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Abstract: Most methods used for crop classification rely on the ground-reference data of the same
year, which leads to considerable financial and labor cost. In this study, we presented a method that
can avoid the requirements of a large number of ground-reference data in the classification year.
Firstly, we extracted the Normalized Difference Vegetation Index (NDVI) time series profiles of the
dominant crops from MODIS data using the historical ground-reference data in multiple years (2006,
2007, 2009 and 2010). Artificial Antibody Network (ABNet) was then employed to build reference
NDVI time series for each crop based on the historical NDVI profiles. Afterwards, images of Landsat
and HJ were combined to obtain 30 m image time series with 15-day acquisition frequency in 2011.
Next, the reference NDVI time series were transformed to Landsat/HJ NDVI time series using their
linear model. Finally, the transformed reference NDVI profiles were used to identify the crop types in
2011 at 30 m spatial resolution. The result showed that the dominant crops could be identified with
overall accuracy of 87.13% and 83.48% in Bole and Manas, respectively. In addition, the reference
NDVI profiles generated from multiple years could achieve better classification accuracy than that
from single year (such as only 2007). This is mainly because the reference knowledge from multiple
years contains more growing conditions of the same crop. Generally, this approach showed potential
to identify crops without using large number of ground-reference data at 30 m resolution.

Keywords: crop land mapping; reference NDVI time series; artificial antibody network; ground
reference data; MODIS; Landsat/HJ

1. Introduction

Multi-temporal remote sensing data can be used to describe changes in vegetation characteristics
over time [1–3], and these data have been employed to produce crop distributions from regional to
national scales using both, supervised and unsupervised classifiers [4–10]. Moreover, the crop maps
are the foundation for crop modeling, irrigation water distributions and land water management,
which are important for decision makers [11–15]. However, most of the previous studies relied on the
field reference data in the mapping year to train the classifiers [16,17]. When the cropland map need to
be provided on yearly basis, the ground-reference data will be collected at annual frequency, which
leads to considerable financial, time and labor costs [18]. In addition, national or local authorities do
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not pay much attention to collecting ground-reference data sometimes, which lead to the difficulties in
obtaining the ground reference data annually [19].

In areas with a stable cropping system, phenological metrics of the same specific crop are
usually more similar than that of different crops among multi-years [18,20,21]. Thus, vegetation
indices (VI), such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation
Index (EVI), time series and the phenological metrics extracted from the VI time series have been
used to transfer the knowledge of training samples from one year to another [21–25]. On the one
hand, coarse spatial resolution data (such as Advanced Very High Resolution Radiometer, AVHRR
and Moderate Resolution Imaging Spectroradiometer, MODIS), which are characterized by density
temporal resolution, have shown the potential to identify crop types using the classification model
built from the adjacent years [21], whereas a drawback is the relatively coarse spatial resolution
cannot discriminate crop types in heterogeneous landscape [26–29]. Some pixel unmixing attempts,
which are based on both linear and non-linear regression principles, have been proposed to solve this
situation [30–33], but there are still some limitations: (1) the unmixing approaches can solely derive
sub-pixel fractions of crop area in a pixel, and hardly provide the crop distribution within the pixel;
(2) the VI profiles of some crops maybe too similar to be reliably separated; and (3) if the endmembers
were extracted across multiple years, the inter-annual differences will result in the variable temporal
signatures of endmembers of the same crop [30].

On the other hand, the image time series at finer spatial resolution, such as Landsat Thematic
Mapper (TM) and Satellite Pour l’Observationde la Terre (SPOT), have shown the potential to
discriminate crops [5,15,34]. Note that there have been some attempts at identifying crop types
without ground reference data of the classification year using the spectrum at specific phenological
periods [22,23]. The limitation of these methods is that they have to extract phenological metrics
using high resolution image time series (such as Landsat) in the classification year, which result in the
difficulty of the application of these methods in large area for the following reasons: (1) within one year,
it is difficult to obtain cloud-free image time series that are dense enough to extract phenological metrics
in large areas by a single sensor (such as Landat 5); and (2) although the temporal resolution of the image
time series can be improved by combining the data from multi-sensor [35,36], the radiometric differences
among different sensors may have negative influence on the accuracy of the phenological metrics [37].

The objective of this study is to propose a method and classify crop types at high resolution (30 m)
without the use of the ground reference samples in the classification year. To achieve this purpose,
we combined the advantages of both moderate resolution (MODIS) and high resolution (Landsat and
Huan Jing) data. First, we acquired the historical ground reference data of multiple years (2006, 2007,
2009 and 2010); the NDVI profiles of the crops were extracted from MODIS NDVI time series using
historical ground reference data; and reference NDVI time series were then obtained from the historical
NDVI profiles. Afterwards, the linear relations between Landsat/HJ NDVI and MODIS NDVI during
the entire crop-growing season were obtained, and the reference NDVI time series were transformed
using the linear relations. Finally, the transformed reference NDVI time series were utilized to identify
crop types at 30 m resolution.

