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Abstract: The rapid growth of location-based services has motivated the development of continuous
range queries in networks. Existing query algorithms usually adopt an expansion tree to reuse
the previous query results to get better efficiency. However, the high maintenance costs of the
traditional expansion tree lead to a sharp efficiency decrease. In this paper, we propose a line
graph-based continuous range (LGCR) query algorithm for moving objects in networks, which is
characterized by a novel graph-based expansion tree (GET) structure used to monitor queries in an
incremental manner. In particular, GET is developed based on the line graph model of networks
and simultaneously supports offline pre-computation to better adapt our proposed algorithm to
different sizes of networks. To improve performance, we create a series of related data structures,
such as bridgeable edges and distance edges. Correspondingly, we develop several algorithms,
including initialization, insertion of objects, filter and refinement and location update, to incrementally
re-evaluate continuous range queries. Finally, we implement the GET and related algorithms in the
native graph database Neo4J. We conduct experiments using real-world networks and simulated
moving objects and compare the proposed LGCR with the existing classical algorithm to verify its
effectiveness and demonstrate its greater efficiency.

Keywords: moving objects; continuous range queries; network; expansion tree

1. Introduction

With the advancement of wireless networks and the development of positioning technologies,
such as GPS, RFID and WiFi, online location-based services and intelligent surveillance systems have
attracted an increasing amount of attention [1–7]. Motivated by this, spatial-temporal queries for
moving objects have been studied extensively in the fields of moving object databases (MOD) and
geographical information systems (GIS) [8–11]. Many types of queries and corresponding efficient
query algorithms have been proposed, such as range queries [12,13], k-nearest neighbor queries [14–16],
reverse nearest neighbor queries [17], skyline queries [18], density queries [19,20] and visible nearest
neighbor queries [21].

The widely-used and fundamental range queries for objects moving in Euclidean space or
networks return a set of objects within a given area at a given query time [22–27]. This paper addresses
the problem of processing continuous range queries for moving objects in networks. That is, querying
objects and moving objects are both in high-speed motion and constrained by underlying networks.
In contrast to snapshot range queries that are evaluated only once, the continuous range queries need
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to maintain activity over a period of time and continuously retrieve query results. Many real-world
applications depend substantially on these types of queries, such as fleet monitoring, vehicle rescue
and traffic control and management [28,29]. For example, because of the long journey to the railway
station, we first need to take a bus and then take a taxi. In this situation, we need to receive the
continuous notification of when and where can we get a transfer to a nearby taxi within 500 meters
from the running bus.

The continuous evaluation of range queries leads to increasing challenges to efficiency and
server workloads due to ensuring the completeness and correctness of query results [19,30]. It is not
easy to answer the continuous range queries for moving objects in networks over a period of time.
There are two approaches for continuous range queries. The incremental approaches characterized
by maximizing the reuse of previous results have better efficiency than other approaches that split
the continuous range query into discrete snapshot range queries [22,29,31]. However, it has a strong
dependence on the design of in-memory data structures to maintain the reusable candidates, such
as an expansion tree and a safe region [13,25,32]. However, when the scale of networks is large,
but the distribution of moving objects is relatively sparse, these data structures require more online
re-computation to maintain the up-to-date query candidates, because the objects frequently enter
and leave the regions of the expansion tree [16,17]. That invalidates these data structures and
results in performance degradation. Thus, we need to develop novel data structures to maintain
query candidates.

In this paper, we present a novel line graph-based continuous range (LGCR) query algorithm for
moving objects in networks. First, the network is modeled as a line graph Glg = (Vlg, Elg). Segments are
represented as graph nodes Vlg, and edges Elg (i.e., spatial relationships) connect two adjacent road
segments. Additionally, we also model moving objects as a graph structure Gmo. Based on the
two relatively independent graph structures, a special edge Emo→lg from a node of the object’s graph
Gmo to a node on the line graph Glg represents the fact that an object is moving on a particular segment.
An advantage of this design is that it provides more flexibility and control for the location update cost,
because when a moving object turns into a new segment, this object only deletes the original edge and
creates a new edge to reflect this change at the client side. Hence, this greatly reduces the location
update cost and server workloads. Additionally, it is easier for the server to retrieve accurate moving
objects using the special edge Emo→lg.

