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Abstract: The need for integrating geospatial information (GI) data from various heterogeneous
sources has seen increased importance for geographic information system (GIS) interoperability.
Using domain ontologies to clarify and integrate the semantics of data is considered as a crucial step
for successful semantic integration in the GI domain. Nevertheless, mechanisms are still needed
to facilitate semantic mapping between GI ontologies described in different natural languages.
This research establishes a formal ontology model for cross-lingual geospatial information ontology
mapping. By first extracting semantic primitives from a free-text definition of categories in
two GI classification standards with different natural languages, an ontology-driven approach is
used, and a formal ontology model is established to formally represent these semantic primitives
into semantic statements, in which the spatial-related properties and relations are considered as
crucial statements for the representation and identification of the semantics of the GI categories.
Then, an algorithm is proposed to compare these semantic statements in a cross-lingual environment.
We further design a similarity calculation algorithm based on the proposed formal ontology model
to distance the semantic similarities and identify the mapping relationships between categories.
In particular, we work with two GI classification standards for Chinese and American topographic
maps. The experimental results demonstrate the feasibility and reliability of the proposed model for
cross-lingual geospatial information ontology mapping.

Keywords: geographic information systems; semantic interoperability; cross-lingual; lightweight
ontology; topographic map

1. Introduction

The vision of a “Digital Earth” articulated by US Vice President Al Gore [1–3] has contributed
significantly to the growth in global geospatial information (GI) on physical and social environments.
However, how to query, retrieve, and manipulate those data from heterogeneous sources has
challenged the GI community [2–5]. Thus, an approach to integrating GI data from various
heterogeneous sources has found increased importance [6].

A data integration process is not as simple as joining several systems because any effort at
information sharing runs into the problem of semantic heterogeneity [7]. Semantic heterogeneity
occurs when enabling interoperability across geographic information systems (GIS) [8–11] because
GIS are often designed to address data from highly distributed, multidisciplinary, and cross-lingual
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data sources with different application demands [12]. Clarifying the semantics of data is therefore
a crucial step toward successful data integration [13]. To achieve this, domain ontologies are built as
a mediator to exchange information in such a way that the precise meaning of the data (i.e., semantics)
is readily retrievable beyond simple keyword matching via knowledge representation languages and
reasoning [7,13–15]. Thus, ontology engineering has been regarded as an effective means of providing
seamless connection between component GIS at the semantic level [8,12,16].

While the GI community widely acknowledges the utility of ontology technologies, two main
problems need to be solved for GI ontology engineering and sharing are as follows: (1) traditional
ontology research and technologies focusing on terminology and schema cannot answer the question
surrounding how to engineer GI ontologies and integrate them with GIS or Spatial Data Infrastructures
(SDI) [6]; and (2) mechanisms still need to be explored for GI ontology mapping in cross-lingual
environments to facilitate semantic integration between GI ontologies described in different natural
languages [17–20].

The reason for the first problem is that GI features and categories are a product of spatial
cognition and social convention; thus, the ontology engineering works in GI domains are different
from others, in which the location, topology, mereology, and other spatial relations play a major role in
the identification and representation of GI semantics [14]. For example, from a feature-driven ontology
perspective, the geographic categories “river” and “bank” should be specified into different classes,
and normally, the spatial relation “adjacent-to” between these two categories is missing. Moreover,
geographic and non-geographic entities are ontologically distinct in a number of ways [21]. To enhance
the semantic expressiveness and overcome the issue of semantic heterogeneity during the GI ontology
engineering process, the spatial-related characteristics of GI categories must be considered to enrich
the spatial-related semantics of the given ontology.

Although a majority of current GI ontologies have been developed in English with English
vocabularies, the amount of multilingual content on the Semantic Web and thus the number of
vocabularies/ontologies in multiple languages continue to grow [22]. Thus, methods for matching
vocabularies across languages have become increasingly more important for promoting the accessibility
of the data in multiple languages by end users [23]. As a motivating scenario, if a user wants to query
the water level data along the Mekong River (The seventh longest river in the world, covering six
different countries—Cambodia, Laos, Myanmar, Thailand, Vietnam and China—and the official
languages of each country are different), there are several data providers offering the related GI data
via their national GIS in their native natural languages. This situation has generated a substantial
challenge to integrating highly heterogeneous GI data across natural language barriers.

The purpose of this study is to establish a formal ontology model for cross-lingual geospatial
information ontology mapping. Starting from two GI classification standards with different natural
languages—Chinese and English(for the sake of simplicity and clarity, this study was restricted to the
“surface water” categories from these two standards)—a set of semantic primitives are extracted from
the free-text definition of the categories in the standards by applying Natural Language Processing
(NLP) techniques. Then, an ontology-driven approach is used, and the formal ontology model is
established to formally represent these semantic primitives using semantic statements, in which the
spatial-related properties and relations are considered as crucial statements for the representation
and identification of the semantics of the GI categories. To overcome the natural language barrier,
the statements in Chinese are translated into English by using machine translation tools, and the
mapping relationships between statements are determined within an English context, which then
serve as the basis for the similarity calculation between categories in different GI ontologies. Finally,
a similarity calculation algorithm is designed to distance the semantic similarity between GI categories
in different ontologies, and the final mapping relationships between pairs of categories are determined
based on calculated similarity values. The contributions of the proposed approach include (1) the
construction of the spatial-related semantic properties and relations to serve the requirement of the
presentation and identification of the spatial characteristics of the GI categories and (2) the algorithms
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of GI ontology mapping in a cross-lingual environment based on formally represented and comparable
semantic statements.

The remainder of this paper is organized as follows. Section 2 presents the related works in the
literature. Then, the main procedure of our methodology is presented in Section 3. Next, a case study
demonstrating the application of our method is shown in Section 4. Finally, conclusions are drawn,
and future works are noted.

2. Related Works

2.1. Semantic Interpretation

Knowledge acquisition (KA) is a broad field that encompasses the processes of extracting, creating,
and structuring knowledge from heterogeneous resources [24]. Semantic interpretation (SI) for KA
is defined as the composition of two sub-processes: the extraction of semantic primitives from the
free-text definition in ontologies and semantic enrichment based on the extracted semantic primitives.

