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Abstract: Trajectories, representing the movements of objects in the real world, carry significant
stop/move semantics. The detection of trajectory stops poses a critical problem in the study of
moving objects and becomes even more challenging due to the inevitable noise recorded along with
true data. To extract stops with a variety of shapes and sizes from single trajectories with noise, this
paper presents a sequence oriented clustering approach, in which noise points within the sequence of
a stop can be identified and classified as a part of the stop. In our method, two key concepts are first
introduced: (1) a core sequence that defines sequence density based not only on proximity in space
but also continuity in time as well as the duration over time; and (2) an Eps-reachability sequence
that aggregates core sequences that overlap or meet over time. Then, three criteria are presented to
merge Eps-reachability sequences interrupted by noise. Further, an algorithm, called SOC (Sequence
Oriented Clustering), is developed to automatically extract stops from a single trajectory. In addition,
a reachability graph is designed that visually illustrates the spatio-temporal clustering structure and
levels of a trajectory. Finally, the proposed algorithm is evaluated against two baseline methods
through extensive experiments based on real world trajectories, some with serious noise, and the
results show that our approach is fairly effective in recognizing trajectory stops.
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1. Background

A trajectory represents the evolving locations of a moving object in geographical space over
a given time interval. From the viewpoint of the computer world, a trajectory is a discrete record
structure containing information about the evolving positions of a moving object in geographical
space during a given time interval. Such a structure is composed of spatio-temporal points, each of
which contains at least two components: an x-y position and a timestamp. The formal definition for a
trajectory is given below.

Definition 1 (Trajectory). A trajectory T = (tid, <p0, p1, . . . , pN>) is a two-tuple structure, where tid
is a unique trajectory identifier. We have: (1) pi = (xi, yi, ti), i = 0, . . . , N, xi, yi, ti P R, as a spatio-temporal
point; and (2) @0 ď i < j ď N, ti < tj.

Here, we present a trajectory point as p = (x, y, t), instead of p = (x, y, z, t), because: (1) the z-part,
i.e., elevation, is not always available in a trajectory dataset; (2) in our study and similar works, only
latitude (the y-part), longitude (the x-part) and timestamp (the t-part) are required to compute space
(using x and y) closeness and time proximity (using t); and (3) the changes of the z-part are very small,
especially for trajectories recorded within cities, and therefore it is not necessary to apply the z-part on
the computation of geographical distances.
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Any subset of continuous spatio-temporal points in a trajectory is called a sequence. Due to the
unavoidable errors in the measurement and sampling of GPS signals, spatio-temporal points will
inevitably deviate from their real positions. Such deviation is what we called noise throughout this
paper. When recording in an open area, this deviation is usually within 5–10 m, while acquiring
in a semi-enclosed or totally closed area, spatio-temporal points may deviate away by tens or even
hundreds of meters.

During a trajectory, the moving object does not always change its position; sometimes it purposely
remains at some location for some time, during which the object’s position stays fixed or varies only
slightly. The stop–move model [1] of trajectory was developed from this idea. A trajectory, according
to the stop–move model, is composed of a series of stops and moves, in which a move proceeds from
one stop to the next. Here, the start and end points of a trajectory are considered as two special stops.

A stop implies that some important activity during a trajectory has been intentionally carried
out at some location for a minimal amount of time, e.g., a 15-minute break for lunch at a fast-food
restaurant, so a temporary stationary or slow moving, such as waiting for traffic lights and turning
at corner, should not be considered as a stop. From the viewpoint of data, a stop is embodied by a
sequence with a velocity of zero or a very low velocity, such as below three kilometers per hour.

A move connects two consecutive stops, where one or multiple means of locomotion may be used
to move from one stop place to the next. As a reasonable moving behavior, the object should travel at
least some minimum distance in space and continue for at least some minimum duration over time.
A move also corresponds to a sequence, but with relatively high speeds.

Table 1 summarizes the stop-related terms used in this paper, in which separated stop and
undetected stop are the two situations to cause true negative stops. When applying clustering
algorithms to a trajectory, each output cluster corresponds to a sequence. However, it is unlikely for
clusters to directly form stops because of the existence of noise. Therefore, a well-designed algorithm
for stop extraction should be robust to noise as much as possible. In other words, it should avoid
creating false positive stops and true negative stops, and therefore improve the ratio of effective stops.

Table 1. Meanings of stop-related terms.

Term Meaning

Cluster A set of points generated by some clustering algorithm
False positive stop A sequence recognized as a stop, but not true
True negative stop A sequence that forms a stop, but not recognized
Effective stop A stop that is successfully detected
Separated stop A stop, but detected as multiple separated sequences
Undetected stop A stop, but failed to be detected

2. Introduction

Due to the rapid advances of portable GPS technology, more and more moving objects (e.g., people,
cars, animals, etc.) now carry devices equipped with GPS chipsets. As a result, there has been an
explosion in the collection of trajectory data in the past few years, which has given rise to a large
number of applications that use trajectory data as input for various research purposes. Examples
of such applications include personal mobility studies, city transportation management and animal
behavior analyses. Existing studies on trajectory data have mainly focused on three topics: data
management [2,3], querying techniques [4,5] and data mining [6,7], which aimed to extract knowledge
by applying or refining traditional database methods directly to raw trajectory data. However, these
works considered trajectories as just another type of spatio-temporal data and therefore failed to make
use of the rich potential of geographical semantics.

The stop–move model, introduced by Spaccapietra et al. [1], views a trajectory as a sequence of
stop/move objects, which then can be annotated with important geographical semantics. Figure 1
demonstrates an example trajectory in the form of a stop–move model. One can see that a stop implies
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that the moving object stays at some location for some time to carry out some activity, while a move
connects two consecutive stops by some means of locomotion. The stop–move model supports more
powerful trajectory analyses [8] than do the raw point-based models [2,9], which often represent a
trajectory as a geometry of line; thus, an important task here is to find the stops in trajectories effectively.
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Figure 1. An example trajectory in the form of a stop–move model.