2. Study Regions and Data Description

2.1. Description of the Study Area and the Crop Calendar

In this study, we selected two representative agricultural regions in northern Xinjiang, Bole
County and Manas County. Bole County (44˝201~45˝231N, 80˝401~82˝421E) covers 32 kha of cropland
(Figure 1a), and the average temperature and rainfall is 14.1 ˝C and 144.4 mm during the crop period
(between April and October), respectively. Manas County (43˝171~45˝201N, 85˝171~86˝461E) covers
180 kha of cropland (Figure 1a), the average temperature and rainfall are 14.4 ˝C and 153.2 mm during
the crop period, respectively.



ISPRS Int. J. Geo-Inf. 2016, 5, 67 3 of 23

Cropland covers 13.7% (more than 1100 ha) and 15.8% (more than 1800 ha) of the total area in
Bole and Manas, respectively. The dominant crops grown in the study areas include cotton, spring
maize, watermelon, grape, tomato, and wheat. The vegetation cover fraction for each crop type over
the course of a year is presented in Figure 1b. Cotton, spring maize, watermelon, tomato, and grape
are planted in early April and begin their growth mostly during the June–July period. Watermelon and
tomato are harvested in August, spring maize is harvested in early September, and grape and cotton
are harvested during the August–September and September–October periods, respectively. However,
the field for winter wheat is a bit complex. Winter wheat is planted in early November, begins its
growth in the next April, and is reaped for harvest in late June. After the harvest, some fields are in
rotation, and others are used to plant some other summer crops, mainly summer maize. Hence, we
divided the winter wheat into two parts relying on whether summer crops are planted in the same
field or not.
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Figure 1. (a) The extent of Xinjiang and the locations of the study areas of this study; and (b) vegetation
cover fractions for different crop types over the course of a year.

2.2. Datasets

2.2.1. MODIS Imagery

Sixteen-day composite Terra MODIS 250m NDVI data from the MOD13Q1 Vegetation Indices
product were used in this study. These data were downloaded from Land Processes Distributed Active
Archive Centre [38], and two MODIS tiles (h23v04 and h24v04) were used to cover all of the field sites.
The MODIS NDVI images are consisted of 15 scenes (21 March–1 November) in each year and spanned
five crop years (2006, 2007 and 2009–2011). The MODIS images were mosaicked and re-projected from
Sinusoidal to UTM WGS84 zone 44N (Bole) and zone 45N (Manas).

2.2.2. TM and HJ-CCD Imagery

Images used in this study are listed in Tables 1 and 2. Data from both Landsat TM/ETM+ and
Huan Jing (HJ) CCD with cloud-cover of less than 10% were used to acquire the time series at 30 m
spatial resolution. The HJ-1 Constellation has two satellites (HJ-1A and HJ-1B), and each satellite had
two CCD cameras. Compared with Landsat TM images, HJ data have similar spatial resolution (30 m),
and finer temporal resolution (four days). Table 3 shows the spectral range of Landsat-5 TM and HJ-1
CCD in Red and Near-Infrared (NIR) bands, which were used to calculate NDVI.
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Table 1. The dates of Landsat TM/ETM+ and HJ images (in Bole).

Year Sensor April May June July August September October

2006
TM 29th 1st

ETM+ 16th

2007 TM 29th 1st 2nd

2009 TM 19th 21st 24th

2010 TM 5th 8th 26th

2011

TM 6th, 22nd 24th 11st, 27th 13th
HJ1A-CCD1 27th
HJ1A-CCD2 16th
HJ1B-CCD1 10th 16th

Table 2. The dates of Landsat TM/ETM+ and HJ CCD images (in Manas).

Year Sensor April May June July August September October

2006
TM 31st 17th

ETM+ 20th

2007 TM 15th 2nd 4th

2009 TM 20th 7th 5th

2010 TM 8th 11th 14th

2011

TM 24th 10th 28th 13th, 29th 1st
HJ1A-CCD2 15th, 27th
HJ1B-CCD1 16th
HJ1B-CCD2 28th 15th

Notes: Images in 2006, 2007, 2009 and 2010 were used to obtain field boundary, and images in 2011 were used to
classify crops.

Table 3. Red and NIR bands of Landsat-5 TM and HJ-1 CCD.

Landsat-5 TM Spectral Bands HJ-1 CCD Spectral Bands

# Band width (µm) Band width (µm)
3 0.630–0.690 (Red) 0.63–0.69 (Red)
4 0.775–0.900 (NIR) 0.76–0.90 (NIR)

The Landsat-5 TM surface reflectance product (CDR) and the HJ Level 2 standard product (DN
value) were used to classify crop types in 2011 at 30 m resolution in this study [39,40]. Images
were georeferenced to the UTM WGS 84 zones 44N (Bole county) and 45N (Manas county). The HJ
images were registered to the TM images, achieving a RMSE of less than 0.3 pixels using a 2nd order
polynomial transformation and bi-linear resampling. Subsequently, radiance calibration and FLAASH
atmospheric correction were performed for HJ-1 CCD images [41]. Normalized Difference Vegetation
Index (NDVI) time series was employed in this study, and we used Red and NIR bands to calculate
NDVI (Equation (1)).

NDVI “
ρ pNIRq ´ ρ pRedq
ρ pNIRq ` ρ pRedq

(1)

where ρ pNIRq and ρ pRedq were the land surface reflectance of the NIR band (0.775~0.9 µm) and
Red band (0.63~0.69 µm), respectively. As for the Landsat-5/7 data during 2006 and 2010, we used
the original images with DN value because these images were just utilized to identify crop fields
containing entire MODIS pixels.



