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Abstract: We developed a geographic cellular automata (CA) model based on partial least squares
(PLS) regression (termed PLS-CA) to simulate dynamic urban growth in a geographical information
systems (GIS) environment. The PLS method extends multiple linear regression models that are
used to define the unique factors driving urban growth by eliminating multicollinearity among the
candidate drivers. The key factors (the spatial variables) extracted are uncorrelated, resulting in
effective transition rules for urban growth modeling. The PLS-CA model was applied to simulate the
rapid urban growth of Songjiang District, an outer suburb in the Shanghai Municipality of China
from 1992 to 2008. Among the three components acquired by PLS, the first two explained more
than 95% of the total variance. The results showed that the PLS-CA simulated pattern of urban
growth matched the observed pattern with an overall accuracy of 85.8%, as compared with 83.5% of
a logistic-regression-based CA model for the same area. The PLS-CA model is readily applicable to
simulations of urban growth in other rapidly urbanizing areas to generate realistic land use patterns
and project future scenarios.

Keywords: urban growth; dynamic simulation; cellular automata; partial least squares (PLS)
regression; geographical information systems (GIS); accuracy analysis

1. Introduction

Cellular automata (CA) method is a discrete dynamic modeling technique that has been widely
applied in fields related to spatiotemporal distributions [1–4]. Classical CA formalism has been
extended to accommodate the complexity of many systems [5,6]. Geographical information systems
(GIS) based CA models have attracted extensive attention because of their ability to simulate urban
growth and land use change [7–9], following the pioneering work of Tobler [10].

Over the past two decades, remarkable achievements have been made in geographical CA-based
dynamic urban growth and land use change modeling, particularly in rapidly urbanizing areas [11–16].
Substantial progress has also been made in CA methodology, including transition rules retrieval,
neighborhood configuration, scale effects, and results assessment [17–20]. One important issue in CA
modeling is the quantification of the impacts of the factors that drive urban growth and land use change
at both global and local scales. Many approaches have been developed to define CA transition rules
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and each is aimed at improving the overall accuracy and reducing errors of simulation [21–24]. These
approaches vary widely in theoretical assumptions, underlying methodologies, and spatio-temporal
resolutions and extents [25]. For example, a CA model based on artificial neural networks (ANN)
was developed to calculate land conversion probabilities and model dynamic land use in a GIS
environment [21]. This model was used to simulate the multiple land use changes in a rapidly
growing area of Guangdong Province, China. A heuristic CA model of urban land use change was
proposed based on a simulated annealing (SA) algorithm and was successfully applied to simulate
the urban growth in one of Shanghai’s outer suburbs [22]. This model was built around a function
that minimizes the difference (residual) between observed and simulated land use patterns, resulting
in improved locational accuracy when compared to a logistic-regression-based CA model (named
logistic-CA). Other heuristic optimization algorithms such as genetic algorithms (GA) and particle
swarm optimization (PSO) have been used to optimize CA parameters from logistic regression and
calibrate CA models [22,26–28]. A landscape expansion index was incorporated into CA (LEI-CA)
to simulate both the adjacent and outlying urban growth of Dongguan City in southern China [15].
This approach demonstrated an improvement when compared to the logistic-CA model in terms of
urban simulation accuracy. A random forest based CA model was used to simulate urban growth
in Harare Metropolitan Province, Zimbabwe from 1984 to 2013 [24]. This model outperformed CA
models based on support vector machine (SVM) and logistic regression in the study area. Markov
chain integrated CA (CA-Markov) models are another class of methods developed in the last decade
to simulate multiple land use changes [29,30]. The CA-Markov has become increasingly popular in
geographical modeling since it was included in IDRISI. Most of these proposed new models perform
better than earlier models, substantially advancing CA-based modeling of urban growth/expansion
and land use change across the world. Current trends of CA model calibration, such as ANN, SVM,
GA, SA and PSO, have become more complex [2,27,29]. Therefore, reconsideration of the statistical
approaches is necessary for CA-based urban modeling.