The research on semantic primitive extraction builds on a large body of works within the
fields of Natural Language Processing (NLP) [25]. NLP and text mining are research fields aimed
at exploiting rich knowledge resources with the goal of understanding, extracting and retrieving
semantic information from unstructured written text. Knowledge resources that have been used for
these purposes include the entire range of terminologies, including lexicons, controlled vocabularies,
thesauri, and ontologies [26,27]. Although numerous methods and algorithms have been developed
recently (such as symbolic, statistical, and hybrid approaches) [26], a fully automated algorithm for
semantic extraction using NLP techniques seems unachievable, and a manual process as an assistant is
normally inevitable.

For semantic enrichment, authors in [28,29] proposed a systematic methodology to explore and
identify semantic information provided by categories in geographic ontologies, in which the semantic
representations of categories are enriched with a set of semantic properties and relations to reveal
similarities and heterogeneities between these categories. Authors in [30] presented an axiomatic
formalization of a theory of top-level relations (parthood relations, sub-universal relations, and
cross-categorical relations) between three categories of geospatial-related entities, namely, individuals,
universals, and collections. In addition, they demonstrated how a more exact understanding helps to
overcome the semantic heterogeneous problems in the information integration process. In [13], the
semantics of a concept in GI ontologies were presented using an extendable and structural definition
framework composed of a number of RDF triple statements, and a comparison algorithm was designed
to determine the semantic relationships of concepts between different domains. The primary objective
of these studies was to extract and represent the semantics of concepts/entities based on structural
common vocabularies, which make the semantics of the concepts/entities comparable. However, the
structural common vocabularies in these works are determined by domain experts manually; thus,
the objectivity and automation of the algorithms (avoiding ad hoc manual procedures and subjective
experts’ knowledge) remain quite limited.

2.2. Ontology Mapping

Mapping relationship discovery for ontologies has attracted considerable attention in recent years.
Various approaches based on processes to find similarities between different but related ontologies
have emerged [31]. With respect to the literature specifically oriented toward geospatial information
(GI) ontologies, authors in [32] performed an analysis of the different models of semantic similarity
measurement and evaluated these models with respect to the particular requirements of geospatial
data. Authors in [7,33] systematically surveyed several of the most recent and often-referenced works
on integrating GI and GI ontology mapping by applying comparison criteria, such as logical inference,
mapping approaches, degree of automation, and geospatial relativity. In addition, a general conclusion
is proposed that, for the ontology mapping task, the use of formal ontologies and, consequently, the
use of reasoners should be mandatory.
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In recent years, Volunteered Geographic Information (VGI) has been proposed for GI ontology
mapping in a web environment. Authors in [34,35] devised a mechanism for computing the semantic
similarity of the Open Street Map (OSM) geographic classes using volunteered lexical definitions
to alleviate the semantic gap between different VGI producers. Another set of studies focused on
introducing an artificial neural network approach to simulate the human perception and measure
the semantic similarity between spatial entities for the purpose of improving the automaticity of the
ontology mapping process [36,37].

All these proposals, combining the use of different models of semantic similarity measurement,
have emerged to provide solutions to existing GI ontology mapping problems in English environments.
However, the semantic web and ontology engineering have experienced significant advancements
in standards and techniques, and increasingly more domain ontologies and localization content in
the semantic web are described using native natural languages [23]. There is a pressing need for
cross-lingual ontology mapping mechanisms in the GI community that are designed to reconcile
semantics of different ontologies in multilingual environments and to improve the accessibility of
various GI ontologies across language barriers [38].

Author in [39] groups the existing cross lingual ontology mapping(CLOM) algorithms into following
categories: manual processing [40–42], corpus-based approach [43], linguistic enrichment [44], indirect
alignment composition [45], and translation-based approach [39,46]. Compared to these CLOM
approaches, translation-based CLOM is currently a very popular approach that is exercised by several
researchers [47–50], which is enabled by translations achieved through the use of machine translation
(MT) tools, bilingual/multilingual thesauri, dictionaries etc. Typically, these approaches rely only on
string-based lexical comparisons of entity names and descriptions [51–54], while the comparisons
between semantic interpretation, e.g., model-theoretic semantics of entities are missing.

3. Methodologies

The main procedure for our methodologies is divided into two sub-processes, as shown in
Figure 1. In the semantic interpretation process, two GI formal ontologies, namely, OA and OB, are
established from the free-text definition of the corresponding classification standards with different
natural languages. In the ontology mapping process, all the category names and semantic statements
in OA are translated from LA into LB, and the mapping relationships between category names and
semantic statements are determined within the same language context, which then serve as the
basis for the similarity calculation between categories in different GI ontologies. Finally, a similarity
calculation algorithm is designed, and the final mapping results between pairs of categories in different
classification standards are determined.
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3.1. Semantic Interpretation

3.1.1. Semantic Primitive Extraction

In geospatial information repositories, free-text definitions are often the primary and only
available objective descriptions of categories. Semantic primitives are syntactic and lexical patterns in
the free-text definition and can be extracted using NLP tools [55]. The fields of studies on NLP have
developed methods and algorithms for information retrieval and extraction from free-text knowledge
resources. The methodology adopted here for analyzing definitions and extracting semantic primitives
was introduced by [56]. In this research, the lexical patterns of nominal phrases and verb phrases are
considered as semantic primitives. An example is illustrated in Figure 2, and the main steps of the
process are as follows:

1. One category definition in free-text format is chosen as the input natural language material;
2. Word segmentation is performed to split the whole sentence into individual words;
3. Words are categorized and tagged into their parts-of-speech tag sets (see Tables 1 and 2) and

labeled accordingly;
4. The nominal phrases and verb phrases are chunked, and the sentence structure is analyzed to

extract lexical patterns as the semantic primitives.
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Table 1. Summary of the Penn Treebank Part-of-Speech Tag sets in English.