ISPRS Int. J. Geo-Inf. 2016, 5, 67 5 of 23

2.2.3. Ground-Reference Data

In this study, the ground-reference data were divided into two parts: historical field samples used
for building reference NDVI time series across four years (2006, 2007, 2009 and 2010), and field samples
used for validating classification accuracy in 2011. The distribution of the ground reference data is
shown in Figure 2.
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To obtain the historical field samples, we selected 33 and 30 sampling frames (1 km by 1 km) in
Bole and Manas, respectively. Then, NDVI of all Landsat images during 2006 and 2011 were calculated,
and the field boundaries were visually interpreted in each sampling frame based on the 30 m NDVI
images of each year. Afterwards, the field boundaries were overlaid on the MODIS images, and the
fields that did not contain entire MODIS pixels were removed. The crop type information during 2006
and 2010 of the remained fields was obtained from the local statics Bureau and farmers during the field
survey work in 2011. Subsequently the historical NDVI time series were extracted from pure ground
reference MODIS pixels. If there were more than 13 “good data” periods in a reference pixel among the
“Pixel Reliability” of the 15 time periods [38], the pixel was retained. Otherwise, the pixel was removed
from the historical reference dataset. For the remaining pixels, the NDVI for low-quality periods (if the
quality of a pixel is not “good data”, we define it as “low-quality”) was replaced by the average NDVI
of the previous and following periods. Finally, there were 1061 samples of the seven major crop types
in the study area in total (Table 4). We did not collect the historical field samples in 2008 because we
did not obtain Landsat-5 TM images in 2008 before our field survey. Thus, the crop types of 2008 were
not retrieved during the farmer interview. The procedure for obtaining the historical ground reference
samples is shown in Figure 3.

Table 4. The number of historical samples (pixels at 250 m) by year and crop type.

Crop 2006 2007 2009 2010 Total

Cotton 177 219 239 157 792
Spring Maize 14 13 21 6 54

Grape 12 15 34 20 81
Wheat 21 8 23 10 62

Wheat-Summer Crop 3 5 9 7 24
Watermelon 10 6 2 4 22

Tomato 0 0 17 9 26

Total 237 266 345 213 1061
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Figure 3. Procedure of collecting the historical reference data: (a) The distribution of sampling frames;
(b) one of the 1 km by 1 km frames; (c) crop field boundaries of a frame; and (d) select MODIS pixels
that could be used as ground reference sample. The images in the figure are composed of R: NDVI of
Landsat TM image (29 May 2007), G: NDVI of Landsat TM image (1 August 2007), and B: NDVI of
Landsat TM image (2 September 2007).

The validation field samples were collected by field research of the study area during 2011.
These field samples were selected to represent the full variety of crop types and an even distribution
across the study areas. A total of 525 fields in Bole and 463 fields in Manas were selected and surveyed.
For each field, the crop type was collected as attribute information. Field boundaries were recorded
using GPS, and digitized as polygons. All polygons were converted to raster format using the TM grid
(30 m spatial resolution), and boundary pixels were removed to ensure that all samples are pure crop
pixels. In addition, the polygons were overlaid on the MODIS grid (250 m resolution), and the MODIS
pure pixels were obtained. To compare the results derived from historical reference with that derived
from the ground-reference data, some of the samples were used as training samples. The number of
training and validation samples is shown in Table 5.

Table 5. The number of training and validation samples in 2011.

Bole Manas

Surveyed Fields Training Validation Surveyed Fields Training Validation
(Polygons) (Pixels at 30 m) (Polygons) (Pixels at 30 m)

Cotton 229 500 4542 269 350 4081
Spring Maize 36 150 699 63 300 1674

Grape 43 300 1169 0 0 0
Wheat 74 350 1038 54 300 1468

Wheat-Summer Crop 68 200 840 28 50 434
Watermelon 75 350 1044 0 0 0

Tomato 0 0 0 49 150 1277
Total 525 1850 9332 463 1150 8843
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3. Methods

The methodology of the study was presented in Figure 4. This study was composed of six main
parts: (1) extracting NDVI time series profiles from MODIS data using ground reference data in 2006,
2007, 2009 and 2010; (2) building historical reference NDVI time series (between 2006 and 2010) for each
crop using ABNet based on the historical NDVI time series profiles, and measuring the separability
of reference NDVI for crop classification; (3) using Landsat-5 TM and HJ data to build multi-source
NDVI time series at 30 m resolution in 2011; (4) testing the linear relationship between Landsat/HJ and
MODIS NDVI, and then transforming the reference NDVI time series using the linear relation; (5) using
the transformed reference time series to classify crop types at 30 m spatial resolution; and (6) assessing
classification accuracy. Additionally, the classification accuracy was compared with the result derived
from ground-reference data of 2011.
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3.1. Artificial Antibody Network

The Artificial Antibody Network (ABNet) was proposed by Zhong and Zhang [42] based on
artificial immune network principles (AIN). The antibody model was used as the basic component for
the ABNet and each antibody contained three attributes: the crop type of the antibody, center vector
and the recognizing radius. The ABNet have two procedures: training and classification. During the
training procedure, the training antigens were used as input of the ABNet, and the antibodies were
obtained. Then, in the classification procedure, the antibodies were used to identify new antigens.

