. Thirdly, inaccuracies
in reference data are yet another dimension of the accuracy issues raised here in this paper and in
related literature, such as Wickham et al. [30]. Reference data imperfection should be examined so that
we have a clearer picture of inaccuracies in the gathering and processing of land cover information
and in the broader context of landscape dynamics modeling. Fourthly, the issue of scale raised in the
literature, such as Millington et al. [1], Zhang et al. [15] and Pontius et al. [31], should be considered for
further developments of the methods proposed here in this paper, given that the proposed methods
are designed to work on the local scale (focal to be exact) and may not be linearly translatable to
coarser scales, as discussed previously in Section 2.2. Fifthly, we should be aware of the limitations
of single-date map comparisons between years, as pointed by Bontemps et al. [32], and promote time
series analysis in landscape change monitoring and dynamics modelling, seeking to account for
temporal dependence and phenology in data analysis and modeling. Lastly, sampling design [28]
remains essential for accuracy characterization, especially for change analysis and dynamics modeling,
no matter how sophisticated the methods for regression, kriging and others become. The adaptive
sampling strategy preliminarily developed and tested in this paper should be explored further for
large-scale problem-solving and in operational settings.

The methods tested in this paper are suitable for predicting local classification accuracies, which,
however, cannot be directly used for computing accuracies in derivative products or analyses, such as
those for landscape ecology, unless we are willing to assume independence among RVs representing
classification (in)correctness at individual locations. To accommodate the spatial dependence existing
among these RVs, geostatistical simulation should be applied [33]. For instance, simulation approaches
are needed for: (1) the determination of local accuracies in coarsened and object-based [34] land cover
change maps based on maps of finer resolution, as neighboring pixels in fine-resolution maps are likely
spatially correlated in terms of misclassification; (2) the rigorous quantification of SEs in predicted
local accuracies, especially when normality cannot be assumed for the small samples of binary data;
(3) the error propagation in area estimates that are likely to involve counting numbers of pixels
belonging to certain classes, where pixels close by cannot be assumed independent; and (4) the other
ecological modeling and application scenarios where land cover change maps are part of the input
data. These will form topics for further research.

4. Conclusions

This paper has focused on situations where users of land cover change maps would like to
evaluate such maps’ local accuracies based on some validation (training) samples and by exploiting the
association between the occurrences of (in)correct classifications and local patterns of class occurrences
in the map being assessed. Experiments with empirical data showed that combined logistic regression
and residual kriging is the most accurate in terms of conventional error measures and R-squared
measures (adapted for binary data), indicating the proportions of variation explained by alternative
accuracy predicators. It was also found that more efficiency in predictions can be obtained by not
considering spatial correlation in regression (thus, no need for iterative estimation of regression
coefficients and variogram parameters) without significantly compromising accuracy in prediction,
especially when variogram models suggest relatively weak spatial dependence in the observed data
concerning (in)correct classifications. The SEs evaluated along with accuracy predictions can be used
to guide the locating of further training samples to improve the predictions of local accuracies while
enhancing sampling efficiency, contributing to adaptive and progressive sampling designs for accuracy
characterization. Furthermore, the sampling strategy preliminarily explored in this paper may be
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usefully extended to provide feedbacks and diagnosis about information products quality, for example
by identifying locations of low predicted accuracies and suggesting ways for improving classification
accuracies, especially for classes or locations of high priorities in terms of environmental analysis
and applications.

Although the methods were designed and tested from users’ perspectives, land cover change
map producers may also implement the proposed methods for evaluating their map products’ local
accuracies. Obviously, covariates for logistic regression will be different, as producers are more solvable
in terms of access to source data employed and relevant metadata. For them, richness in source data
and more information about map production processes are likely to lead to more detailed and accurate
predictions of map accuracies, although this remains to be tested.
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