Part of Speech Abbr Part of Speech Abbr Part of Speech Abbr

Adjective JJ Exclamation UH Possessive wh-pronoun WP$
Adjective comparative JJR Existential EX Predeterminer PDT
Adjective superlative JJS Foreign word FW Proper noun plural NNPS

Adverb RB Gerund VBG Proper noun NNP
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Table 1. Cont.

Part of Speech Abbr Part of Speech Abbr Part of Speech Abbr

Adverb comparative RBR List item marker LS Symbol SYM
Adverb superlative RBS Modal verb MD to TO

Article DT Participle past VBN Verb base form VB
Cardinal number CD Particle RP Verb present tense VBP

Common noun plural NNS Past tense verb VBD Verb 3rd person singular VBZ
Common noun singular or mass NN Personal pronoun PRP Wh-determiner WDT

Conjunction coordinating CC Possessive ending POS Wh-pronoun WP
Conjunction subordinating IN Possessive pronoun PRP$ Wh-adverb WRB

Table 2. Summary of the Penn Treebank Part-of-Speech Tag sets in Chinese.

Part of Speech Abbr Part of Speech Abbr Part of Speech Abbr

adverb AD determiner DT proper noun NR

aspect marker AS for words
“dengdeng”(“等等”) ETC temporal noun NT

in ba-construction BA foreign words FW ordinal number OD
coordinating conjunction CC interjection IJ onomatopoeia ON

cardinal number CD other noun-modifier JJ preposition excl. “bei”(“被”)
and “ba”(“把”) P

subordinating conjunction CS “bei”(“被”) in long
bei-const LB pronoun PN

“de”(“的”)in a relative-clause DEC localizer LC punctuation PU
Associative “de” DEG measure word M “bei”(“被”) in short bei-const SB

“de”(“得”) inV-deconst. and
V-de-R DER other particle MSP sentence-final particle SP

“di”(“地”) before VP DEV common noun NN predicative adjective VA

“shi”(“是”) VC “you”(“有”) as the
main verb VE other verb VV

3.1.2. Construction of the Formal Ontology Model

From Wikipedia an “ontology in information science“ is a formal naming and definition of
the types, properties, and interrelationships of the concepts that really or fundamentally exist for
a particular domain of discourse. It is thus a practical application of philosophical ontology, with
taxonomy. In addition, a domain ontology (or domain-specific ontology) represents concepts that
belong to a general domain. Thus, for a formal representation [57,58], the domain ontology (denoted
by ODomain), and concepts in the domain could be summarized by Equations (1)–(3).

ODomain “ tSpCDomainq, SpRCq, SpHCq, SpPCqu (1)

CDomain “ tTC, DCu (2)

DC “ tRC, HC, PCu , RC P SpRCq, HC P SpHCq, PC P SpPCq (3)

In Equation (1), S(CDomain) represents the set of concepts in a domain, and the semantics of each
concept in the domain are categorized into different groups, namely, S(HC), S(RC), and S(PC); S(HC)
represents the set of the hierarchical relations about the taxonomic information in ODomain, S(RC)
represents the set of other interrelations between these concepts, and S(PC) represents the set of the
semantic properties belong to the concepts in this domain.

In Equation (2), the semantics of a concept in the domain are considered as the composition of
terminology of this concept (denoted by TC) and structural definition of this concept (denoted by
DC). Unlike the free-text format of definition, DC commonly consists of the semantic properties of the
concept (PC), the hierarchical relation (HC) and other interrelations (RC) between this concept and other
concepts in the domain. Thus, from Equations (2) and (3), a certain concept in the domain, CDomain can
be deduced as a function of TC, RC, HC, and PC in Equation (4)

CDomain “ tTC, RC, HC, PCu , RC P SpRCq, HC P SpHCq, PC P SpPCq (4)
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in which RC, HC, PC are used to represent the semantics of this concept, and belong to S(RC), S(HC),
S(PC), respectively.

Considering the situation in the GI domain, we use the word “category” instead of “concept”.
Because the semantic characteristics of the GI category are highly correlated in space and time [59],
the spatial- and temporal-related semantic properties and relations should be included in the model
as crucial vocabularies for the representation and identification of the semantics of the GI categories.
Thus, the GI ontology OGI and the semantics of a certain category CGI in OGI can be represented as
Equations (5) and (6):

OGI “ tSpTCq, SpRSq, SpRTq, SpRCq, SpHCq, SpPSq, SpPTq, SpPCqu (5)

CGI “
 

pTC “ VTCq X pRS “ VRSq X pRT “ VRT q X pRC “ VRCq X pHC “ VHCq

X pPS “ VPSq X pPT “ VPT q X pPC “ VPCq
( (6)

In Equation (5), S(TC) represents the set of the category names in OGI; S(RS), S(RT) represent the
set of the spatial-related and temporal-related semantic relations between categories; S(HC)represents
the set of hierarchical relations; S(PS), S(PT) represent the set of the spatial-related and temporal-related
semantic properties belong to the categories in OGI; and S(RC), S(PC) represent the set of other semantic
properties and relations in OGI. And in Equation (6), Vx represents the values of certain semantic
properties/relations of CGI; TC, RS, RT, RC, HC, PS, PT, PC are used to represent the semantics of CGI,
and belong to S(TC), S(RS), S(RT), S(RC), S(HC), S(PS), S(PT), S(PC), respectively.

In order to solve the problems of geographic representation, authors in [60] distinguished three
main theoretical tools that are required for the purposes of developing an overall formal theory of
spatial representation, namely, mereology, location, and topology, these theoretical tools are selected as
the basis for defining spatial-related semantics in our formal ontology model. In addition, geographic
entities in reality is essentially dynamic, authors in [61] pointed out that a good ontology must be
capable of accounting for spatial reality both synchronically (as it exists at a time) and diachronically(as
it unfolds through time), thus the “time point” and “time period” properties should be used to describe
dynamic characteristics of the geographic entities in our model. Moreover, in order to specify semantic
relations and properties used in geographic definitions, authors in [28] analyzed several geographic
ontologies and identified patterns which were systematically used to express specific semantic relations
and properties, including hierarchical relations, part-whole relations and neighborhood relations, and
semantic properties such as purpose, nature, material, size, and so on.