Under ideal conditions, the positioning accuracy of GPS devices is between five and ten
meters [10]. In reality, however, due to reflection/blocking of GPS signals, acquired positions may jump
away from their actual locations by tens or even hundreds of meters. On the other hand, a trajectory
stop can either be an indoor stay or occur at any outdoor site, during which the GPS device may be
intentionally powered off or keep recording. In addition, a trajectory may be sampled irregularly and
could be composed of multiple segments that include different modes of locomotion. As a result,
trajectory stops may exhibit diverse characteristics: a large number of points scattered around some
location (usually taking place indoors), a set of points distributed within a small area (often occurring
outdoors), a single point with a very large time interval (caused by turning the device off or absence of
signal), or even a mixture of these.

To extract stops with a variety of shapes and sizes from single trajectories containing noise, this
paper presents a sequence oriented clustering approach, in which noise points within the sequence of
a stop can be identified and classified as a part of the stop. Our method tries to recognize trajectory
sequences with high density as stops, where the density function is defined by both spatial distance
and temporal duration. It introduces several novel concepts to cluster the trajectory points and then
presents three criteria to merge noise-interrupted trajectory sequences. Accordingly, an algorithm
called SOC (Sequence Oriented Clustering) is developed; this was inspired by two well-known
density-based clustering algorithms, i.e., DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) [11] and OPTICS (Ordering Points To Identify the Clustering Structure) [12]. In addition, a
visualization tool based on reachability distance is designed to illustrate the spatio-temporal clustering
structure and levels of a trajectory. Finally, extensive experiments are conducted with real world
trajectories. An evaluation of the results shows that our approach is fairly effective compared with two
baseline methods in recognizing trajectory stops, especially for noise-prone trajectories.

The rest of this paper is organized as follows. Section 2 outlines the current literature related
to the detection of trajectory stops. In Section 3, the underlying main ideas of core sequence and
Eps-reachability sequence are developed. Section 4 discusses two sequence merging techniques.
Section 5 presents an algorithm to automatically form trajectory stops and describes the reachability
graph, which graphically represents trajectory stops. The detecting algorithm is evaluated in Section 6.
A discussion and conclusion appear in the last section.

3. Related Works

This paper was inspired by two well-known algorithms: DBSCAN and OPTICS. DBSCAN
is a density-based clustering algorithm that can be applied to discover arbitrarily shaped clusters,
while OPTICS can be considered a generalization of DBSCAN for multiple ranges, i.e., it creates an
augmented ordering of the input points representing their hierarchical clustering structure. These
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two well-known clustering algorithms have been used in many applications and studied extensively.
For example, ST-DBSCAN [13] extends the DBSCAN algorithm for clustering spatio-temporal data.

For DBSCAN and OPTICS, the definition of a cluster of spatial points is based on the notion of
density reachability. Basically, point q is directly density-reachable from point p if p’s neighborhood,
defined by a given radius (Eps), contains at least a minimum number (MinPts) of other points and at
the same time q lies within that defined neighborhood. Here, p is called a core point. Point q is called
density-reachable from point p if there is a chain of points p1, p2, . . . , pn, where p1 = p and pn = q such
that pi+1 is directly density-reachable from pi.

Both DBSCAN and OPTICS process each input point p once and perform one neighborhood
query to test whether p is a core point or not. If p is a core point, a new cluster is created, which
will be expanded by recursively adding points that are density-reachable from those points already
lying in the cluster. It is not hard to see that the two algorithms require two parameters: Eps, which
describes the maximum radius to consider, and MinPts, which describes the minimum number of
points required to form a cluster.

The work of this paper is directly related to two categories of studies oriented toward trajectory
data. One category uses density-based clustering to mine important places using multiple trajectories
and the other extracts interesting sequences from single trajectories. Our work adopts the idea of
clustering, but belongs to the second category.

Generally speaking, movement parameters such as speed and direction present a totally different
profile as the status of a movement switches from move to stop. Accordingly, it is very natural to apply
some criteria to segment a trajectory to identify the stops [14,15]. Two examples of such criteria are:
(1) a velocity of zero (or very low velocity) for at least some defined duration; and (2) the absence
of GPS data for longer than a defined duration. However, those criteria work well only under ideal
conditions, i.e., those without noise. Rocha et al. made use of directional changes to detect stops [16],
but that technique works correctly only under certain circumstances, such as when analyzing the
trajectories of fishing boats. In [17], contextual geographical information is integrated to generate stops
by testing the duration of a trajectory sequence within application-predefined regions of interest.

Stop extraction can to a certain degree be seen as a problem of trajectory segmentation, in which
a trajectory is divided into homogenous pieces. Buchin et al. developed an algorithm framework
to segment a trajectory based on advanced spatio-temporal criteria [18]; Junior et al. explored the
principle of Minimum Description Length (MDL) and designed an unsupervised iterative procedure
for segmenting a trajectory [19]. Still, these segmentation methods give little attention to the existence
of noise in a trajectory, and therefore not appropriate for extracting stops.

Clustering is a basic and popular approach in the field of data mining and is also an indispensable
tool for exploring information embedded in trajectory data. Specifically, with density-based clustering,
two types of studies have been conducted in the literature: one finds significant places [20,21] such as
railway stations, where many trajectories leave an abundance of points; the other derives advanced
trajectory patterns [22,23] such as flocking behavior, in which a group of trajectories stay close together
for a given duration.