Additionally, we propose an innovative graph-based expansion tree (GET) structure that maintains
the candidate moving objects. It creates a unique query node vq for each query request and then creates
a set of edges Eq→lg to represent candidate relationships between a query node vq and line graph
node vlg. Hence, given that the update cost of GET depends on the cost of deleting or creating edges
Eq→lg, server workloads are reduced further. We implement the LGCR query algorithm and related
data structures in the native graph database system Neo4J. We perform the experimental evaluation
using a simulated dataset generated by GT-MobiSIMto demonstrate efficiency and performance
compared with a classical continuous range query algorithm. The contributions of this paper lie in the
following aspects:

• We develop a novel graph-based expansion tree (GET) based on the line graph model of networks.
It supports offline pre-computation and could effectively reduce the online maintenance time of
the traditional expansion tree in continuous queries.

• Based on GET, we propose a line graph-based continuous range (LGCR) query algorithm for
moving objects in networks, including the algorithms for initialization, insertion, location update,
filter and refinement.

• We conducted experiments to evaluate our proposed LGCR using real-world networks and simulated
moving objects and compare with existing classical algorithms to verify its effectiveness.

The remainder of this paper is organized as follows. Section 2 summarizes the related work.
Section 3 presents the related data structures for continuous range queries in networks. Section 4
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elaborates on the proposed LGCR query algorithm. Section 5 illustrates the experimental setting and
results. Finally, Section 6 concludes the paper and proposes further developments.

2. Related Work

A straightforward approach to process continuous range queries is to split them into discrete
snapshot range queries [8,16,33]. Wang et al. proposed the moving objects in road networks (MOVNet)
algorithm to process continuous queries based on snapshot range queries for moving objects on road
networks [34]. It introduced several significant features and a shortest distance-based tree (SD-tree),
which was used to maintain network connectivity and network distance information to alleviate the
effects of frequent object updates in continuous range queries. Kolahdouzan et al. developed an
upper bound algorithm to improve the performance of continuous k-nearest neighbor queries by only
performing snapshot queries at the location where they are required [16]. The UNICONS algorithm
divided a query path into multiple subpaths based on the similarity principle and computed valid
intervals. The query results for subpaths were combined to obtain the final results [8]. The advantage
of this approaches is that the existing methods of snapshot range queries can be directly applied to
continuous range queries without a drastic adjustment. However, the shortcoming is how to efficiently
find the split points, which specify the location and time instant that keep the results of range queries
the same. If a query algorithm is repeatedly evaluated at every time instant, performance obviously
degrades. However, if a query algorithm is evaluated over long time intervals, query accuracy cannot
be guaranteed.

Another widely-used strategy employs the incremental approaches adopted in our paper.
The evaluation cost of continuous range queries could be reduced by reusing history results maintained
by in-memory specific data structures. In particular, when updates from moving objects fall in this
tree, they triggered a change of query results. In contrast, irrelevant updates were ignored [9,25].
Mouratidis et al. proposed an expansion tree structure in the incremental monitoring algorithm
(IMA) and group monitoring algorithm (GMA) [32]. The algorithms start with the position of the
querying object at network distance q.kNN_dist, traverse around road segments and construct an
expansion tree. Then, IMA/GMA monitor the changes of the query object and moving object’s position,
prune this expansion tree structure and reuse the candidate results to produce the query result of
continuous queries. Similarly, the concept of the safe regions that calculate the closest moving objects
to the border of the query was proposed to minimize the communication and computational cost of
continuously monitoring a moving range query [35]. The concept of safe exits was proposed as the
concise representation of the safe region that captures the border of the network-based safe region.
Additionally, efficient algorithms for computing safe exits were developed [11,36]. Range Euclidean
restriction (RER) and range network expansion (RNE) are well-known query processing algorithms
based on this idea [37]. However, large-scale networks could decrease the performance of continuous
queries based on the expansion tree because of high maintenance costs. Hence, the proposed GET in
this paper expands and optimizes the original expansion tree structure. Simultaneously, it supports
offline pre-computation to make our proposed have algorithm higher reliability for different sizes
of networks.

3. Proposed Data Structures

In this section, we elaborate on related data structures in the LGCR query algorithm, which
includes line graph, distance graph and GET.

Figure 1 illustrates an example of a city network Gnet including 12 segments (s1, s2, . . . , s12) and
13 junctions (j1, j2, . . . , j13). Nine moving objects (green points) are moving along the network and
sending location updates to a server. The query object q (yellow points) continually issues range
queries over a period of time.
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Figure 1. An example of a network.