Based on previous researches and our formal ontology model in Equation (5), the semantic
property and relation types in our model are subdivided and shown in Figure 3.
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3.1.3. Transformation from Semantic Primitives to Formal Ontology Model

In order to make the semantic primitives structural and comparable, domain experts are
responsible for analyzing these semantic primitives and transforming them into different groups
of semantic properties/relations in our geospatial formal ontology model. The famous triple statement
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Subject-Predicate-Object and the web ontology language (OWL) are selected as the basis for presenting
the semantic properties/relations and their values in a machine-readable manner. The Subject
represents a CGI in OGI; the Predicate is a certain semantic property or semantic relation type illustrated
in Figure 3, in which all of the semantic relations are presented by object property and the Object in
these semantic relations is another CGI in OGI or an “owl:class” object type, while most of the semantic
properties are presented by object property too, and a few of them are presented by datatype property
in OWL syntax, and the Object in these semantic properties is a “rdfs:literal” datatype. The following
rules are adopted to handle the formalization process:

(1) The GI category can be represented by a number of semantic relations/properties; however, the
number of semantic relations/properties involved should be minimized to avoid redundancy.

(2) Not every GI category must cover all semantic relations/properties in the model. The situation
whereby two different categories use the same set of semantic relations/properties to represent
their semantics cannot be guaranteed.

(3) The semantic information of a certain category in our model is the combination of different
semantic relations-properties and their values. This combination should represent all the semantic
information of the category and be able to distinguish the different geospatial categories within
and beyond domain ontologies to avoid ambiguity.

(4) The hypernym, hyponym, and synonym relations should be included in the hierarchical
relation group. If category A is a hyponym of category B, A must inherent all the semantic
properties/relations of B to retain semantic consistency.

According to the above-mentioned rules, the semantic primitives can be specified into these
properties/relations types as structure statements for identification and representation of the GI
categories. For example, the free-text definition of the “canal” category in English is “manmade
waterway used by watercraft or for drainage, irrigation, mining, or water power”. In addition, the
semantic primitives of the “canal” category are extracted by applying NLP tools to the set of phrases
including “manmade waterway”, “used”, “watercraft”, ”drainage”, ”irrigation”, ”mining”, and “water
power”. Then, transforming these semantic primitives into the proposed formal ontology model, the
semantics of the category “canal” can be represented as a set of several semantic statements as follows:

CCanal “ tTC “ “canal”X HC “ “Hypernym : waterway”X PC “ “pPurpose : watercra f tqY
pPurpose : drainageq Y pPurpose : irrigationq Y pPurpose : miningqY

pPurpose : waterpowerq”X PC “ “Nature : Manmade”u
(7)

In addition, the representation in OWL format is illustrated in Figure 4.
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and (b) the semantic statement presentation in turtle file format.
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3.2. Ontology Mapping Algorithms

3.2.1. Semantics Translation

Assume that we have formal ontologies OA, OB presented in different natural languages, namely,
language A (LA) and B (LB), respectively. According to the geospatial formal ontology model introduced
in Section 3.1.2, the semantics of ontologies OA and OB consist of category name sets S (CNA) and
S (CNB) and semantic statement sets S (SSA) and S (SSB), labeled in different natural languages, in
which the semantic statement consists of semantic property/relation types (as illustrated in Figure 3 in
Section 3.1.2) and their corresponding values. In order to cross the natural language barrier between
OA and OB, algorithm 1 illustrates the process of semantics translation between LA and LB:

Algorithm 1. Semantics Translation.

1: Input: Formal ontologies OA(S(CNA), S(SSA)) in LA
2: Output: Translation candidate result set of the semantics in OA, O1

A (S(TC(CNA)),
S(TC(SSA-object))) in
3: LB.
4: Symbols:
5: S(TC(CNA))—Translation candidate result set of S(CNA) in LB.
6: S(TC(SSA))—Translation candidate result set of S(SSA) in LB.
7: ssA-object—The Object part of the semantic statement ssA.
8: 1:for each category name cnA in S(CNA), translate cnA in LA into cnA

1 in LB by using different
Machine Translation (MT) web services (Google Translator API at” http://translate.google.cn/”,
Bing Translator API at” http://www.bing.com/translator/?ref=SALL&mkt=zh-CN”, and Baidu
Translator API at ”http://fanyi.baidu.com/?aldtype=16047#zh/en/”), collect all of the translation
results about cnA, into the translation candidate results TC(cnA), and store all of the category name
translation candidate results into the translation candidate set S(TC(CNA));
9: 2:for each semantic statement ssA in S(SSA), according to the OWL triple statement syntax, it
can be subdivided into three part, Subject, Predicate, and Object, translate ssA-object in LA into
ssA

’-object in LB by using different Machine Translation (MT) web services, collect all of the
translation results about ssA-object, into the translation candidate results TC(ssA-object), and store all
of the semantic statements translation candidate results into the translation candidate set
S(TC(SSA-object)).
10: Take the “运河” category in Chinese as an example, the semantic primitives of the “运河”
category are extracted by applying NLP tools to the set of phrases including “跨流域”, “开凿”, “供
调水”, ”航运”, ”人工水道”. Then, transforming these semantic primitives into the proposed formal
ontology model, the semantics of the category “运河”can be represented as a set of several semantic
statements as follows:
11:

C运河 “
!

TC “
2 运河

2
X HC “

2 Hypernym :水道2
X PC “

2 pPurpose :调水qY

pPurpose :航运q2 X PC “
2 Nature :人工2

X RS “
2 Topology :跨流域2

) (8)

12: And the semantics translation result of C运河 in English is as follows:
13:

C运河 “ tTC “ “pCanal)”X HC “ “Hypernym : pWaterway, Aqueductq”X
PC “ “pPurpose : pWater transfer, DiversionqqY

pPurpose : pShippingqq”X PC “ “Nature : pManual,Artificialq”X
RS “ “Topology : pInter-basin, Across river basinsq”u

(9)
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3.2.2. Semantic Statement Mapping

To determine the mapping relationships between categories in different GI ontologies, the
mapping relationships at the semantic statement level should be determined first because the semantic
statement presents the most detailed semantic characteristics of the compared categories. Once their
relationships are determined, the similarity between categories can be determined quantitatively.
Algorithm 2 shows the comparison process for category names and semantic statements between
OA and OB. In addition, all the mapping results M(OA, OB) are stored as the basis for the similarity
calculation between the concepts in different GI ontologies.