Statistical approaches such as logistic regression and principal components analysis (PCA) are
relatively simple and easy to implement using modern software packages. As a classical method,
logistic regression has proved to be reliable in CA modeling [11,18,31,32]; however, most of the
studies were conducted without consideration of correlation among variables. Moreover, the logistic
regression method is incapable of eliminating the negative effects of the multicollinearity among
variables [21,28]. By adding an auto-covariate term, logistic regression can be used to reduce the
effect of correlation and, hence, increase its predictive accuracy in modeling land use change. A case
study of the Paochiao watershed region in Taiwan shows that auto-logistic regression performs better
than logistic regression [33]. PCA was used to reduce the effect of multicollinearity among spatial
variables and obtain more reasonable CA parameters [34], yielding an improvement in performance
when compared to the logistic-CA model. Statisticians have pointed out that the PCA method
produces principal components that reflect only the covariance structure between the independent
variables [35], and, as a consequence, the extracted components may only weakly explain the variance
of the independent variable corresponding to the dependent variable in the regression.

The issue of variable multicollinearity, therefore, has continuously pushed researchers to develop
more accurate, justifiable, and defensible models for simulating urban growth. Partial least squares
(PLS) regression appears to be useful in addressing correlation because it integrates and generalizes
features from PCA and multiple regression methods [36,37]. The method offers three advantages:
(1) it removes data redundancies and extracts components from highly correlated spatial variables that
better represent and explain the dependent variables (land conversion); (2) it avoids the detrimental
effects in modeling due to multicollinearity and can regress when the number of observations is less
than the number of variables; and (3) it integrates the basic functions of regression models, PCA, and
canonical correlation analysis. In summary, PLS searches for the principal components that explain as
much as possible of the covariance between the independent and dependent variables. The parameters
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obtained using the PLS method might then better explain the dependent variables, i.e., the conversion
probability of urban growth.

This paper presents a novel CA model based on the PLS approach that we call PLS-CA.
This approach was used to derive principal components of the spatial variables for regressing CA
parameters. Compared to logistic-CA, PLS can extract variables that are uncorrelated amongst the
explanatory variables, and also between the explanatory and response variables. The result is the
discovery of important transition rules from a number of driving factors that may be highly correlated.
Our PLS-CA model was applied to simulate urban growth in the Songjiang district, an outer suburb of
Shanghai Municipality, from 1992 to 2008. For comparison, a logistic-CA model was also applied to
simulate the urban growth in the same study area.

2. Material

2.1. Study Area and Data

Songjiang is an outer suburb in the southwest part of Shanghai Municipality that is centered at
121◦45′ E and 31◦00′ N. Songjiang has a total area of 598.5 km2, 15.5 km2 of which is water (Figure 1).
Over the past two decades, the urban area of Songjiang has grown rapidly with a significant increase
in economic activity and concomitant dramatic land use change. According to the local government
census, the total registered population has increased from 498,600 in 1995 to 1,074,200 in 2008. Rapid
population growth has resulted in an explosive expansion of the urban area [38]. Such large-scale land
use change and rapid urban growth have led to the degradation of the landscape, environment, and
ecosystem [39,40].

Two Landsat-5 TM/ETM+ images acquired on 18 July 1992 and 24 March 2008 were collected to
derive the changes in patterns in the study area. Other, essential ancillary datasets including 1:5000
administrative, topographic, and transportation maps were also collected from the local government.
A total of 21 ground control points (GCPs) were identified on the remote sensing images using the
topographic map as a reference source. A polynomial method was adopted for geometric rectification
and the resulting accuracy obtained was 0.34 and 0.28 pixels for 1992 and 2008, respectively. Finally,
the areal extent of Songjiang was clipped from the rectified Landsat images using the administrative
map as the boundary.
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2.2. Input Variables

Nine factors affecting land use change were chosen to model urban growth in Songjiang
from 1992 to 2008. These factors were distance-based variables, neighborhood, constraints, and a
stochastic factor (Table 1); all are closely related to urban development and land use changes [2,41,42].
We then visualized the spatial variables and constraints in ArcGIS and produced them as input layers
for the PLS-CA model (Figure 2).

Table 1. The spatial variables used to simulate urban growth in the partial least squares-based cellular
automata (PLS-CA) model.