(1) Basic types:

We present a set of basic types used for the definitions in the following parts. Three basic types
are proposed for the following definitions:

int = Z (1)

real = R (2)

bool = {true, f alse} (3)

Two time types are provided to represent the time:

instant = R (4)

period = {(s, e)|s, e ∈ instant} (5)

The geometry types are employed from OGC, which releases a series of specification about the
geometry object model. The proposed LGCR involves three basic geometry types:

point = {(lat, lon)|lat, lon ∈ real} (6)

line = {< pt1, pt2, ..., ptn > |n ∈ int, ∀i ∈ [1, n], pti ∈ point} (7)

polygon = {< l1, l2, ..., ln > |n ∈ int, ∀i ∈ [1, n], li ∈ line} (8)

(2) Line graph structure:

The network Gnet includes a set of segments Seg. Let the domain of segments be defined as follows:

Seg = {(sid, l, geo, start)|sid ∈ int, l ∈ real, geo ∈ line, start ∈ {smaller, larger}} (9)

with an identifier sid, length l and the flag start that defines the orientation of a geometric line geo.
The line graph Glg is another graph in which each vertex of Glg represents a segment of Gnet .

The formal definition is given as follows:

Glg = (Vlg, Elg) (10)

where:
Vlg = {< seg1, seg2, ..., segn > |n ∈ int, ∀i ∈ [1, n], segi ∈ Seg} (11)

and:
Elg = {< grel1, grel2, ..., greln > |n ∈ int, ∀i ∈ [1, n], greli ∈ Rg} (12)
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Eg represents a set of spatial relationships between two segments. We employ OGC-compliant
nine-intersection model, which presents a comprehensive definition of topological relationships
between spatial objects in two-dimensional space [38,39]. In this paper, topological relationships Rg

are defined as follows:

Rg = {(segi, segj, type)|segi, segj ∈ Vlg, type ∈ {meet, equal}} (13)

where the relationship meet denotes the case in which segments segi and segj are adjacent to each other
and equal denotes the case in which two segments are the same.

Figure 2 illustrates an example of a line graph that corresponds to the network in Figure 1.
The segment s1 is modeled as a graph node. The connecting relationship between segments s1 and s2

is constructed as spatial relationships meet.

s1

s8

s9

s2

s3

s7

s6

s11

s5

s4

s12

s10

Figure 2. Line graph structure.

(3) Object graph structure:

A moving object is defined as follows:

Mo = {(mid, name, param)|mid ∈ int, name ∈ string} (14)

where mid and name denote the identification and name of the object and param represents the set of
other attributes of the object.

The object graph structure models moving objects and the social relations between them. It is
defined as follows:

Gmo = (Vmo, Emo) (15)

where Vmo denotes moving objects and is defined as follows:

Vmo = {< mo1, mo2, ..., mon > |n ∈ int, ∀i ∈ [1, n], moi ∈ Mo} (16)

and Emo denotes the social relations between two moving objects and is defined as follows:

Emo = {< srel1, srel2, ..., sreln > |n ∈ int, ∀i ∈ [1, n], sreli ∈ Rmo} (17)

where:
Rmo = {(moi, moj, type)|moi, moj ∈ Vmo, type ∈ string} (18)

and the type represents social relationships between moving objects.
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(4) Network location

A moving object’s network position gloc is defined as follows:

gloc = {(sid, d)|sid ∈ int, d ∈ real, 0 ≤ d ≤ l} (19)

where sid is an identifier of the segment and d represents a real number that provides a position on
that segment.

An object’s moving vector mvector at time t is defined as follows:

mvector = {(mid, gloc, v, t)|mid ∈ int, v ∈ real, t ∈ instant} (20)

where mid is an identifier of a moving object, gloc denotes the objects’ network position on a certain
segment and v denotes the instantaneous velocity at time t.

(5) Bridgeable edges:

Emo→lg connects a moving object and segment to represent the case in which a moving object
moves on the segment and is defined as follows:

Emo→lg = {< mlrel1, mlrel2, ..., mlreln > |n ∈ int, ∀i ∈ [1, n], mlreli ∈ Rlg
mo} (21)

where:
Rlg

mo = {(moi, segj, type)|moi ∈ Vmo, segj ∈ Vlg, type ∈ string} (22)

Figure 3 illustrates an example of bridgeable edges, where a query object q travels from segment
s1 to segment s2, as shown in Figure 3a. The edge (blue arrow line) from node s1 to node q will be
deleted, and a new edge (red arrow line) from node s5 to node q will be created, as shown in Figure 3b.

j1 j2

j5

p1p7

p9

s1

s5

q’

q

p1p7 p9q

s1 s5

(a) (b)

Figure 3. An example of bridgeable edges. (a) A query object in network; (b) The schematic of
bridgeable edges

(6) Distance edges

The network distance calculation is the most time-consuming operation. Offline pre-computation
network distance could effectively improve the algorithm’s efficiency [16]; we create distance edges
Elg→lg to represent network distance. Then, we could use the convenient graph traversal operation to
retrieve the distance value with lower query cost.