Algorithm 2. Semantic Statement Mapping.

1: Input: O1
A (S(TC(CNA)), S(TC(SSA-object))) in LB, Formal ontologies OB(S(CNB), S(SSB)) in LB

2: Output: Mapping result set M(OA, OB) about category names and semantic statements between
3: OA and OB.
4: Symbols:
5: T(ss)—semantic property/relation types for a certain semantic statement ss.
6: M(OA

1, OB)—mapping relationships about category names and semantic statements between OA
1

7: and OB.
8: 1: for each category name cnA in S(CNA), find the translation candidate results of cnA, TC(cnA),
9: 2: for each translation candidate tc(cnA) in TC(cnA), search S(CNB) in OB, find the matched
10: category name cnB in S(CNB) by applying Equation(10),
11: 3: If there is a translation candidate tc(cnA) has the mapping relationship “exact match”
12: with cnB, store the mapping result m(cnA, cnB, ‘exact match’) in M(OA, OB);
13: 4: else If there is a translation candidate tc(cnA) has the mapping relationship
14: “close match” with cnB, store the mapping result m(cnA, cnB, ‘close match’) in M(OA, OB);
15: 5: for each semantic statement ssA in S(SSA), find the translation candidate results of ssA-object,
16: TC(ssA-object),
17: 6: for each translation candidate tc(ssA-object) in TC(ssA-object), search S(SSB-object) in OB,
18: find the matched semantic statement Object, ssB-object in S(SSB) by applying Equation(10),
19: 7: If there is a translation candidate tc(ssA-object) has the mapping relationship “exact
20: match” with ssB-object, and T(ssA) equals T(ssB), store the mapping result m(ssA, ssB, ‘exact
21: match’) in M(OA, OB);
22: 8: else If there is a translation candidate tc(ssA-object) has the mapping relationship “close
23: match” with ssB-object, and T(ssA) equals T(ssB), store the mapping result m(ssA, ssB, ‘close
24: match’) in M(OA, OB).
25:

mpA, Bq “

$

’

&

’

%

exactly match, A is the same word or synonym o f B
close match, A is the near synonym o f B
not match, otherwise

(10)

3.2.3. Similarity Calculation

Given two categories, Ca and Cb in the formal ontologies OA and OB, respectively, based on the
M(OA, OB), the semantic similarity between Ca and Cb can be calculated using algorithm 3.
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Algorithm 3. Similarity Calculation.

1: Input: Categories Ca(CNa, SSa) in OA, Cb(CNb, SSb) in OB and mapping relationship set M(OA, OB)
2: about category names and semantic statements between OA and OB.
3: Output: Semantic similarity value between Ca and Cb, Sim(a, b).
4: Symbols:
5: Cot(SSa)—the number of semantic statements in SSa.
6: Cot(SSb)—the number of semantic statements in SSb.
7: m(CNa, CNb)—mapping relationship between CNa and CNb.
8: m(SSa(i), SSb(j))—mapping relationship between SSa(i) in Ca and SSb(j) in Cb.
9: Pt(SSab)—the sum of the match point value between SSa and SSb.
10: Pt(CNab)—the match point value between CNa and CNb.
11: 1: for each semantic statement SSa(i) in SSa, find the matched semantic statement SSb(j) in SSb
12: based on the mapping relationship set M(OA, OB);
13: If m(SSa(i), SSb(j)) = “exact match”, then the match point value between SSa(i) and SSb(j) is
assigned 1;
14: Else if m(SSa(i), SSb(j)) = “close match”, then the match point value between SSa(i) and SSb(j) is
15: assigned 0.5;
16: 2: Record the sum of the match point values between SSa and SSb as Pt(SSab) and the number of
17: matched statements between SSa and SSb as Cot(SSab);
18: 3: find the mapping relationship between CNa and CNb based on M(OA, OB),
19: If m(CNa, CNb) = “exact match”, then the match point value between CNa and CNb is assigned 1;
20: Else if m(CNa, CNb) = “close match”, then the match point value between CNa and CNb is
21: assigned 0.5;
22: 4: Record the match point value between CNa and CNb as Pt(CNab);
23: 5: the similarity of categories Ca and Cb can be calculated using the following equation:
24:

Simpa, bq “

$

&

%

1
2 ˚

PtpSSabq

CotpSSaq
` 1

2 ˚
PtpSSabq

CotpSSbq
, i f mpCNa, CNbq “

2not match2

1
3 ˚

PtpSSabq

CotpSSaq
` 1

3 ˚
PtpSSabq

CotpSSbq
`

PtpCNabq

3 , i f mpCNa, CNbq “
2exact match2{2close match2

(11)

25: In addition, the mapping relationships between category pairs Ca and Cb, namely, MR(a, b), can
26: be determined using the following equation:
27:

MRpa, bq “

$

’

’

’

&

’

’

’

%

exact match, i f Simpa, bq “ 1
close match, i f 0.5 ă“ Simpa, bq ă 1

related, i f 0 ă Simpa, bq ă 0.5
not match, i f Simpa, bq “ 0

(12)

4. A Case Study

4.1. Study Material

To illustrate the methodologies, two different classification standards in two corresponding
natural languages have been selected for use in the mapping process. CSC is developed based
on the national topographic map standards in China (Standards of “Cartographic symbols for
national fundamental scale maps” and “Specifications for feature classification and codes of
fundamental geographic information”). CSA is developed by the U.S. Geological Survey in America
(http://cegis.usgs.gov/ttl/USTopographic.ttl). Both standards are digital literature materials; the
category names and their free-text definitions are provided as source information for our experiment.
In addition, for the sake of simplicity and clarity, our study was restricted to the “surface water”
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categories from these two classification standards. Table 3 briefly lists the characteristics of these two
selected dataset, with detailed explanations as follows:

(1) Both standards have their own classification system to address the categories of “surface water”.
The categories in CSC are organized using a four-level hierarchy with six major categories.
By contrast, the categories in CSA are organized by a four-level hierarchy with 81 major categories,
which means that the hierarchical structure of CSA does not closely match that of CSC.