Regarding the extraction of trajectory stops, CB-SMoT (Clustering-Based Stop and Move of
Trajectories) [24], T-OPTICS (Trajectory-OPTICS) [25] and TrajDBSCAN (Trajectory DBSCAN) [26]
are three clustering-based methods available in the literature. To the best of our knowledge, they are
also the most closely related and comparable methods to ours. CB-SMoT extends the main idea of
DBSCAN in which a core point is computed by testing neighboring points with the average speed.
The main problem of CB-SMoT lies in that it is difficult to discover stops when only a few points
exceed the speed limit. T-OPTICS works by following the main framework of OPTICS but for the
characteristics of a stop on the time dimension, it captures only proximity and does not consider
duration. TrajDBSCAN first studies the discovery of stops and then investigates on how to compute
shared stops and build stop hierarchy. Compared to CB-SMoT and T-OPTICS, TrajDBSCAN uses
geographical distance, instead of travel distance, to develop the concept of core point, and therefore
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gets less sensitive to speed. However, when facing trajectories with big noise, it is still difficult for
TrajDBSCAN to locate core points and derive stops. Moreover, the three clustering-based methods
cannot identify single points with large time intervals as stops (see Figure 2b for an example), and
in addition, they fail to provide any mechanism for merging noise-interrupted sequences into stops
(see Figure 3b for an example).
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4. Eps-Reachability Sequence

A stop during a trajectory, practically speaking, is an action such as an indoor stay, an outdoor
stop, or wandering around within a small area. Therefore, the inherent characteristics for a trajectory
stop are two-fold: (1) points are located closely in space; and (2) the stop lasts for some minimum time
duration. To support this point of view for trajectory stops, the concept of core sequence is introduced
first. A core sequence is defined as a long stay within an area with a small radius.

Definition 2 (Eps-sequence). Let T be a trajectory and p be a point of T. The Eps-sequence
of p, marked as Seq(p, Eps) is the maximum sequence in T that satisfies: (1) p P Seq(p, Eps); and
(2) @q P Seq(p, Eps) where distance(p, q) ď Eps. Here, Eps is a given radius.

In the above definition, the distance from point q to point p, i.e., distance(p, q), is a geographical
distance, which is calculated throughout this paper by applying the Euclidean distance. Based on
Definition 2, the concepts of core sequence and core point can be derived, as shown below.

Definition 3 (Core sequence). Let S be a sequence of a trajectory. S is called a core sequence if it
satisfies the following criteria: (1) Dp P S, where S is an Eps-sequence of p; and (2) the temporal span of
S is not shorter than Tau. Here, Tau is a given temporal duration.

Definition 4 (Core point). Let p be a point of a trajectory. Point p is called a core point with respect
to ε and τ if Seq(p, Eps) is a core sequence.

Definition 3 says that a core sequence is made up of a set of continuous points that stay within
a defined circular area for at least a given amount of time. The ratio 2*Eps/Tau, which indicates the
maximum speed limit for crossing the circle with a radius of ε (i.e., moving exactly along a diameter),
should be relatively small to prevent a moving sequence from being mistakenly detected as a core
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sequence. Therefore, a core sequence clusters points not only in space but also over time, which means
that points in a core sequence are not only spatially close but also temporally proximal. Note that
Tau, a time threshold to define core sequence, should be set significantly larger than the minimum
sampling interval during a trajectory.

Figure 2 depicts two typical core sequence structures: Figure 2a shows that the GPS device is still
recording positions during a stop event, while in Figure 2b, the GPS device was switched off when the
stop occurred (specifically, the GPS device was switched off after capturing point 3). Based on the idea
of core sequence, we further develop the concepts of core distance and reachability distance.

Definition 5 (Core distance). Let p be a point of a trajectory. The core distance of point p with
respect to Eps and Tau is defined as min{r | r ď Eps X Seq(p, r) is a core sequence} if Seq(p, Eps) is a core
sequence; it is UNDEFINED otherwise. Here, UNDEFINED is a predefined value greater than Eps.

The core distance represents the spatial closeness of a trajectory point to its temporal neighbors.
In Figure 2, the core distance in either case is smaller than the maximum distance between the centered
point and other points. The core distance of point 3 in Figure 2b is zero because it is a core point with a
large time interval.

Definition 6 (Reachability distance). Let pi be a point of a trajectory. The reachability distance of
pi with respect to Eps and Tau is defined as max{core distance(pk), distance(pk, pi)} if k = max{j | j ď i X
pi P Seq(pj, Eps) X Seq(pj, Eps) is a core sequence}; it is UNDEFINED otherwise.

Obviously, if point p is not included in any core sequence defined either on p or the points
preceding p, the reachability distance of p will take a predefined value greater than Eps. The reachability
distance of a trajectory point implies a spatio-temporal clustering level with respect to core sequence.
In Figure 2b, the reachability distance for point 2 is r, while for point 4, it is the distance between
point 4 and point 3 because point 3 is also a core point that is temporally closer to point 4. After the
computation of reachability distance for all trajectory points, the Eps-reachability sequence can be
derived, which is composed of those continuous points with a reachability distance not larger than Eps.

Definition 7 (Eps-reachability sequence). Let S = {ps, ps+1, . . . , pe´1, pe} be a sequence of trajectory
T and 0 ď s ď e < |T|. S is called an Eps-reachability sequence with respect to Eps and Tau if it satisfies
these conditions: (1) the reachability distance for any point in S is smaller than Eps, or equal to it; and
(2) the reachability distances for both ps´1 and pe+1 are greater than Eps.

According to Definition 6, a trajectory can be divided into a series of Eps-reachability sequences
delimited by the points with reachability distances greater than Eps. One can see that the length of an
Eps-reachability sequence may be as short as one, i.e., an Eps-reachability sequence formed by a single
point. This often occurs when a point has a relatively large time interval, and at the same time, the
distance from this point to the next point is relatively small. Such a point is called a “big point” in this
paper and could be caused by turning the GPS device off or by signal absence. Big-point handling is
one special aspect that should be addressed when extracting trajectory stops.

If trajectory points always recorded their actual positions in the geographical space, each
Eps-reachability sequence in a trajectory could be considered as a stop. However, due to recording
noise, a stop may be interrupted by noise points; therefore, consecutive Eps-reachability sequences
may need to be merged to generate stops.