Elg→lg represents a set of edges between any two line graph nodes. Its attributes store the network
distance value between two segments and is defined as follows:
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Elg→lg = {< llrel1, llrel2, ..., llreln > |n ∈ int, ∀i ∈ [1, n], llreli ∈ Rlg
lg} (23)

where:
Rlg

lg = {< segi, segj, dedge > |segi, segj ∈ Vlg, dedge ∈ real} (24)

We introduce the concept of edge distance dedge, which is defined as the distance between
two edges (i.e., road segments) according to the node types of the segments [40]. The edge distance
can be classified into four types: SS, SE, ES, EE, where ES defines the distance from the end node E of
edgei to the start node S of edgej. Distance types SE, ES and EE are defined similarly.

As shown in Figure 4, the moving object qthat issues continuous range queries as it moves along
segment s2. des(s2, s3) is defined as the distance from j2−e to j3−s, and des(s1, s2) is defined as the
distance from j1−e to j2−s.

s1
s2 s3

j1-s j1-e j2-s j2-e j3-s j3-e

q

Figure 4. Distance edge.

(7) Graph-based expansion tree:

GET includes a set of segments and is defined as follows:

GET = {(segq, (seg1, ..., segn))|n ∈ int, ∀i ∈ [1, n], segq, segi ∈ Vlg},
∀i ∈ {1, 2, ..., n}, dedge(segq, segi) < rg

(25)

where rg denotes the given distance parameters of continuous range queries and segq denotes the
segment on which the query object moves. Clearly, segment segq and input parameters rg are critical
for computing GET. Hence, for each segment in a network, we could precompute GET offline to
improve the LGCR query algorithm’s efficiency.

Figure 5 illustrates an example of GET. When the querying object q leaves the segment s1,
GET has to be recalculated to maintain up-to-date candidate results. Given that GET has already been
precomputed, this significantly reduces the time required to process the LGCR query algorithm.

s1

s2 s3 s7

s12

q

s8 s9

p1p7p5 p6 p3p4 p8 p9

s5 s4s11

Figure 5. Graph-based expansion tree.
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4. LGCR Query Algorithm

Based on the proposed data structures, the proposed LGCR query algorithm for moving objects in
networks includes several algorithms for initialization, insertion, location update, filter and refinement,
as shown in Figure 6.

Moving objects

Query results

Networks

Import networks

Build GET sturcutures

Algorithm 1

Import networks

Build GET sturcutures

Algorithm 1

Insert query objects

Insert moving objects

Algorithm 2

Insert query objects

Insert moving objects

Algorithm 2

Update querying objects Update moving objects

Algorithm 4

Update querying objects Update moving objects

Algorithm 4

Obtain candidates Query refinement

Algorithm 3

Obtain candidates Query refinement

Algorithm 3

Moving objects

Query results

Networks

Import networks

Build GET sturcutures

Algorithm 1

Insert query objects

Insert moving objects

Algorithm 2

Update querying objects Update moving objects

Algorithm 4

Obtain candidates Query refinement

Algorithm 3

Figure 6. System architecture.

4.1. Algorithms

(1) Initialization:

The initialization of the LGCR query algorithm constructs the line graph structures and finishes
the creation process of distance edges according to Algorithm 1. The input parameter of the algorithm
is the network. To improve the efficiency of the LGCR query algorithm, we create an R-tree Irtree to
index the segments, as shown in Line 2, which traverses all of the segments and creates corresponding
graph nodes on line graph Glg, as shown in Lines 4–5. Then, the algorithm searches the adjacent
segment nodes and creates connective edges to maintain complete topological relationships between
the segments (Lines 8–10). Simultaneously, it constructs a minimum bounding rectangle (MBR)
approximation of segments and links the leaf node of Irtree to the corresponding segment nodes
(Lines 6–7). Next, the algorithm traverses all segments to calculate the network edge distance between
any two segments and constructs distance edges (Lines 13–20).