(2) The free-text definitions in both standards are used as category definitions.
(3) The number of categories in CSC is 74, and the number of concepts in CSA is 92; thus, the CSA

covers more category types than does CSC.
(4) The natural language in CSC is Chinese, whereas the natural language in CSA is English, which

means that there is a natural language barrier between these two GI classification standards.

Table 3. Characteristics of CSC and CSA.

Characteristic CSC CSA

Number of categories 74 92
Classification system Taxonomy (without overlap) Taxonomy (without overlap)
Levels of hierarchy 4 4

Number of major categories 6 81
Definition Free-text, unstructured Free-text, unstructured
Attribute Id, Category name Category name, Source of the definition
Language Chinese English

4.2. Results

The well-defined category definitions in both CSC and CSA serve as the basis for our study.
The Web Ontology Language (OWL) API is integrated to facilitate the implementation of the proposed
algorithm in Eclipse with the JAVA language, and the experiment results are as follows.

4.2.1. Semantic Statement Mappings

The semantic primitives are extracted using the Stanford Natural Language Processing Tools
(http://nlp.stanford.edu/software/) and are transformed into the formal ontologies OC and OA with
the set of category names and semantic statements by domain experts and encoded by the OWL via
Protégé. Using the semantic statement mapping algorithm introduced in Section 3.2.2, the number of
mapping relationships between the statements in OC and OA is recorded, and the mapping results for
different semantic property/relation types are shown in Table 4.

Table 4. Condition of the mapping statements between OC and OA.

Number of Semantic
Statements in OC

Number of Semantic
Statements in OA

Number of Mapping
Statements Mapping Rate

Property Types 80 111 44 29.93%

Spatial
Properties

Location 7 8 1 7.14%
Morphology 4 23 3 12.50%

Measurement 2 1 0 0.00%

Temporal
Properties

Time Period 2 4 3 75%
Time Point 3 1 1 33%

Other Semantic
Properties

Material Composition 15 22 11 42.31%
Nature 2 2 2 100.00%
Status 19 22 8 24.24%
Cause 2 6 1 14.29%

Purpose 24 22 14 43.75%

Relation Types 62 70 28 26.92%
Hierarchical Relations 25 24 9 22.50%

Spatial
Relations

Topology Relations 27 29 14 33.33%

Part-Whole Relations 9 17 5 23.81%

Temporal Relations 0 0 0 0.00%
Other Related Relations 1 0 0 0.00%

Total 142 181 72 28.69%
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The total number of semantic statements in OC is 142, and the total number of such statements
in OA is 181. In addition, the total mapping rate of the semantic statements between OC and OA is
28.69%. The details of the mapping relationships between semantic statements in each type can be
found in Appendix 5.

For the semantic statement about the semantic property types, the most matched type is “purpose”.
This is because the semantic property type of “purpose” is used to represent the manmade category,
which includes “ditch”, “canal”, and “dam”, and the free-text definitions in both the Chinese and
American classification standards for these types of categories are very similar. The semantic
information about purpose and functionality are considered as the crucial characteristics of the
categories. It is easy to understand that the semantic property type “nature” has the highest mapping
rate, namely, 100%, because there are only two values for this type of semantic statement, namely,
“natural” and “manmade”, in both OC and OA. Considering the semantic property type “location”,
there are seven semantic statements in OC, and eight in OA, but the mapping rate of this type is
extremely low(only one semantic statement is mapped with mapping rate 7.14%). That’s because the
semantic property type “location” is used to describe the region environment where certain geographic
category is at, and a lot of the categories in OA are bay-related or glacier-related, such as “glacier”, “ice
cap” and “iceberg tongue” with semantic property value of “location”, “mountainous area”, “regions
of perennial frost”, and “coast”, respectively, and there are no such categories in OC. For the semantic
statement about the relation types, the most matched type is “spatial relation”, which is also the type
with the highest mapping rate, indicating that the spatial-related relations play a major role in the
identification and representation of GI semantics.

4.2.2. Similarity Calculation and Category Mappings

The similarities between concepts are calculated using the semantic statement mapping
relationships and Algorithm 3 proposed in Section 3.2.3. Three typical examples of the mapping
results between categories are chosen for further discussion. Table 5 shows the names and free-text
definitions of the compared category pairs. In addition, the corresponding semantic statements,
calculated similarity values and final mapping relationships between these category pairs are presented
in Table 6.

Table 5. Names and free-text definitions of the compared concept pairs.

Concept Pairs Concepts Names Free-Text Definitions

Pair 1
Concept 1 in OC 溢洪道

水库的泄洪水道，用以排泄水库预定蓄水高度以上
的洪水。

Translation of Concept 1 in OC Spillway Reservoir spillway channel to drain reservoir
reservation head above the flood.

Concept 1 in OA Spillway A passage for surplus water to run over or around
a dam.

Pair 2
Concept 2 in OC 干河床（干涸河）

降水或融雪后短暂时间内有水的河床或河流改道后
遗留的河道。

Translation of Concept 2 in OC Arroyo (dry river)
Precipitation or snowmelt water within a short
time after the river or river diversions left after

the river.

Concept 2 in OA Wash
The usually dry portion of a stream bed that
contains water only during or after a local

rainstorm or heavy snowmelt.

Pair 3
Concept 3 in OC 水系

江、河、湖、海、井、泉、水库、池塘、沟渠等自
然和人工水体及连通体系的总称。

Translation of Concept 3 in OC Water System
River, river, lake, sea, wells, springs and reservoirs,

ponds, ditches, and other natural and artificial
water bodies and the connected system in general.