The training procedure of the ABNet contained five steps for each class: pre-selection, cloning,
mutation, adaptive calculation of new antibodies and antibody reorganization. The detailed training
process can be found in work of Zhong and Zhang [42]. While training the ABNet, an important issue
was to select a similarity measure, and we used Euclidean distance (Equation (2)) [43], which can easily
measure the similarity in the training process:

ED pa, bq “

g

f

f

e

n
ÿ

t“1

pat ´ btq
2 (2)
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where at and bt are the values of time series a and b at moment t, respective, and N is the number of
samples in the time series. Moreover, the ABNet can build up a network and guarantee its convergence
adaptively, and no more parameters need further optimized.

The classification procedure was to calculate the Euclidean distance between vector of a new
antigen and the center vector of each antibody, and the new antigen was labeled as the crop type of the
antibody with the minimum distance if the minimum distance was less than the recognizing radius of
the antibody. Otherwise, the spectral angle (Equation (3)) was calculated between the vector of the
new antigen and the center vector of the antibodies [44], and the antigen was labeled as the crop type
of antibody with the minimum spectral angle.

SAM pa, bq “ cos´1

¨

˝

řn
t“1 pat¨ btq

b

řn
t“1 patq

2
b

řn
t“1 pbtq

2

˛

‚ (3)

We employed ABNet in this study to build the reference NDVI time series for each crop because
ABNet can adaptively build up the network and guarantee its convergence without any parameters.
In addition, one crop type can contain many antibodies, and the ABNet could recognize different
distinctive patterns that are suitable for identifying the same crop in different situations with variable
NDVI time series. In this study, the ABNet was interpreted in IDL.

3.2. Building the Reference NDVI Time Series for the Crops

We used the ABNet to build the reference NDVI time series. First, we extracted the NDVI time
series from the ground reference samples of both Bole and Manas. Then, all historical NDVI profiles
were used as input of the ABNet training process, and the antibodies were then obtained. The center
vectors of the antibodies were the reference NDVI time series for each crop type, and multiple reference
NDVI time series profiles were obtained to describe the same crop under different conditions.

3.3. Measuring the Separability of Reference NDVI Time Series

In this study, we used the Jeffries-Matusita (JM) distance to measure the separability of the
reference NDVI time series for each pair of crops because previous studies showed that JM distance
could better measure the separability among different classes than other distances, such as Euclidean
distance or divergence [41,45]. The JM distance between a pair of class and specific functions was
given by:

JM
`

ci, cj
˘

“

ż

x

ˆ

b

p px |ci q ´

b

p
`

x
ˇ

ˇcj
˘

˙2
dx (4)

where x denotes a span of VI time series values and ci and cj (lowercase c) denote the two
crop classes under consideration. Under normality assumptions, Equation (2) was reduced to
JM “ 2

`

1´ e´B˘, where:

B “
1
8

´

µi ´ µj

¯T
ˆ

Ci `Cj

2

˙´1
´

µi ´ µj

¯

`
1
2

ln

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇCi `Cj
ˇ

ˇ

2
b

|Ci| ˆ
ˇ

ˇCj
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˛

‚ (5)

and Ci and Cj (uppercase C) are the covariance matrixes of class i and j, respectively. Additionally, |Ci|

and
ˇ

ˇCj
ˇ

ˇ are the determinants of Ci and Cj, respectively. The JM distance ranged from 0 to 2, with a
large value indicating a high level of separability between two classes [46].

3.4. Testing the Relation between MODIS and Landsat/HJ NDVI

We combined the Landsat-5 TM and HJ-1 NDVI in 2011 to increase the temporal resolution of
NDVI time series at 30 m resolution. For each Landsat TM/HJ CCD NDVI image, we selected the
MODIS image whose temporal flag is the nearest to the date that Landsat TM/HJ CCD images were
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acquired. When testing the relationship between Landsat TM/HJ CCD NDVI and MODIS NDVI,
the samples were selected in homogenous crop fields, and the average NDVI of all Landsat TM/HJ
CCD pixels to the corresponding MODIS pixel were calculated. Coinciding with some previous
studies, Landsat TM/HJ CCD NDVI and MODIS NDVI showed strong linear relationships (R2 > 0.8
in Figures 5 and 6) [37,47,48]. Then, all reference NDVI time series were transformed to Landsat/HJ
NDVI using corresponding linear relation, and the transformed reference NDVI time series were used
to identifying crop types in the next step.
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3.5. Crop Classification at 30 m Resolution

We first masked the non-agricultural area using the “agriculture land” of Finer Resolution
Observation and Monitoring of Global Land Cover (FROM-GLC) at 30 m spatial resolution [49].
Before the masking, we randomly selected 300 validation pixels in both study regions using Hawths
Tools [50]; all validation samples were visually interpreted as crop/non-crop (Table 6), and these
validation samples were used to verify the accuracy of the crop mask. The overall accuracies were
above 90% for both study areas, which indicated that the crop mask of both study regions were accurate
enough to mask non-crop area. Next, we classified the crops at 30 m resolution using the transformed
reference NDVI time series by the classification procedure of ABNet. In addition, we used a portion
of the ground-reference data as training samples to classify the agricultural area for comparison.
The classifier was also ABNet.
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the transformation.