5. From Eps-Reachability Sequence to Stop

Due to the GPS signal measurement and sampling errors in mobile devices, recorded position
deviations are not rare. Usually, trajectory data are imprecise and carry noise even after pre-processing
procedures, e.g., data cleaning and data smoothing [27]. When processing such error-prone trajectory
data, a stop may be mistakenly detected when multiple Eps-reachability sequences are separated by
noise points.

Criterion 1: Let S1 and S2 be two consecutive Eps-reachability sequences of a trajectory.
If distance(S1.center, S2.center) ď 2*Eps and interval(S1.last, S2.first)<MinMov, then S1 and S2 should
be merged into one sequence. Here, MinMov is the minimum movement duration.
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Criterion 1 states that if two consecutive Eps-reachability sequences are distributed closely in
space and separated by a too short duration to be considered a reasonable moving action, they should
be merged into one sequence. MinMov is the minimum duration that a normal moving behavior
should last. Note that in Criterion 1, the center of a sequence is not the geometric center but the
spatio-temporal center. Given a sequence S = {ps, ps+1, . . . , pe´1, pe }, its spatio-temporal center is
calculated by weighting each involved point with its time interval, as shown in Formula (1).

S.center.x “
ře

i“s pi.x ˚ ppi`1.ti`1 ´ pi.tiq
ře

i“s ppi`1.ti`1 ´ pi.tiq

S.center.y “
ře

i“s pi.y ˚ ppi`1.ti`1 ´ pi.tiq
ře

i“s ppi`1.ti`1 ´ pi.tiq

(1)

Criterion 2: Let S1 and S2 be two consecutive Eps-reachability sequences of a trajectory. If the
convex hulls of S1 and S2 are overlapped and interval (S1.last, S2.first)<MinMov, then S1 and S2 should
be merged into one sequence.

Criterion 2, compared to Criterion 1, adopts a predicate based on spatial shape instead of
spatial distance. Accordingly, it does not need to specify a distance threshold for sequence merging.
As a result, Criterion 2 is more flexible and powerful than Criterion 1 on merging Eps-reachability
sequences. Figure 3 illustrates an example of sequence-merging with the above two criteria, in which
an Eps-reachability sequence’s convex hull is presented as a dashed polygon and its spatio-temporal
center is drawn as a star. The noise points in Figure 3 are marked as triangles. One can see that
either Criterion 1 or Criterion 2 can be applied in the middle case, because for the two separated
Eps-reachability sequences, their spatio-temporal centers are close, and besides, their convex hulls are
overlapped. However for the right case, only Criterion 2 can be applied as the distance between the
two spatio-temporal centers is relatively big.

Given two consecutive Eps-reachability sequences, if their spatio-temporal centers are mapped
to the same addressable location, it is very likely that they represent the same stop. To find the
addressable location, one effective idea is to apply a reverse geocoder against the spatio-temporal
center of the Eps-reachability sequence. Therefore, we have another criterion for merging
Eps-reachability sequences.

Criterion 3 Let S1 and S2 be two consecutive Eps-reachability sequences of a trajectory.
If S1.center and S2.center are reverse geocoded to a same addressable location and interval(S1.last,
S2.first)<MinMov, then S1 and S2 should be merged into one sequence.

Note that Criterion 3 applies only under the condition that the reverse geocoded location is
addressable. Taking Google Map APIs [28] as an example, the type of returned addresses should be
either “precise” or “street address.” According to the above three criteria, an Eps-reachability sequence
could grow continuously until no new Eps-reachability sequences can be drawn and joined. Such a
fully grown sequence is called a Ful-reachability sequence. A Ful-reachability sequence, either merged
from multiple Eps-reachability sequences or formed by a single Eps-reachability sequence, always
starts from a core point but does not always end with a core point.

For a Ful-reachability sequence, the end points may unfortunately be those that are actually
leading away from the stop site but are still reachable from the last core point within the sequence.
Therefore, a Ful-reachability sequence should be post-pruned, ensuring it ends with a core point. After
merging and post-pruning, the final stops can be generated. Therefore, we have arrived at the point
where we can give a formal definition for a trajectory stop.

Definition 8 (Trajectory stop). Let S be a Ful-reachability sequence in a trajectory. A trajectory
stop is the prefix sequence of S that ends with the last core point in S.
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6. The Extraction and Visualization of Trajectory Stops

This section first describes an algorithm designed to extract trajectory stops and then discusses
the reachability graph for visualizing the inner structure of trajectory clustering.

6.1. The SOC Algorithm

Based on the earlier discussions in this paper, a novel algorithm, called SOC, is developed to
extract trajectory stops; its pseudo code is presented in Algorithm 1. SOC first sets all points to a
reachability distance value of UNDEFINED and then computes the reachability distance by scanning
the input trajectory points in chronological order. Next, SOC extracts Eps-reachability sequences
according to Definition 7, i.e., continuous points whose reachability distance is not bigger than ε are
detected as Eps-reachability sequences. After that, neighboring Eps-reachability sequences, separated
by noise points but close in both space and time, are merged into Ful-reachability sequences according
to Criteria 1 and 2. Note that if two sequences are merged, the reachability distances for the points
between the two sequences will be updated to value Eps, even though they are not covered by any core
sequence. Next, a pruning procedure is applied to ensure that each Ful-reachability sequence ends
with a core point. Finally, if a recognized stop is refined as a false positive stop, it will be removed
from the results.