Finally, the algorithm traverses the segment node on the line graph and retrieves adjacent road
segment nodes (Lines 22–23). Then, it obtains the value of the network edge distance dedge. If the
edge distance dedge is less than the input continuous query range parameter rg, an edge is created and
inserted into the line graph structure (Lines 24–27). Note that the initialization could only be executed
once for the LGCR query algorithm.
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Algorithm 1: Initialization algorithm.
Input: RN-network and rg-query range
Output: Line graph Glg

1 Initialize line graph Glg = Φ ;
2 Irtree = Φ ;
3 for each segment seg in RN do
4 Create a node nodeseg from seg in the line graph structure ;
5 Glg.insertNode(nodeseg) ;
6 Construct MBR from seg and insert it into Irtree ;
7 CreateLink(indexlea f , nodeseg) ;

8 for each nodeadj
seg in the located adjacent nodes of nodeseg do

9 Create a connective edge grel = (nodeseg, nodeadj
seg) ;

10 Glg.insertNode(grel) ;
11 end
12 for each segment node nodeseg in line graph Glg do
13 for each segment node nodeother

seg in line graph Glg do
14 if nodeseg 6= nodeother

seg then
15 Calculate the edge distance dedge between two segments ;
16 Create a distance edge llrel = (nodeseg, nodeother

seg ) with attribute dedge ;
17 Glg.insertEdge(llrel) ;
18 end
19 end
20 end
21 for each segment node nodeseg in line graph Glg do
22 for each nodeadj

seg in located adjacent nodes of nodeseg do
23 if distance edge dedge < rg then
24 Create an edge eget = (nodeseg, nodeadj

seg) of GET ;
25 Glg.insertEdge(eget) ;
26 end
27 end
28 end
29 end
30 return Glg;

(2) Insertion of moving objects and query objects:

As illustrated in Algorithm 2, the insertion of the moving object constructs a node. Then, the
algorithm locates corresponding road segments on which this object is moving and builds bridgeable
edges Emo→lg (Lines 3–7).
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Algorithm 2: Insertion of moving objects and query objects.
Input: MO-a new moving object
Output: Object graph Gmo

1 Create a node nodemo from mo in the object graph Gmo ;
2 Gmo.insertNode(nodemo) ;
3 Search Irtree on the current location of mo and locate leaf node entries ;
4 for each nodept in located Irtree leaf node entries do
5 Locate nodeseg using the pointer nodept ;
6 Create an edge mlrel = (nodemo, nodeseg) ;
7 Gmo.insertEdge(mlrel) ;
8 end
9 return Gmo;

(3) Filter and refinement step for the LGCR query algorithms:

Algorithm 3 illustrates the filter and refinement step of the LGCR query algorithm. The filter
step traverses GET to locate all of the candidate moving objects using bridgeable edges Emo→lg,
as shown in Line 1. The refinement step is performed periodically. The algorithm traverses the
candidate results and determines whether the moving object’s current time and network distance to
the query object satisfy the given continuous range query condition (Lines 3–8). If the lifecycle of
the LGCR query algorithm contains the object’s current time and the object’s location intersects the
query range, then the candidate object is moved into the set of incremental query results (Line 6).

Algorithm 3: Filter and refinement step.
Output: AnswerSet (query results, a set of objects that meet the range query condition)

1 Get candidate results f ilterset from expansion tree GET ;
2 for each moving object nodecan

mo in f ilterset do
3 if nodeqr.st < nodecan

mo .curtime and nodeqr.et > nodecan
mo .curtime then

4 Calculate the network distance dist between nodeq
mo and nodecan

mo ;
5 if dist ≤ nodeqr.rg then
6 AnswerSet.addResults(nodecan

mo ) ;
7 end
8 end
9 end

(4) Location update of moving objects:

There are three types of location update strategies for moving objects: speed-threshold-triggered
location update (STTLU), distance-threshold-triggered location update (DTTLU) and ID-triggered
location update (IDTLU) [41]. Given that the location update will be triggered by the moving object
turning into a new road segment, the IDTLU strategy is more appropriate for the LGCR query
algorithm. Algorithm 4 manages those location updates. First, it locates the object nodemo that needs
to be updated according to the identifier mid. Simultaneously, the old road segment nodeold

lg could
be easily retrieved using the bridgeable edges Emo→lg (Lines 1–2). Then, Lines 3–4 update the object
nodemo value with a new location and time from the location updates. Additionally, it creates a new
bridgeable edge to a new segment. Next, when the object belongs to the query object, GET needs to be
updated, as shown in Line 7. Otherwise, the filter and refinement step needs to be performed (8–12).
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Algorithm 4: Location update of a moving object or query object.
Input: new location and time of a moving object mo