Table 6. Confusion-matrix of the classification process of “crop” and “non-crop” (%).

Bole Manas
Non-Crop Crop Non-Crop Crop

PA 87.39 97.88 88.39 95.17
UA 96.04 92.96 95.14 88.46
OA 90.67 91.67

Note: UA, user’s accuracy; PA, producer’s accuracy; OA, Overall accuracy.

4. Results

4.1. Reference NDVI Time Series

For each crop type, the reference NDVI time series were plotted in Figure 7. Among the summer
crops, cotton was the major crop type in the study region, and had the largest amount of reference
NDVI time series among all crops. The highest NDVI value of cotton was between 0.75 and 0.9 around
Day 190 (late July). For spring maize, the highest value was similar to cotton, but after the peak, NDVI
of spring maize decreased faster than cotton, and at around Day 250 (September), NDVI of spring
maize was relatively lower than cotton. Tomato also had the highest NDVI around Day 190, but the
NDVI value was between 0.5 and 0.6, which was significantly lower than cotton and spring maize.
For grape, NDVI was high during Days 170–250 (from late June to early September). In addition,
the variability of grape was the largest among all crops in the study region (between 0.4 and 0.7).
Another summer crop was watermelon, which had a relatively short growing season, with NDVI peak
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at around Day 210 (late July). The major winter crop in the study areas was winter wheat, the time
period of high NDVI (above 0.5) value was between Days 120 and 130. After the harvest of the winter
wheat, some filed were used to plant the summer crops. The crops were sown at about Day 200 and
then reach NDVI peak between Days 230 and 270. As there are various crop types, the NDVI profile
differed, while we did not identify the summer crop types and just labeled all pixels with a NDVI peak
after the harvest of wheat as wheat-summer crop.

Period-by-period JM distances were calculated using the reference NDVI time series of different
crop types. The result (Figure 8) showed that the winter wheat and wheat-summer crop can be
distinguished from the other crops between day 120 and 140 with the early NDVI peak. In addition,
wheat could be discriminated from wheat-summer crop at day 170 because of the development of
the summer crops. Grape had the lowest separability among all crops, and the average JM distance
between grape and all other crops were around 0.5 in each time period. This was attributed to the
large variability of the reference NDVI time series of grape. For example, some grape reference profiles
had low NDVI, but some other grape reference time series had high NDVI values, which were similar
to the cotton profiles. Moreover, cotton and spring maize had relatively low separability (1.994 in
Table 7) because of the similar NDVI during the majority of the growing season (between Days 81 and
225 in Figure 8), and the similarity between cotton and spring maize was also observed by [51,52] in
Uzbekistan. Generally, JM distances for all pair-wise crop comparisons were above 1.9 when all time
periods in the entire growing season were used (Table 7), which indicated that the reference NDVI
time series of each crop was separable in the study region.

Table 7. JM distances for all pair-wise crop comparisons during the entire time series.

Spring Maize Grape Wheat Wheat-Summer Crop Watermelon Tomato

Cotton 1.994 1.997 2.000 2.000 2.000 2.000
Spring maize 2.000 2.000 2.000 2.000 1.998

Grape 2.000 2.000 2.000 2.000
Wheat 2.000 2.000 2.000

Wheat-Summer Crop 2.000 2.000
Watermelon 2.000

4.2. Classification Accuracy Assessment

The results of the accuracy assessment (overall accuracy, Kappa coefficient, user’s and producer’s
accuracy) for the two study areas are summarized in Tables 8 and 9 [53,54]. If the historical NDVI time
series of single year is used to build the reference NDVI profiles, the classification accuracies were low.
For example, when the historical NDVI time series of 2007 were used to build the reference NDVI time
series, the overall accuracy was 73.01%. The summer crops, such as spring maize, watermelon and
grape were seriously mislabeled as cotton. Moreover, the reference tomato NDVI time series were not
collected in 2006 and 2007; as a result, the reference profiles obtained from only 2006 and 2007 cannot
identify tomato in 2011.
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Figure 7. Reference NDVI time series for crops in the study area.

When the historical NDVI time series among 2006 and 2010 were used to build the reference time
series, the classification accuracy improved significantly. The overall accuracy in Bole and Manas were
87.13% and 83.48%, respectively, which were acceptable for crop mapping without the use of ground
reference data in the classification year. In Bole, both producer’s and user’s accuracy (PA and UA) of
cotton, watermelon, wheat and wheat-summer crop were above 80%; but PA and UA of grape were
about 70% because cotton and grape were confused: 280 cotton pixels were mislabeled as grape, while
260 grape pixels were wrongly classified as cotton. Spring maize had low UA (70.16%) because more
than 200 cotton pixels were labeled as spring maize. In Manas, PA of cotton, spring maize, wheat and
wheat-summer crop were higher than 80%, but the UA of spring maize and wheat were low (only
71.54% and 65.43%, respectively) because 272 and cotton samples were mislabeled as spring maize
and wheat, respectively.