Algorithm SOC (TrajPt, Eps, Tau, MinStp, MinMov): Stops
Inputs:

1. TrajPt = {p1, p2, . . . , pn}, the spatio-temporal point set of a trajectory
2. Eps, the geographical distance to define a core sequence
3. Tau, the time duration that defines a core sequence
4. MinStp, the minimum duration for a stop
5. MinMov, the minimum duration for a move

Output:

1. Stops = {s1, s2, . . . , sm}, the set of trajectory stops, each of which is a sequence in TrajPt

Method:

1. Initialize the reachability distance of each point in TrajPt to UNDEFINED;
2. FOR i = 1 to |TrajPts|

(a) ComputeDistance(TrajPt, pi, Eps, Tau);

3. END FOR
4. Seqs = Extract_Sequence(TrajPt, Eps);//according to Definition 7
5. Stops = Merge_Sequence(Seqs, Eps, MinMov);//according to Criterion 1 and 2
6. PruneStops(Stops, Eps, Tau);//ensure every stop sequence ends with a core point
7. FalsePositiveRemove(Stops);//remove false positive stops

Function ComputeDistance(TrajPt: in out, CurPt: in, Eps: in, Tau: in)
Method:
1. Seq = GetEpsSequence(TrajPt, CurPt, Eps);//according to Definition 2
2. IF Seq is not a core sequence w.r.t. Tau, THEN RETURN END IF
3. r = GetCoreDistance(seq, Tau);//according to Definition 5
4. FOR each point q in Seq

(a) IF q precedes CurPt THEN CONTINUE END IF
(b) q.reachability distance = max{r, distance(CurPt, q)};

5. END FOR

Compared to DBSCAN and its variation OPTICS, although SOC also benefits from the idea of
density clustering, it orients to sequence clustering, considering not only closeness in space but also
proximity in time. Another point of difference is that in SOC, noise points within a trajectory stop
can be detected and accepted as a part of the stop instead of being marked as noise. SOC has the
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same computational complexity as DBSCAN and OPTICS, i.e., O(n*log n). However, for SOC, after
a core sequence has been detected, only the points belonging to that core sequence will be checked
further. As a result, SOC usually requires less I/O and computation than DBSCAN and OPTICS. One
experiment, using a real trajectory of approximately 5000 points, showed that the runtime is 19 s for
SOC but 33 s for OPTICS.

6.2. False Positive Elimination

When capturing core sequence and forming Eps-sequences, SOC adopts an idea similar to
DBSCAN; therefore, it is capable of generating trajectory stops of arbitrary shapes. Consequently, a
line-shaped slow movement, e.g., driving in heavy traffic during rush hours, may be detected as a stop
by SOC. To remove this type of false positives, two indexes, straightness and centered-distance, are
jointly explored. Given a sequence S = {ps, ps+1, . . . , pe´1, pe}, the measurements of straightness and
centered-distance can be calculated with Formula (2). Here, centered-distance is necessary because
for a sequence, if the middle points consume most of the duration but contribute little to the travel
distance (e.g., the middle points are distributed over a very small area or consist only of a big point),
straightness will have a large value (i.e., close to 1), while centered-distance will have a small value
(i.e., significantly smaller than Eps). Hence, if both the straightness and centered-distance of a clustered
sequence exceed some specified thresholds, the sequence will be identified as a false positive stop and
should be filtered out.

S.straightness “
distance pps, peq

ře´1
i“s distance ppi, pi`1q

S.centered´ distance “
ře

i“s distance ppi, S.centerq ˚ ppi`1.ti`1 ´ pi.tiq
ře

i“s ppi`1.ti`1 ´ pi.tiq

When a sequence corresponds to the case of a slow U-turn movement, it is likely to be recognized
as a stop because making the turn consumes a significant amount of time. To identify this type of false
positives, the concept of “heading direction” is explored. Specifically, when the heading direction for
the anterior and posterior of a clustered sequence differs greatly, the sequence should not be recognized
as a stop.

In reality, a stop of very short duration may be too trivial to be considered by applications.
Accordingly, clustered sequences with a duration shorter than some threshold should not be recognized
as a stop. The above three rules are applied together at the last step of the SOC algorithm to recognize
and filter out false positive stops.

6.3. Reachability Graph

Similarly to OPTICS, the spatio-temporal clustering of trajectory points can be represented and
understood graphically using a reachability graph, where the reachability distance values are plotted
for each trajectory point. Note that the points in a reachability graph strictly follow the sequence of
points appearing in the input trajectory.

According to SOC, three levels of reachability distance will be generated: values smaller than Eps
for normal stop points, Eps for merged noise points, and UNDEFINED for move points. UNDEFINED
can be any predefined value greater than Eps, but for ease of illustration, a value slightly bigger than
Eps, such as 1.2*Eps is recommended. For a clustered sequence, a smaller reachability distance implies
a higher clustering level, i.e., a long-duration sequence confined within a small area, while a bigger
value means a relatively low clustering level.

For the reachability graph of a trajectory, the clustering structure as a whole and the clustering
levels of individual points will be influenced by the ratio of Eps/Tau. Roughly speaking, a smaller Eps
or a bigger Tau may prevent more points from being covered by the core sequence; therefore, a stop
sequence may shrink or even disappear altogether. In contrast, a bigger Eps or a smaller Tau enables a
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core sequence to include more points; therefore, a stop sequence may expand or even swallow points
in neighboring moving sequences. Setting the parameter values for Eps and Tau will be discussed
further in the experimental section.

Figure 4 depicts a reachability graph with Eps = 20 m and Tau = 50 s for a portion of a trip trajectory
collected in Beijing, China. The top part of the figure shows the mapped trajectory. There are four
Eps-reachability sequences in total (denoted as I–IV), where the second has a much higher clustering
level than others. Note that point 39 is a big point with a time interval of 320 s, which accounts for the
fact that point 39 and its preceding point are included in the first Eps-reachability sequence. However,
when the core-sequence parameters are adjusted as Eps = 30 m and Tau = 75 s, the Eps-reachability
sequences III and IV will be merged into one Eps-reachable sequence because with a bigger Eps, the
points between III and IV are reachable by the core points in III.
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7. Experimental Evaluation

In this section, four real trajectory datasets from different sources were used to test the performance
of SOC, which was evaluated from two main perspectives: result correctness and parameter sensitivity.
The details of the four trajectory datasets are presented in Table 2, in which the “Labeled stops” column
gives the number of manually labeled stops in each dataset.