1 Find object node nodemo ;
2 Get the old road segment node nodeold

lg using edge mlrel of nodemo ;

3 Update nodemo with the new location and time ;
4 Get the new road segment node nodenew

seg using edge mrel of nodemo ;
5 if nodenew

seg .sid! = nodeold
seg.sid then

6 if nodemo is a query object then
7 Get the new GET structure according to the road segment nodenew

seg ;
8 end
9 else if nodemo is a moving object then

10 if nodenew
seg has an edge eq linked to the query object then

11 FilterRe f inementStep() (Algorithm 3) ;
12 end
13 end
14 end

4.2. Analysis of the Algorithm’s Complexity

Assume that there are E edges on networks, M moving objects and Q query objects. The time
complexity of the LGCR query algorithm could be defined as follows:

T = Tf ilter + Tup + Tre f (26)

where Tf ilter denotes the CPU time required for the calculation of query candidates obtained by GET,
Tup denotes the CPU time required for location updates and Tre f denotes the CPU time required for the
refinement step. The time required to retrieve query candidates includes the GET traversal time. Then,
the complexity Tf ilter of this algorithm is defined as O(Qn). The location update of objects triggers an
edge operation, and the time complexity of Tup is O(Mn). The time required to calculate the network
distance depends on the graph traversal time because of the distance edges. Then, the time complexity
Tre f depends on the size of the candidate results and is defined as O( Q

M n).

5. Experiments

5.1. Experimental Settings

We conducted experiments on a standard personal computer with an Intel i7-4790 CPU, 8G
RAM and a 1-TB mechanical hard disk. We used the generator GT-MobiSIM [42] driven by an XML
configuration file to simulate moving objects, and query objects were randomly selected to issue
continuous range query requests. In order to test the performance and efficiency of our proposed
LGCR, we prepared two experiments. The first experiment simulated 5000 moving objects in a network
and randomly selected 500 query objects to issue continuous range query requests with different range
parameters, as shown in Figure 7a. The second experiment simulated 10,000 moving objects and
randomly selected 1000 query objects, as shown in Figure 7b. As illustrated in the figure, the red
points were moving objects, and the blue points were querying objects. The input employed real
network datasets from Beijing, with 26,220 segments and 18,856 intersections. The generator included
various mobility models in networks, such as random waypoint and random trip. Additionally, there
were three ways to represent continuous-time traces, including the location step-function, velocity
set-function and acceleration step-function. It also included various parameter distributions for
moving objects, such as the Gaussian distribution and normal distribution. In experiments, we set the
parameter distribution to the Gaussian distribution, and each moving object followed the shortest path
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to the final destination generated from a predefined random waypoint mobility model. The related
data structures were implementation using the native graph database Neo4J 1.9.7. The proposed LGCR
query algorithm was implemented using Java as the main programming language and Eclipse as the
development environment.

Figure 7. GT-MobiSIM. (a) The simultion with 5000 moving objects and 500 query objects; (b) The
simultion with 10,000 moving objects and 1000 query objects.

For comparison, we used the classical algorithm proposed by Stojanovic et al., known as
StojanovicCR [13] for a continuous range query over moving objects in networks with high
efficiency and effectiveness, which satisfied real-world, location-based services and applications.
This algorithm generated a series of in-memory data structures, segment R*-tree (SR*-tree), continuous
query table (CQT), network connectivity table (NCT) and mobile object table (MOT), to support
the evaluation of the continuous range query. In particular, the SR*-tree extended R*-tree to
store MBR information of road segments. The leaf node entry of SR*-tree was represented as
(segid, mbr, olist, qlist), where mbr was the minimum bounding rectangle, olist and qlist denoted the
list of objects and querying objects moving along the road segment with the identifier segid. The NCT
table stored connectivity information of the road segments. An NCT table entry was represented as
(segid, rtEntry, segLength, startCon, endCon), where segid was the identifier of road segment, rtEntry
denoted the pointer to SR*-tree, segLength represented the length of road segment an the elements
startCon and endCon denoted the lists of adjacent road segments. The CQT table stored information
of continuous range queries. A CQT entry was represented as (qid, oid, range, validPeriod, answerSet),
where qid was the identifier of continuous range queries, oid denoted the querying object, range
defined the range parameters, answerSet denoted the initial query answer and validPeriod represented
the valid period of the query. The MOT table stored the information of moving objects. A MOT
entry was represented as (moid, loc, time, speed, querySet), where moid was the identifier of moving
objects, loc was the current location at the time timeand speed denoted the current velocity. The
querySet represented the list of queries in which this object participates. The innovative StojanovicCR
introduced a pre-refinement step to further refine the moving objects by the filter step in a traditional
query processing strategy. First, according to the query condition, the filter-step selected the candidate
moving objects using the SR*-tree index. The pre-refinement step was to further refine the moving
objects obtained by the filter step. The refinement step was preformed periodically by processing the
candidate objects generated by the pre-refinement step and generated the query answer.