ISPRS Int. J. Geo-Inf. 2016, 5, 67 13 of 23

ISPRS Int. J. Geo-Inf. 2016, 5, 67 12 of 22 

 

maize and wheat were low (only 71.54% and 65.43%, respectively) because 272 and cotton samples 

were mislabeled as spring maize and wheat, respectively. 

 

Figure 8. JM distances of all pair-wise crop comparisons for reference NDVI time series. 

Table 7. JM distances for all pair-wise crop comparisons during the entire time series. 

 Spring Maize Grape Wheat Wheat-Summer Crop Watermelon Tomato 

Cotton 1.994 1.997 2.000 2.000 2.000 2.000 

Spring maize  2.000 2.000 2.000 2.000 1.998 

Grape   2.000 2.000 2.000 2.000 

Wheat    2.000 2.000 2.000 

Wheat-Summer Crop     2.000 2.000 

Watermelon      2.000 

  

Figure 8. JM distances of all pair-wise crop comparisons for reference NDVI time series.

To assess the quality of the classification process based on the historical reference NDVI time
series, a portion of the ground-reference data were used to classify the crops using the same classifier
(ABNet). The overall accuracies for Bole and Manas were found to be 90.21% and 86.87%, respectively,
which were higher compared to the accuracies for the historical reference NDVI-derived classification.
In Bole, the increase of the accuracy was mainly caused by the better identification of wheat and
wheat-summer crop (both PA and UA of wheat and wheat-summer crop were higher than 98%).
In Manas, more correctly classified cotton and tomato pixels contributed to the improvement of the
overall accuracy.
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Table 8. Error matrix for Bole.

Ground Truth Data

Cotton Spring
Maize Grape Wheat Wheat-Summer

Crop Watermelon UA (%)

Using reference sample of 2006, OA = 78.63%, Kappa = 0.67

Cotton 4208 516 485 0 0 461 74.22%
Spring Maize 8 183 30 11 0 287 35.26%

Grape 45 0 626 1 8 61 84.48%
Wheat 0 0 0 1000 14 0 98.62%

Wheat-Summer Crop 0 0 0 0 858 0 100.00%
Watermelon 0 0 5 0 0 234 97.91%

PA (%) 98.76% 26.18% 54.62% 98.81% 97.50% 22.44%

Using reference sample of 2007, OA = 73.01%, Kappa = 0.59

Cotton 4166 118 660 11 0 611 74.85%
Spring Maize 1 278 0 0 0 0 99.64%

Grape 3 0 54 0 12 0 78.26%
Wheat 0 0 0 803 0 0 100.00%

Wheat-Summer Crop 6 0 195 197 868 0 68.56%
Watermelon 85 303 237 1 0 432 40.83%

PA (%) 97.77% 39.77% 4.71% 79.35% 98.64% 41.42%

Using reference sample of 2009, OA = 78.95%, kappa = 0.68

Cotton 4240 523 664 9 0 509 71.32%
Spring Maize 0 176 10 2 0 140 53.66%

Grape 21 0 464 0 9 3 93.36%
Wheat 0 0 0 996 0 0 100.00%

Wheat-Summer Crop 0 0 0 4 871 0 99.54%
Watermelon 0 0 8 1 0 391 97.75%

PA (%) 99.51% 25.18% 40.49% 98.42% 98.98% 37.49%

Using reference sample of 2010, OA = 82.96%, Kappa = 0.76

Cotton 3763 183 385 9 0 283 81.40%
Spring Maize 207 516 15 0 0 62 64.50%

Grape 285 0 736 0 0 0 72.09%
Wheat 0 0 0 953 46 0 95.40%

Wheat-Summer Crop 0 0 0 47 834 0 94.67%
Watermelon 6 0 10 3 0 698 97.35%

PA (%) 88.31% 73.82% 64.22% 94.17% 94.77% 66.92%

Using reference sample of 2006~2010, OA = 87.13%, Kappa = 0.82

Cotton 3747 11 260 0 0 0 93.26%
Spring Maize 221 623 10 0 0 34 70.16%

Grape 280 0 821 0 1 40 71.89%
Wheat 0 0 0 909 71 0 92.76%

Wheat-Summer Crop 0 0 0 91 808 0 89.88%
Watermelon 13 65 55 12 0 969 86.98%

PA (%) 87.94% 89.13% 71.64% 89.82% 91.82% 92.91%

Using ground reference data, OA = 90.21%, Kappa = 0.87

Cotton 3752 0 44 0 0 0 98.84%
Spring Maize 78 665 7 0 0 53 82.81%

Grape 379 0 870 0 0 0 69.66%
Wheat 0 0 0 1000 1 0 99.90%

Wheat-Summer Crop 0 0 0 0 879 0 100.00%
Watermelon 52 34 225 12 0 990 75.40%

PA (%) 88.05% 95.14% 75.92% 98.81% 99.89% 94.92%

Note: UA, user’s accuracy; PA, producer’s accuracy.
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Table 9. Error matrix for Manas.