Variable Meaning Type Acquisition Method

y Conversion probability Criterion variable Remote sensing
classification

Durban Distance to urban center

Spatial variable Euclidean Distance tool
in ArcGIS

Dtown Distance to town centers
Dmrd Distance to main roads
Dagri Distance to agricultural land
Dgs Distance to green space

Neighborhood 3 × 3 neighborhood
Local variable

Retrieved dynamically
during simulationConstraints

Local constraints
Global constraints

Stochastic Stochastic factors Global variable Assigned randomly
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Topographic data play an important role in generating spatial variables for CA models.
As an example, it is sometimes difficult to convert rural land on a steep slope into urban use.
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As a result, a slope factor should be included in any credible model. However, the Songjiang study
area lies on a very flat land in the Yangtze River Delta [43], and, therefore, the impact of slope can
be omitted in the modeling. Distance-based variables and neighborhood reflect the agglomerative
effect of urban development and the attractive power of infrastructure [44]. Spatial variables used in
the PLS-CA model can be categorized as positive and negative distances. Positive distances include
distances to urban center, town centers, and main roads; these factors are significant “push” forces to
urban growth. Conversely, the negative distances, such as distances to agricultural land and green
space, yield a “repellent” effect on urban development.

Apart from the aforementioned quantifiable factors, there are still many uncertainties and errors
in modeling urban growth, resulting in the departure of actual urban growth from some well-known
trajectories. Some of these uncertainties are intangible and can be difficult to identify and/or quantify.
To represent these uncertainties, a stochastic factor was introduced into our CA model (Table 1).
The real values of these spatial variables were acquired from both remotely sensed imagery and vector
maps. The conversion probability (y) was calculated by detecting land use change using the thematic
mapper (TM) images from 1992 to 2008.

3. The PLS-CA Model

3.1. A Generic CA Model

The global conversion probability of land conversion from non-urban to urban can be calculated as
the combined effect of the static probability, neighborhood effect, constraints, and random impact [9,45].
A general form of the global conversion probabilities for u × v cells (in a lattice) is:[

Pt
ij

]
u × v

=
[

Pd × con
(

St
ij = suitable)× Pt

Ω,ij ×
(

1 + (− ln(Rnd) )β)
]

u × v
(1)

where Pt
ij is the global probability of rural-to-urban conversion for cell ij at time t; Pd is the static

probability determined by spatial distances [11,34]; con() is a constraint function which returns
either 0 or 1 [46]; Pt

Ω,ij is the effect for cell ij at time t within Ωl × l neighborhood and it is calculated

by Pt
Ω,ij =

∑l × l con(Sij = urban)
l × l−1 where con

(
St

ij = suitable) returns 1 if the state of the cell ij is urban,

otherwise, it returns 0;
(
1 + (− ln(Rnd) )β) is the stochastic factor [47], where Rnd is a random real

number ranging from 0 to 1, and β is a parameter ranging from 0 to 10 that adjusts the influence of the
stochastic factor.

The global conversion probability, therefore, consists of: (1) the conversion probability based on
spatial variables, (2) cell conversion constraints including planning regulation, protected farmland,
and water bodies, (3) neighborhood effects, and (4) a stochastic factor. The first component is the
observed conversion probability Pd [18,41]:

[Pd]u × v =

[
1

1 + exp
(
−
(
α0 + α1x1 + . . . + αpxp

))]
u × v

(2)

where α0 + α1x1 + . . . + αpxp represents the comprehensive impacts of distance-based variables on
cell ij, xi(i = 1, . . . , p) are the distances from the cell ij to a key point such as the urban center, town
centers, main roads, etc.; and ai(i = 0, 1, . . . , p) are their corresponding parameters. These distances
are also defined as spatial or independent variables in our CA modeling.

3.2. The PLS Method

We assume that y = (y1, . . . , yq)n × q is a set of dependent variables (i.e., the observed
rural-to-urban conversion), where n is the size of samples and q is the number of dependent
variables, x = (x1, . . . , xq)n × p is a set of independent variables with p as the number of independent
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variables. We also assume that E = (E01, . . . , E0p)n × p and F = (F01, . . . , F0p)n × p are the normalized
(mean-centered and variance-scaled) matrix forms of x and y, respectively, t1 is the first principal
component vector of E0, i.e., t1 = E0w1, w1 is the corresponding unit weight vector of E0 and ||w1||= 1 ,
and that u1 is the first principal component vector of F0, i.e., u1 = F0c1, c1 is the corresponding unit
weight vector of F0 and ||c1||= 1 .