Table 2. Four experimental trajectory datasets.

Dataset
No.

Trajectory
Amount

Sampling
Rate

Average
Duration

Average
Distance

Labeled
Stops

1 50 3 s 27 m 479 m 121
2 10 irregular 53 m 6.7 km 43
3 10 5 s 9 h 34 m 41.5 km 75
4 10 1 s 3 h 15 m 125.1 km 53
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We acquired the first two datasets ourselves in Wuhan, China in 2014 using mobile phones
and professional GPS recorders, while the last two datasets are, small extracted portions of two
well-known free internet GPS archives, OpenStreetMap [29] and GeoLife [30]. Dataset 1 was collected
by an application running on Android mobile phones equipped with GPS chipsets. The movements
captured in this dataset mainly took place on a campus. Dataset 2 was collected by two types of
professional GPS recorders: a Garmin Forerunner and a Holux M-1200E. The movements captured in
this dataset recorded commuter routes during rush hours. The third dataset consists of volunteers’
daily movements in Beijing, China in 2009, and the last dataset selected was uploaded in 2010 by some
Japanese volunteers and mainly recorded hiking routes in Japan.

Dataset 1 was directly formatted in the form of stop–move sequences; therefore, the stop
information for each trajectory is very easy to obtain. For the other three datasets, a visual approach
based on QGIS (Quantum Geographical Information System) [31] was applied to manually check and
mark trajectory stops. Specifically, stops lasting longer than three minutes during each trajectory were
carefully labeled. In addition, the Android application used to collecting Dataset 1 is designed to stop
logging when it enters an indoor space, while the GPS recorders used in collecting Dataset 2 continued
to log points once started, even when indoors.

Dataset 1 was sampled on a campus; dataset 4 was acquired in some rural area. Consequently, the
noise in the two datasets is relatively small and the average deviation is about 10 m. However,
the other two datasets occurred in big cities with less-than-ideal GPS signals because of signal
reflection/blocking, and consequently, the noise gets pervasive and serious. For example, a trajectory
from dataset 2 entered a building with some samples jumping away from their real positions by several
hundred meters; a trajectory from dataset 3 passed under a viaduct with some samples deviating more
than 50 meters.

7.1. Experimental Setting

As declared in Algorithm 1, the SOC algorithm depends on three key parameters, which are
summarized in Table 3. Among them, Eps and Tau are used to generate Eps-reachability sequences,
while MinMov is used to merge Eps-reachability sequences. Moreover, four additional threshold values
(straightness, centered-distance, direction difference and minimum stop duration) are required to
filter three types of false positive stops. After testing with example trajectories, the threshold value
parameters were set to default values of 0.5, 2*Eps meters, 90 degree and three minutes, respectively.
Unless explicitly specified, all parameters assume default values for all experiments.

Table 3. Three key parameters of SOC.

Parameter Description Default Value

Eps The minimal radius to define a core sequence 30 m
Tau The minimal duration to define a core sequence 75 s
MinMov The minimal duration for a normal move 180 s

With the default setting, the reachability graph of an outdoor trajectory from Dataset 2 is illustrated
in Figure 5 (the left part is the mapped trajectory). We can clearly see that there are four stops during
the trip, which conforms closely to reality. We also observe that the first and last stops have small
reachability distances, which means the points are well spatio-temporally clustered. Actually, the two
stops correspond to simply standing still outdoors.
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During the sequence-merging procedure, reverse geocoding is invoked to obtain a street address.
Practically, we chose to use two different reverse geocoding services, namely, Google Maps and Baidu
Maps [32]. Because Baidu Maps has more abundant address information in China, the algorithm
calls the reverse geocoding service of Baidu Maps when the spatio-temporal center of a sequence
falls into China; otherwise, it calls the Google Map service. As the returned addresses are formatted
as string structures, SOC simply explores standard string comparison to check if sequences share a
same address or not. Note that the real latitude and longitude for the addresses are encrypted in
the call to the Baidu Maps service. Accordingly, before performing reverse geocoding using Baidu
Maps, the spatio-temporal centers, which were initially coded using the WGS (World geodetic system)
84 specification, must be translated to the coordinate system used by Baidu Maps. This can also be
performed by calling an external API of Baidu Map.

In our current implementation, we could accept trajectory data of TXT or GPX format, which will
be read into memory before processing. The resulting stops are outputted as a text file and visualized
with MATLAB. Since a single trajectory is usually small in size, such pre-processing will not cause
trouble. For example, the storage size of a 24-hour trajectory with a sampling rate of 1 s is smaller than
seven megabytes (here, 10 information fields such as latitude, longitude and timestamp are assumed
to be recorded). Even facing a very large trajectory that cannot be fit into memory, only the parts of
point reading and neighborhood locating are needed to be updated to work on external memory like
file system or DB system.