Ground Truth Data

Cotton Spring
Maize Wheat Wheat-Summer

Crop Tomato UA (%)

Using reference sample of 2006, OA = 79.71%, Kappa = 0.69

Cotton 3288 178 61 0 - 93.22%
Spring Maize 791 1365 225 0 - 57.33%

Wheat 0 131 1071 56 - 85.14%
Wheat-Summer Crop 0 0 110 378 - 77.18%

PA (%) 80.61% 81.54% 73.01% 86.92% -

Using reference sample of 2007, OA = 67.08%, Kappa = 0.41

Cotton 3990 1657 325 0 - 66.81%
Spring Maize 89 17 58 5 - 10.06%

Wheat 0 0 700 0 - 100.00%
Wheat-Summer Crop 0 0 384 429 - 52.42%

PA (%) 97.82% 1.02% 47.72% 98.83% -

Using reference sample of 2009, OA = 79.24%, Kappa = 0.71

Cotton 3858 101 2 0 9 97.18%
Spring Maize 145 861 285 0 372 51.77%

Wheat 0 0 1041 12 0 98.86%
Wheat-Summer Crop 0 0 15 422 0 96.52%

Tomato 76 712 124 0 896 49.56%

PA (%) 94.58% 51.43% 70.96% 97.20% 70.16%

Using reference sample of 2010, OA = 67.75%, Kappa = 0.57

Cotton 3135 0 2 0 0 99.94%
Spring Maize 879 185 1 0 1 17.35%

Wheat 0 0 1023 0 0 100.00%
Wheat-Summer Crop 0 0 42 434 0 91.06%

Tomato 65 1489 399 0 1276 39.52%

PA (%) 76.86% 11.05% 69.73% 100.00% 99.92%

Using reference sample of 2006~2010, OA = 83.48%, Kappa = 0.77

Cotton 3525 17 1 0 0 99.44%
Spring Maize 272 1423 74 0 220 71.54%

Wheat 269 185 1200 53 127 65.43%
Wheat-Summer Crop 0 0 153 381 0 71.02%

Tomato 13 49 39 0 928 90.18%

PA (%) 86.42% 85.01% 81.80% 87.62% 72.67%

Using ground reference data, OA = 86.87%, Kappa = 0.82

Cotton 3662 2 0 7 0 99.75%
Spring Maize 227 1485 4 0 137 80.14%

Wheat 0 0 1054 1 0 99.91%
Wheat-Summer Crop 0 0 0 417 0 100.00%

Tomato 190 187 409 9 1140 58.91%

PA (%) 89.78% 88.71% 71.85% 96.08% 89.27%

Note: UA, user’s accuracy; PA, producer’s accuracy. In addition, as the ground reference sample of tomato was
not acquired in 2006 and 2007, so that the classification using 2006/2007 samples did not include tomato.

Figure 9 shows the crop map in Bole and Manas for year 2011. Cotton was the major crop type in
both study areas, comprising 67.79% and 62.68% of cropland in Bole and Manas, respectively. In Bole,
cotton was mainly distributed in the central county, and spring maize was mainly planted in the
northwest of the county. Other crops, such as grape and watermelon were planted in the northern
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county. In Manas, cotton was mainly planted in the central and northern counties; and spring maize
was planted in the southern county. As the crop identification were conducted at pixel level, there were
some inter-field misclassifications, which was mainly due to the crop situation variation. In addition,
the field boundaries were always misclassified. This was mainly because the boundary pixels were
always mixed pixels combining crops and the road beside the crop fields. The mixed NDVI signature
was perhaps more similar to the NDVI of a different crop, which led to the misclassification. As the
training and validation samples did not contain field boundary pixels, these misclassification were not
reported in the accuracy assessment confusion matrix.
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5. Discussion

This study uses the knowledge acquired from historical ground reference data and MODIS image
time series to replace the ground reference in the classification year and classify the crops at 30 m
resolution. The separability tests (JM distance) of the reference NDVI time series have shown that
the crops in the study area are separable (Table 7). But the challenges of using the reference NDVI
time series to identify crops at 30 m resolution contain the following three aspects: (1) the observation
frequency of high resolution sensors; (2) the variation of the phenological metrics may result in the
situation that the reference profiles cannot identify the crops in the classification year; and (3) the
NDVI transformation (using linear relation to transform MODIS to Landsat/HJ NDVI) may attribute
to some uncertainty in crop identification.

5.1. The Combination of Landsat and HJ Images

The reference NDVI profiles in this study are obtained from the MODIS 16-day composite
NDVI product, and the reference profiles have shown the potential to separate the crops in the
study area. However, for the images time series at 30 m spatial resolution, the first challenge is the
temporal resolution of the image time series. Previous studies have indicated that some optimal
time periods could classify the crop types with high accuracy and using more images provide little
further improvement for the crop identification [35,55,56]. For the images from a single sensor at
30 m resolution, such as Landsat, the possibility of acquiring cloud-free images in each season is
limited to only about 50% during winter and fall, and 60% during summer and spring on average [57].
Apparently, this relatively low image acquiring frequency cannot fulfill the requirement of the crop
classification. In this study, we combined Landsat and HJ images and obtained the image time series of
nearly 15-day temporal resolution. The combined images time series could classify the crops with high
accuracy (the overall accuracy of using ground reference to classify crops is found in Tables 8 and 9),
which is also consistent with other studies that the combination use of the images from multi-sensor
could benefit the crop classification procedure, especially in large areas [58].