Concept 3 in OA Surface Water The water portion of the Earth’s surface, including
the surface of sea and inland waters
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Table 6. Example of categories definitions and similarity calculation.

Concepts Semantic Statements Translation of Semantic
Statement in OC

Mapping Relationships between Statement Similarity
Values

Mapping
Results

Concept 1 in OC
(Hypernym: 水道)[ (Is-Part-Of:水库) [ (Purpose:

排泄洪水)

(Hypernym: Waterways)
[ (Is-Part-Of:Reservoir) [

(Purpose:Drain flood)
“Spillway” Exact match “Spillway”(Concept Name)

“Hypernym:Waterways” Close match ”Hypernym:Passage”
“Is-Part-Of:Reservoir”Close match “Is-Part-Of:Dam”

“Purpose:Drain flood” Exact match ”Purpose:Surplus Water”

0.78 Close Match

Concept 1 in OA
(Hypernym: Passage) [ (Is-Part-Of: Dam) [

(Purpose: Surplus Water)

Concept 2 in OC
(Hypernym:河床)[(Material:水)[(Status:
干涸)[(Temporality:降雪或融雪后)

(Hypernym: riverbed)
[(Material: water)

[(Status: dry)
[(Temporality: After the

rainfall or snowmelt)

“Hypernym:riverbed” Exact match “Hypernym:Streambed”
“Material:water” Exact match “Material:Water”

“Status:dry”Exact match “Status:Dry” “Temporality:After the
rainfall or snowmelt” Exact match “Temporality:during or after

a local rainstorm or heavy snowmelt”

1.0 Exact Match

Concept 2 in OA

(Hypernym: Streambed) [(Material: Water) [(Status:
Dry) [(Temporality: during or after a local rainstorm

or heavy snowmelt)

Concept 3 in OC

(Hyponym:江)[ (Hyponym:河) [ (Hyponym:湖)[
(Hyponym:海)[ (Hyponym:井) [ (Hyponym:泉) [

(Hyponym:水库) [ (Hyponym:池塘)[ (Hyponym:
沟渠) [ (Hyponym:水体) [(Nature:自然\ Nature:

人工) [ (Material: 水)

(Hyponym: river) [

(Hyponym: river) [

(Hyponym: lake) [

(Hyponym: sea) [

(Hyponym: well) [

(Hyponym: spring) [

(Hyponym: reservoir) [

(Hyponym: pond) [

(Hyponym: ditch) [

(Hyponym: body of
water) [ ( Nature: natural

\ Nature: artificial) [

(Material: water)

“Hyponym: river” Exact match “Hyponym:River” “Hyponym:
river” Exact match “Hyponym:Stream” “Hyponym:lake” Exact

match “Hyponym:Lake” “Hyponym:sea” Exact match
“Hyponym:Sea” “Hyponym:spring” Exact match

“Hyponym:Spring” “Hyponym:reservoir” Exact match
“Hyponym:Reservoir” “Hyponym:pond” Exact match “Pond”

“Hyponym:ditch” Exact match “Ditch” “Hyponym:body of
water” Exact match “Hyponym:Water body” “Nature:natural”
Exact match “Nature:Natural” “Nature:artificial” Exact match

“Nature:Manmade” “Material:water” Exact match
“Material:Water”

0.92 Close Match

Concept 3 in OA

(Material: Water) [ (Hyponym: Sea) [ (Hyponym:
Inland Water) [ (Is-Part-Of: Earth’s surface) [

[(Hyponym: River) [ (Hyponym: Stream)[
(Hyponym: Lake) [ (Hyponym: Spring)[

(Hyponym: Reservoir) [ (Hyponym: Pond)[
(Hyponym: Ditch) [ (Hyponym: Water body)[
(Nature: Natural)[ (Nature: Manmade)] (The

semantic statements in “( . . . )” were not the semantic
information extracted from the free-text definition

and were inferred based on the semantic statements
in other concepts, which have a hierarchical relation
with the concept. They were added to the concept by

the domain expert manually.)
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Example 1: Concept pair of “spillway” in OC and “spillway” in OA

These two concepts are comparable because the mapping relationship between their concept
names is “exact match”. Because their concept names and four semantic statements are matched
(detailed mapping relationships are illustrated in Table 6, line 1 and 2), the second condition in
Equation (9) is used to calculate the final similarity between “spillway” in OC and “spillway” in OA.
The similarity value between these two concepts is calculated as 0.78; thus, the mapping relationship
between these two concepts is “close match”. This example demonstrates the simplest case for the
calculation of the semantic similarity between concepts.

Example 2: Concept pair of “arroyo (dry river)” in OC and “wash” in OA

In this example, the mapping relationship between the concept name of “arroyo (dry river)”
and “wash” cannot be determined based on the mapping algorithm in Section 3.2.1. However,
the similarity value between these two concepts is higher than the value in example (1). This is
because all the semantic statements used to represent the semantic meaning of these two concepts are
correspondingly matched (detailed mapping relationships are illustrated in Table 6, line 3 and 4), and
all the mapping relationships between them are “exact match”. The first condition in Equation 9 is
used to calculate the final similarity between the concepts “arroyo (dry river)” in OC and “wash” in OA.
The similarity value between these two concepts is calculated as 1.0; thus, the mapping relationship
between these two concepts is “exact match”. This example demonstrates a common situation in the
cross-lingual environment in that two concepts have the same semantic meaning while their names are
definitely different. Moreover, the utility of applying our methodologies to the complex application of
cross-lingual GI ontology integration has been proven.

Example 3: Concept pair of concept 3 “Water System” in OC and concept 3 “Surface water” in OA

At first glance, the semantic statements between the concept “water system” and “surface water”
are not matched very well, and the concept names of these two concepts cannot be matched either.