7.2. Effectiveness Evaluation

To validate the effectiveness of SOC, two baseline methods were used here: speed-testing and
CB-SMoT. In the speed-testing method, 3 km/h was selected as the limit for testing stop points; in the
CB-SMoT method, the same Eps and Tau were used to generate clusters. The two baseline methods,
similar to SOC, also prune stops that last no longer than three minutes. The results are shown in
Table 4, in which “SOC without merging” means that the sequence merging function was disabled
for that test. For a given trajectory sequence S, there are four conditions: (1) if S is a labeled stop and
was detected as a single stop, it is counted as an effective stop; (2) if S was not labeled but detected
as a stop, it is counted as a false positive stop; (3) if S was labeled but detected as multiple stops, it
is counted as a separated stop; and (4) if S was labeled but not detected as a stop, it is counted as an
undetected stop. Note that we have a formula: “Labeled stops” = “Effective stops” + “Separated stops”
+“Undetected stops”. The last column denotes the average ratio of the number of a measure to the
number of labeled stops.
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We can see that SOC performs better than the two baseline methods in all cases in recognizing
effective stops. Even without the merging step, the average recognition accuracy of effective
stops for SOC is 83.5%, while it is 75.4% and 65.5% for CB-SMoT and speed-testing, respectively.
Figure 6a demonstrates a common scenario—an indoor stop that SOC recognized successfully but
that speed-testing and CB-SMoT failed to recognize. This occurred because SOC uses geographical
distance instead of travel distance to define core points and is therefore less sensitive to an object’s
speed and more robust to noise. After enabling the merging function in SOC, a total of 19 separated
stops were successfully recognized as effective stops; accordingly, the average recognition ratio of
effective stops improved to 91.3%. We also observe that SOC overwhelms the two baseline methods on
the three other measures: false positive stops, separated stops and undetected stops. For example, the
average ratio of undetected stops for speed-testing and CB-SMoT are 14.6% and 10.0%, respectively,
but only 4.5% for SOC.

Table 4. SOC versus two baseline methods on detecting stops.

Methods Measures
Datasets Average Ratio
#1 #2 #3 #4

Speed-testing

Effective stops 91 24 43 39 65.5%
False positive stops 7 6 9 5 10.2%
Separated stops 13 12 21 7 20.0%
Undetected stops 17 7 11 7 14.6%

CB-SMoT

Effective stops 103 27 53 44 75.4%
False positive stops 15 11 17 9 15.7%
Separated stops 5 10 15 6 14.8%
Undetected stops 13 6 7 3 10.0%

SOC without merging

Effective stops 112 31 59 48 83.5%
False positive stops 0 3 5 2 3.8%
Separated stops 0 10 13 4 12.0%
Undetected stops 9 2 3 1 4.5%

SOC
Effective stops 112 37 69 51 91.3%
Separated stops 0 4 3 1 3.8%

Because the speed-testing method considers only speed when generating stops, it is very sensitive
to noise. Hence, for this straightforward method, a stop with many points is highly likely to be detected
as a separated stop when one or a few intermediate points exceed the speed threshold due to noise.
For the same reason, the speed-testing method reduces the possibility of detecting slow line-shaped or
U-turn movements as false positive stops. As a result, speed-testing has a higher ratio of separated
stops (20.0%) but a relatively lower ratio of false positive stops (10.2%) compared with CB-SMoT (15.7%
and 14.7%, respectively).

Because Datasets 2 and 3 were sampled in big cities with less-than-ideal GPS signals due to
multi-path signal reflection or signal blocking, all three methods perform relatively poorly, detecting
many single labeled stops as multiple small stops. For Dataset 1, an interesting point is that SOC
detected no false positive or separated stops because the GPS signal is relatively good within the
campus environment. However, in this dataset, there are nine sequences that were annotated by
students as stops but were not detected by SOC. This is because the nine stops, though successfully
detected in previous steps, were eventually filtered out as false positive stops due to their short
duration (i.e., less than three minutes).

Staying indoors but continuing to log point data is likely to cause separated stops. Figure 6b shows
an example of this condition in which only two small stops (red and green points) were identified.
In reality, this corresponds to an indoor stay of about three hours, in which the points scatter around a
relatively large area and some points jump more than one kilometer away. Because the two small stops
represent significant interruptions in both space and time, they failed to be merged by the two merging
criteria. However, the two sequences shown in Figure 6c,d were successfully merged as two single
stops by Criterion 1 and Criterion 2, respectively. For the latter case, the separated sequences were
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reverse geocoded to the same addressable location. Generally speaking, the longer a GPS device stays
indoors, the more widely logged positions tend to scatter, which means there is a higher likelihood
that the points will be analyzed as separated stops.

In addition to true negative stops (i.e., separated stops and undetected stops), SOC will inevitably
introduce false positive stops, even though three rules have been explored and applied. Consider
Figure 6e, which corresponds to a U-turn while driving under a viaduct (the lines shown in light
green). Because the movement was slow due to congestion and the position precision was low due to
a poor GPS signal, a sequence (the red points) was detected but failed to be filtered, leading to a false
positive stop. Unfortunately, when a very slow turn occurs in a location with a poor GPS signal, the
recorded sequence is very likely to be recognized as a false positive stop by SOC.
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7.3. Parameter Setting Evaluation

A set of experiments against the four trajectory datasets were conducted to evaluate the influence
of three key parameters on the performance of SOC. The results are given in Table 5. The first two
experiments try to evaluate the influence of Eps when Tau is fixed to the default. As Eps decreases
(Experiment 1), the conditions to define a core sequence become stricter. Accordingly, not only do
Eps-reachability sequences shrink in size but also decrease in number. Consequently, decreasing Eps
is very likely to cause fewer false positive stops and more separated/undetected stops, so that the
number of effective stops is highly likely to decrease. Conversely, as Eps increases (Experiment 2),
the opposite results will be observed. The next two experiments aim to evaluate the influence of Tau
when Eps is fixed to the default. As Tau decreases (Experiment 3), the strict requirements for creating a
core sequence are alleviated. Hence the likelihood of detecting false positive stops increases, but the
likelihood of causing separated/undetected stops decreases, thereby likely resulting in more effective
stops. Similarly, the opposite result occurs as Tau increases (Experiment 4). In the following two
experiments, Eps varies but Eps/Tau is fixed to the default. As Eps decreases, the core sequence becomes
harder to satisfy, and vice versa. Therefore, the results will be similar to the first two experiments.