5.2. The Influence of Crop Growth Situation Variation on Crop Identification

Another challenge for crop identification using reference knowledge is the inter-annual
phenological changes of the crops caused by the variation of temperature and precipitation among
multiple years [43,59–61]. The temporal patterns of NDVI (Figure 10) have shown inter-annual
variation in Bole and Manas. The NDVI time series of cotton among the five years are similar generally,
except for slight variations during DOY 225~300. For spring maize, the NDVI peak of the profiles
in all years are similar, the inter-annual variations are mainly in spring (DOY 100~150) and autumn
(DOY 225~300). Grape and wheat have greater inter-annual variation, the NDVI of grape in 2007
is significantly higher during the entire growing season, and the wheat profiles showed that both
greenup and NDVI-peak phases are 20 days earlier in 2007 than in the other years. In addition, NDVI
peaks also vary by 0.06 and 0.11 for grape and wheat, respectively.

When using historical data of a single year as reference knowledge, the classification accuracies
vary significantly. If the crop conditions of the reference year and the classification year are similar,
the reference knowledge could achieve acceptable accuracy (such as using reference data of 2010 in
Bole, Table 8). Otherwise, the reference knowledge and the NDVI pattern of the classification year
are mismatched, and the classification accuracies are low (such as using reference data of 2007 in
Manas, Table 9). Some complex methods have been proposed to use the shape of the NDVI profiles to
measure the similarity [62]; but the shape of the NDVI time series sometimes changes because of the
inter-annual phenological variation [43], which may lead to the failure of the shape-based similarity
measures. Note that historical NDVI series from multiple years are used in this study, and reference
knowledge from multiple years contains more growing conditions of the same crop and improves the
classification performance when compared with the reference knowledge from a single year (Tables 8



ISPRS Int. J. Geo-Inf. 2016, 5, 67 18 of 23

and 9). However, there is a limitation: if the crop condition has not been recorded in the reference
knowledge, this method may fail to correctly identify crops. Therefore, we need to collect as much
historical reference data as possible to enrich the knowledge of reference NDVI time series.
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We select ABNet in this study because maybe the principle of ABNet is suitable for the acquisition
of reference NDVI time series. The NDVI profiles of all samples among multiple years are used to
derive the antibodies. Thus, each antibody could represent a specific phenological condition of one
crop. Therefore, different distinctive patterns of the same crop are recorded by ABNet. Additionally,
another advantage of ABNet is that it is an adaptive classifier, which needs no user-defined parameters
during the training procedure.

5.3. The Influence of NDVI Transformation

In this study, we used MODIS NDVI time series as a reference, and transformed the MODIS NDVI
to Landsat/HJ NDVI using linear relations. Thus, we do not need to take the radiation difference
between Landsat and HJ into consideration [37]. Additionally, it is important to find the homogeneous
area because the linear relations are calculated between the NDVI at different spatial resolution.
Moreover, the samples used to fit the linear model need to be stratified distributed in the NDVI range
for each time phase. Otherwise, the NDVI of the small sample number interval will be misestimated
after the NDVI transformation. In our study area, the crop fields are characterized by homogenous;
and generally, the transformed reference NDVI time series and the NDVI profile at 30 m resolution
are matched (Figures 11 and 12). However, in some other study areas with disconnected patches, the
lower “purity” of the MODIS pixels might have negative influence on the NDVI transformation. Thus,
the transformed reference NDVI profile and the high resolution NDVI time series are mismatched,
and classification accuracy is reduced.
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6. Conclusions

Most existing crop classification methods rely on ground-reference data from the same year, which
have led to high labor and financial costs. In this study, we presented a crop classification method
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using the historical NDVI time series of multiple years (from 2006 to 2010) to classify crop at 30 m
resolution. The main conclusions are as follows.

(1) The method proposed in this study could identify the dominant crops in the study areas, as the
overall classification accuracies were 87.13% and 83.48% in Bole and Manas, respectively. Notably,
no ground-reference data of the classification year were required in the classification process.

(2) Reference NDVI time series obtained by historical NDVI profiles of multiple years could achieve
higher accuracy than that from a single year. This is because there are phenological inter-annual
variations among different years, and the reference NDVI profiles obtained from multiple years
could contain more crop conditions and showed better classification performance.

(3) The combination of Landsat and HJ data could increase the acquisition frequency of the 30 m
image time series to 15-day, which is similar to the temporal resolution of the reference NDVI
profiles. Moreover, the reference NDVI was transformed to Landsat/HJ NDVI; thus, we do not
need to consider the radiation difference between Landsat and HJ images.

The limitation of this method is that we have to find homogenous areas that could contain pure MODIS
pixels when transforming MODIS NDVI to Landsat/HJ NDVI. Therefore, the classification accuracy
might be affected in some heterogeneous area. Additionally, the historical NDVI profiles should be
collected as much as possible to enrich the knowledge of the reference NDVI time series. Generally,
the method proposed in this study could be used to identify crop types at 30 m resolution when the
ground reference data of the classification year is absent. As the results obtained depended on the
specifics of the study area, other combinations of crop types and might have new problems. Therefore,
further studies are essential to illustrate the feasibility of this approach in various study regions.
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