5.2. Experimental Results

The initialization of LGCR took about 983 seconds in the experiment. It mainly included the
three following parts: importing networks, building the proposed data structures and constructing
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the GET structure. GET is the key to improving the performance of the LGCR query algorithm in
an incremental manner. According to the query range, queries are classified into different groups.
We calculate the average calculation time of the query candidate for each group with the same query
range. Figure 8 illustrates the time taken to retrieve candidate objects using GET. The results show
that retrieving candidate objects required more CPU time as the query range increased. Given that
the basic operation is graph traversal in GET, the large query range requires more graph traversal
operations, which results in more time consumed.
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Figure 8. The CPU time needed for the calculation of the query candidate.

Figure 9 illustrates that the average number of moving objects in the query results (orange bar) is
very close to the average number of moving objects in the candidate results (blue bar). The average
utilization ratio of candidate objects retrieved by GET increased to 81.2%, that is GET effectively
maintained the reusable candidate moving object for incremental continuous range queries for the
LGCR query algorithm. The basic unit of GET is a road segment. Hence, the length of a road segment
is related to the number of candidates. A longer road segment led to the ratio between the query
results and candidate results decreasing. The average length of road segments in Beijing in the
experiments was 202.25 meters, which is a relatively short distance; hence, GET maintains more
accurate candidate sets.
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Figure 9. The average number of moving objects obtained in query results and the query candidate.
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Figure 10a shows the average CPU time per query in the experiment with 5000 moving objects
and 500 query objects. Figure 10b illustrates the experimental results with 10,000 moving objects
and 1000 query objects. The experimental results show that the LGCR query algorithm provided
better performance and stability for the evaluation of continuous queries than StojanovicCR. The
average CPU time per query for both approaches generally increased as the query range increased.
StojanovicCR required more time to update in-memory data structures, such as SR*-tree, MOT and
CQT. The LGCR query algorithm also triggered longer execution times for query candidates for
continuous range queries. However, the basic graph operators, such as creating or deleting edges and
graph traversal, were less time consuming. Hence, the LGCR query algorithm was more stable and
efficient. In addition, the proposed distance edges and GET support offline pre-computation and could
further improve the LGCR’s efficiency.

Figure 10. Comparison of Stojanovic continuous range (StojanovicCR) and line graph-based continuous
range (LGCR). (a) The result of the experiment with 5000 moving objects and 500 query objects;
(b) The result of the experiment with 10,000 moving objects and 1000 query objects.

5.3. Discussion

The proposed LGCR query algorithm was efficient for continuous range queries over moving
objects in networks. However, there are still limitations worthy of attention.

(1) For the LGCR query algorithm, special data structures, including bridgeable edges, distance
edges and the GET and offline precomputation steps, significantly improved efficiency. However, an
oversized network scale made these preprocessing steps very time consuming and required massive
storage space. In addition, our proposed LGCR could be easily extended to support geo-social queries
because that the ObjectGraph structure has the capability of modeling social relationships between
moving objects, such as colleagues, friendships, followership, interest groups or fan relationships.

(2) As the key task of the LGCR query algorithm, the basic unit of GET contained a set of segments.
However, those segments had no obvious physical meaning; they could not adapt well to conceptual
entities in real-world complex road network environments [2,15]. The concept of routes corresponding
to highways or expressways in the real world could be introduced to model road networks. Hence, a
composite GET that contains both road segments and routes could further improve the flexibility of
the LGCR query algorithm.

(3) We assumed that the network structure changed little and that updates mainly considered
the location updates of moving objects. However, in a real-world scenario, the weight of a segment
always changes with traffic information, and new road segments might be inserted. These influencers
would affect the query results of continuous range queries. Hence, more types of updates should be
considered to make the LGCR query algorithm more extensive.
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6. Conclusions

Motivated by a substantial need for location-based services and applications for spatial-temporal
queries, we presented a novel LGCR query algorithm that depended on a line graph structure and
GET structure that could solve the problem of the efficient processing of continuous range queries over
massive moving objects in networks. The algorithm can be applied directly to real-world location-based
services and applications.