This is because these two concepts are both the top concept in their own taxonomies, and these
two concepts are abstract concepts in that they do not represent real-world objects with detailed
characteristic entities, for example, rivers, lakes, and oceans. Thus, the definitions of this category
in different languages may be very different, even when they are conveying the same meaning.
Therefore, the solution for the semantic meaning representation of this type concept is not the same
as the solution used in Examples (1) and (2). The sematic meaning of the hyponym-related concepts
should be considered to infer the integrated semantic meaning of this abstract concept. After the
implicit semantic statements have been inferred out (detailed mapping relationships are illustrated
in Table 6, line 5 and 6), the first condition in Equation (9) is used to calculate the final similarity
between the concepts “water system” in OC and “surface water” in OA. The similarity value between
these two concepts is calculated as 0.92; thus, the mapping relationship between these two concepts is
“close match”.

5. Conclusions and Future Work

The presented research focuses on the determination of semantic mapping relationships between
categories in different GI ontologies with natural language barriers. The proposed formal ontology
model in this study is used to represent and identify the semantic characteristics of the GI categories
with OWL-based semantic statements transformed from free-text definitions of two GI classification
standards. A new similarity calculation algorithm based on this formal ontology model is presented to
distance the semantic similarities and identify the mapping relationships between categories.

In particular, we work with two classification standards of topographic maps in Chinese and
American English. The conducted experiment indicates that the proposed approach successfully
determines the mapping relationships between categories in different GI ontologies and facilitates
ontology integration in a cross-lingual environment. Due to the usages of the multilingual supported
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NLP tools in our experiment, it is easy to replicate our model to determine the mapping relationships
between other GI ontologies, which may be described using other native natural languages, in addition
to Chinese. However, this model has only been applied to geospatial information (GI) integration at
the category level, and research on GI integration at the data level has not been fulfilled. That will
form the basis for future study. In addition, publishing the mapping information in a cross-lingual
context as linked data in a semantic web environment should also be considered.
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Appendix: Detail of the Mapping Statements between OC and OA

Table A1. Detail of the Mapping Statements between OC and OA.

Property Types
Semantic

Statements in
Oc in Chinese

Translation of Semantic
Statements in Oc in

English

Semantic
Statements in OA

in English

Mapping
Relations

Semantic Statements
in Oc in Chinese

Translation of
Semantic Statements

in Oc in English

Semantic Statements
in OA in English

Mapping
Relations

Material

水 water water Exact match 石 stone stones Exact match
水蒸气 water vapor vapors Exact match 木桩 wooden stake wood Close match
泥 mud mud Exact match 草地 grassland grassy Close match
砖 brick brick Exact match 砾石 gravel gravel Exact match
沙 sand sand Exact match 礁石 reef reef Exact match
水泥 cement concrete Exact match

Nature
自然的 natural natural Exact match
人造的 manmade manmade Exact match

Status

流动 flow flowing Exact match 倾泻 pour moving outward
an downslope Close match

独立 stand along free standing Exact match 高潮时被水体淹没，
低潮时露出

submerged at high
tide the water,

exposed at low tide

alternately covered and
left bare by the tide Exact match

有水潮浸 tide water immersion washed by waves
or tides Close match 涌出 emission issue from the ground Close match

干涸 dried up dry Exact match 洪水泛滥 flood subject to flooding Exact match

Temporality 长期 long-term permanent Close match 降水或融雪后短时间内
within a short time

after rainfall or
snowmelt

during or after a local
rainstorm or heavy

snowmelt
Exact match

终年 all year round permanent Exact match 季节性 seasonal occasionally Close match

Location 沙地 sandy desert Close match

Purpose

引水 water diversion run water Exact match 减缓水流流速 slow water flow rate restrain current or tide Close match
输水 water delivery conveying water Exact match 保护港口 protection of harbor protect harbor Exact match
贮水 water storage contain water Exact match 护岸 bank protection sustain an embankment Exact match

将水位升高或降
低，使船能在不
同高低水位的水
道间通行

To raise or lower the
water level, at different

high and low water level
so the ship channel traffic

raise and lower
vessels as they pass

from one level to
another.

Exact match 抬高水位 raising of water level raise the level of water Exact match

控制流量 control flow control the flow of
water Exact match 通行船只 passage vessel route for watercraft Exact match

灌溉 irrigation irrigation Exact match 拦截河流 blocked rivers Across the course of a
stream Close match

调节水流方向
adjusting to the flow

direction
direct current or

tide Exact match 扬水 pump up water- Pump Exact match
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Table A1. Cont.

Property Types
Semantic

Statements in
Oc in Chinese

Translation of Semantic
Statements in Oc in

English

Semantic
Statements in OA

in English

Mapping
Relations

Semantic Statements
in Oc in Chinese

Translation of
Semantic Statements

in Oc in English

Semantic Statements
in OA in English

Mapping
Relations

Morphology 陡坡 steep slope a vertical or near
vertical descent Close match 坝式 dam type dam Exact match

虹吸式 siphon siphon Exact match

Cause 堆积 accumulation accumulate Exact match

Relation Types

Hierarchical
Relation

源头 source source Exact match 设施 facilities facility Exact match
河床 riverbed channel bottom Exact match 构筑物 structure construction Exact match
区域 regional region Exact match 通道 channel path Exact match
地带 zone zone Exact match 水道 waterways waterway Exact match
设备 device device Exact match

Spatial Relation

地面上 on the ground on the surface of the
land Close match 水体平均大潮高潮面与

水体最低低潮面之间

mean high water
springs of water and
water between the
lowest low water

Between high water
and low water marks Exact match

水体内 in body of water in water Exact match 沿河流 along the river alongside a stream Exact match

海域内 within the sea in the sea Exact match 水陆间
between land and

water
contact between a body
of water and the land Exact match

水下 underwater below the surface of
water Exact match 洼地内 in the depressions surrounded by land Close match

跨流域 across river basins across the course of
a stream Exact match 陆地上 on the land Covered with the earth Close match

跨道路 cross roads crossing road or
trail Exact match 海岸线与干出线之间

between the coastline
and the dry line

Between high water
and low water lines Exact match

海岸边 coastal adjacent to the
shore Exact match 海岸边 the coast offshore Close match

Is-part-of
网状水系 network drainage network of

interlacing channels Exact match 水库 reservoir dam Close match

网状水系 network drainage a drainage network Exact match 河渠 canal a river system Close match
闸室 chamber lock chamber Exact match
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