To summarize, Eps has a higher influence on detection results than Tau. A too-small or too-large
Eps is detrimental to detecting stops; a small value may introduce separated stops, while a large value
may cause false positive stops. The ratio of Eps/Tau, which implicitly confines a stop to a small average
speed, should be relatively small. According to our experiments, values close to the default setting
are appropriate.
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Finally, we try varying only the MinMov parameter. As MinMov decreases, the merging capability
of SOC decreases; consequently, some labeled stops (usually occurring indoors) may fail to be merged
into effective stops and will instead appear as separated stops. For example, when MinMov is decreased
from 150 s to 90 s (Experiment 8), ten additional labeled stops (four in Dataset 2 and six in Dataset 3)
are classified as separated stops. In general, MinMov should be large enough to eliminate the influence
of noise for trajectories collected in error-prone environments. Nevertheless, a too-large MinMov value
is not advisable because a curved movement may be mistakenly detected and merged as a stop.

Note that it is not an easy task for users to determine proper input parameters for SOC. Through
the above analysis, we found that SOC works well with the default settings in most cases, i.e., it achieves
high recognition of effective stops. For trajectories with poor positioning precision (which often occurs
in large cities), however, it is more suitable to assign larger values to both Eps and Tau, such as 50 m
and 125 s, respectively. When a trajectory contains a large number of noise points, MinMov should be
increased accordingly, for example, to 300 s. In addition, we chose a default threshold of three minutes
to filter trivial stops of short duration.

Table 5. The influence of three key parameters on run results.

Exp. Eps (m) Tau (s) MinMov (s)
Effective/False Positive/Separated/Undetected Stops
Dataset 1 Dataset 2 Dataset 3 Dataset 4

1 20 75 180 108/0/0/13 34/2/6/3 64/5/6/5 49/2/1/4
2 50 75 180 115/0/0/6 39/3/2/2 71/5/2/2 52/2/1/0
3 30 50 180 113/0/0/8 37/3/4/2 70/5/2/3 52/2/1/0
4 30 100 180 109/0/0/12 37/3/4/2 66/5/4/5 50/2/1/2
5 20 50 180 110/0/0/11 36/3/5/2 68/5/4/3 51/2/1/1
6 50 125 180 113/0/0/8 38/3/3/2 70/5/3/2 51/2/1/1
7 30 75 150 112/0/0/9 36/3/5/2 67/5/5/3 51/2/1/1
8 30 75 90 112/0/0/9 33/3/8/2 63/5/9/3 50/2/2/1

8. Discussion and Conclusion

8.1. Discussion

A stop implies some purposive activity, and therefore, it should last a minimum amount of
time. From this point of view, slow U-turns are considered as false positive stops in this paper,
because a U-turn is just a pure moving without other activities. This also accounts for why SOC
introduces parameter MinStp, with which temporary stationaries such as waiting for traffic lights can
be detected as false positive stops and filtered out. It should be pointed out that MinStp is actually an
application-dependent parameter, though it is fixed as three minutes in this paper. For example, some
applications may view a five minutes of friend meeting on the street as a stop, but other applications
may be only interested in those stops that last longer than half an hour.

Three criteria are applied in SOC to handle stops interrupted by noise points. The first two
criteria explore the spatio-temporal proximity of points within a stop, while the last criterion makes
use of location information behind stops. Of course, if each Eps-reachability sequence can be reverse
geocoded to an addressable location, the last criterion can take over the whole function of sequence
merging because it is not only more accurate but also carries semantics. In reality, however, stops can
occur at places without precise addresses. Moreover, the collected address archive in reverse geocoders
is limited even for cities. Hence, the first two Criteria are the first choice of SOC for sequence merging.
Note that with reverse geocoding, the output stops can have address semantics attached to them,
through which advanced information such as the purpose of the stop can be further inferred. However,
that is beyond the scope of this paper.

The definition of core sequence does not set any speed limitations on individual points but
implicitly imposes a restriction on average speed using the ratio of 2*Eps/Tau. As declared in the
experimental section, this should be close to the default setting (i.e., 2*(30/75)*3.6 = 2.88 km/h), which
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is obviously slower than the average human walking speed (i.e., 5 km/h). Because stops show diverse
manifestations (they may be single points or sequences containing different numbers of points and
degrees of noise), heading direction, another important movement parameter, is not appropriate for
identifying stops. Instead, it is employed by SOC to filter false positive stops caused by slow U-turns.

It should be noted that some GPS receivers log not only time-stamped positions but also additional
information, such as the number of satellites in view and the position dilution of precision (PDOP).
When such information is recorded detecting indoor stops becomes relatively easy because when
staying indoors, the number of satellites in view will be less than four and PDOP will have a high
value [33]. However, these additional measures are not always available in trajectories, which explains
why we developed a clustering-then-merging strategy to meet the challenge of recognizing stops,
particularly indoor stops.

8.2. Conclusion

In this paper, we proposed a novel approach to extract stops from single trajectories with noise.
Our proposed approach uses a sequence-oriented clustering method, which considers both spatial
proximity as well as continuity and duration over time when clustering trajectory points. The main
contributions of this paper are as follows:

(1) To capture the inherent characteristics of a trajectory stop, the concept of core sequence was
introduced. A core sequence does not involve the speed of individual points but simply requires that
the points of a sequence present spatial proximity and have a relatively long duration. In addition,
the concepts used to grow core sequences were defined, and criteria were proposed for merging
Eps-reachability sequences.

(2) An algorithm, called SOC, was developed to recognize effective stops and eliminate false
positive stops. Moreover, the reachability distances of trajectory points were represented and
understood graphically using a reachability graph, which intuitively illustrates the clustering structure
and levels of a trajectory.

(3) We conducted extensive experiments on four real-world trajectory datasets to evaluate the
performance of SOC. The results show that it is fairly effective for extracting stops even for trajectories
with serious noise levels. In addition, we provided guidelines for setting the input parameters for the
SOC algorithm to their proper values.

Geographical data were utilized in this paper but were restricted to only the sequence merging
operation. In future work, we will improve our approach by integrating not only contextual
geographical data but also application-related information such as road network data and land
use data. Integrating such data can contribute greatly to gain more valuable information about stops.
In addition, we are also interested in extending SOC to investigate the problem of stop detection at
different geographical scales.
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