Future work needs to implement parallel processing of continuous range queries based on the
LGCR query algorithm to further improve performance. The benefits of the proposed data structure
include the line graph mode and GET structure; the proposed LGCR query algorithm is easy to deploy
in distributed computing environments with the help of a large-scale graph commutating processing
framework, such as Pregel and bulk synchronous parallel (BSP).

Acknowledgments: This research was supported by the State’s Key Project of Research and Development Plan
(Grant No. 2016YFB0502104) and the National Natural Science Foundation of China (Grant No. 41401460,
41571431, 41421001). Additionally, we would also like to thank the anonymous referees for their helpful comments
and suggestions.

Author Contributions: Hengcai Zhang and Feng Lu provided the core idea for this study. Hengcai Zhang
implemented the LGCR query algorithm and carried out the experimental validation. Hengcai Zhang and
Feng Lu wrote the main manuscript. Jie Chen made the important comments and suggestions for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wolfson, O.; Xu, B.; Chamberlain, S.; Jiang, L. Moving objects databases: Issues and solutions. In Proceedings
of the 10th International Conference on Scientific and Statistical Database Management, Washington, DC,
USA, 1–3 July 1998.

2. Güting, R.H.; Ding, Z. Modeling and querying moving objects in networks. Int. J. Very Large Data Bases 2006,
15, 165–190.

3. Ciuonzo, D.; Buonanno, A.; D’Urso, M.; Palmieri, F.A. Distributed classification of multiple moving targets
with binary wireless sensor networks. In Proceedings of the 2011 Proceedings of the 14th International
Conference on Information Fusion (FUSION), Chicago, IL, USA, 5–8 July 2011.

4. Buonanno, A.; D’Urso, M.; Prisco, G.; Felaco, M.; Meliadò, E.; Mattei, M.; Palmieri, F.; Ciuonzo,
D. Mobil sensor networks based on autonomous platforms for homeland security. In Proceedings of
the 2012 Tyrrhenian Workshop on Advances in Radar and Remote Sensing (TyWRRS), Naples, Italy,
12–14 September 2012.

5. Parent, C.; Spaccapietra, S.; Renso, C.; Andrienko, G.; Andrienko, N.; Bogorny, V.; Damiani, M.L.;
Gkoulalas-Divanis, A.; Macedo, J.; Pelekis, N. Semantic trajectories modeling and analysis.
ACM Comput. Surv. 2013, 45, 1–42.

6. Shekhar, S.; Jiang, Z.; Ali, R.Y.; Eftelioglu, E.; Tang, X.; Gunturi, V.; Zhou, X. Spatiotemporal Data Mining:
A Computational Perspective. ISPRS Int. J. Geo-Inf. 2015, 4, 2306–2338.

7. Zheng, Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol. 2015, 6, 1–29.
8. Cho, H.-J.; Ryu, K.; Chung, T.-S. An efficient algorithm for computing safe exit points of moving range

queries in directed road networks. Inf. Syst. 2014, 41, 1–19.
9. Xuan, K.; Zhao, G.; Taniar, D.; Rahayu, W.; Safar, M.; Srinivasan, B. Voronoi-based range and continuous

range query processing in mobile databases. J. Comput. Syst. Sci. 2011, 77, 637–651.
10. Zhu, T.; Wang, C.; Lv, W.; Huang, J. Continuous range monitoring of moving objects in road networks.

In Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications
(ISDA), Cairo, Egypt, 29 November–1 December 2010.

11. Yung, D.; Yiu, M.L.; Lo, E. A safe-exit approach for efficient network-based moving range queries.
Data Knowl. Eng. 2012, 72, 126–147.

12. Zheng, K.; Trajcevski, G.; Zhou, X.; Scheuermann, P. Probabilistic range queries for uncertain trajectories
on road networks. In Proceedings of the Proceedings of the 14th International Conference on Extending
Database Technology, Uppsala, Sweden, 21–24 March 2011.



ISPRS Int. J. Geo-Inf. 2016, 5, 246 16 of 17

13. Stojanovic, D.; Papadopoulos, A.N.; Predic, B.; Djordjevic-Kajan, S.; Nanopoulos, A. Continuous range
monitoring of mobile objects in road networks. Data Knowl. Eng. 2008, 64, 77–100.

14. Huang, Y.K.; Chen, Z.W.; Lee, C. Continuous k-nearest neighbor query over moving objects in road networks.
Adv. Data Web Manag. 2009, 5446, 27–38.
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