In PLS regression, the goal is to obtain a first pair of vectors t1 = E0w1 and u1 = F0c1 under the
condition that ||w1||= 1 and ||c1||= 1 , and maximizing tT

i u1. The objective can be re-written as an
optimization problem [36,37]: 

maxw1,c1〈E0w1, F0c1〉

subject to

{
wT

1 w1 = 1
cT

1 c1 = 1
(3)

By applying the Lagrange algorithm, we obtained eigenvalue equations resolving a first pair of
weight vectors w1 and c1 as follows: {

ET
0 F0FT

0 E0w1 = θ2
1w1

FT
0 E0ET

0 F0c1 = θ2
1c1

(4)

where w1 and c1 are the unit eigenvectors of the matrices ET
0 F0FT

0 E0 and FT
0 E0ET

0 F0, respectively, θ2
1 is

the corresponding eigenvalue, and θ1 = FT
0 ET

0 F0c1. According to Equation (1), θ1 is supposed to be
maximal in the sense of PLS regression.

We compute the first pair of component vectors t1 = E0w1 and u1 = F0c1, and run the regression
of E0 and F0 with respect to t1 and u1, respectively. The equation is:{

E0 = t1 pT
1 + E1

F0 = t1rT
1 + F1

(5)

where E1 and F1 are the residual matrices, and p1 and r1 are the coefficient vectors that can be given by:
p1 =

ET
0 t1
||t1 ||2

r1 =
FT

0 t1
||t1 ||2

(6)

Substituting the residual matrices E1 and F1 for E0 and F0 and repeating the above method,
we obtained the second component vectors t2 and u2 as:

t2 = E1w2

u2 = F1c2

θ2 = 〈t2, u2〉 = wT
2 ET

1 F1c2

(7)

where w2 and c2 are the unit eigenvectors of matrices ET
1 F1FT

1 E1 and FT
1 E1ET

1 F1, respectively,
corresponding to the maximum eigenvalue θ2

2 .
Running the regression of E1 and F1 with respect to t2 and u2, respectively, we have:{

E1 = t2 pT
2 + E2

F1 = t2rT
2 + F2

(8)

where the coefficient vectors p2 and r2 are calculated from:
p2 =

ET
1 t2
||t2 ||2

r2 =
FT

1 t2
||t2 ||2

(9)
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The procedure is iterated until E0 becomes a null matrix, and the final components ti(i = 1, . . . , m)

are determined by cross-validation. Therefore, we have the following equations:{
E0 = t1 pT

1 + . . . + tm pT
m

F0 = t1rT
1 + . . . + tmrT

m + Fm
(10)

Since t1, . . . , tm can be represented as the linear combination of the original variables E01, . . . , E0p,
and F0 in Equation (10) is recovered by the regression equation of y∗j = Fok(k = 1, . . . , q) with respect
to x∗j = Eoj(j = 1, . . . , p) as follows:

y∗k = αk1 x∗1 + . . . + αkp x∗p + Fmk(k = 1, . . . , q) (11)

where αk1 , . . . , αkp are the corresponding coefficients and Fmk is the kth column of residual matrix Fm.
Cross-validation checks the contributions of the extracted principal components to determine

how well the regression model predicts the data. The cross-validation for the component tn is:

Q2
h = 1− PRESSh

SSh−1
(12)

where PRESSh is the sum of squares of prediction error with a total of h components (t1, . . . , th), and
SSh−1 is the sum of squares of combination error of y with the first (h−1) components (t1, . . . , th−1).

If PRESSh
SSh−1

≤ 0.952, the contribution margin of the newly added component tn is significant, and as

a result, iteration stops when Q2
h ≥ 0.00975 [36,37].

3.3. PLS-Based CA Model

Since the conversion probability of each cell in CA is a single decimal variable, Equation (11) can
be re-written as [36,37]:

ŷ = α0 + α1x1 + . . . + αpxp (13)

where αi(i = 0, 1, . . . , p) is the ith regression estimator.
The form of Equation (13) retrieved by PLS method is similar to that from PCA method but the

regression estimator αp obtained from the PLS method contains information about the dependent
variable y as shown in Equation (7), while αp obtained by PCA does not contain any contribution of the
responsive variable y [34,36,37]. Although data redundancy can be eliminated by PCA, the regression
estimators obtained are not related to the independent variables and, thus, have less strong ability
to interpret the independent variable y. PLS is more robust than PCA at explaining the responsive
variable y.

Integrating Equations (1), (2) and (13), we derived the global conversion probability in the
PLS-CA model:

[
Pt

ij

]
u × v

=


1

1 + exp
[
−
(
α0 + α1x1 + . . . + αpxp

)] × ∑l×l con
(
Sij = urban

)
l × l − 1

×con
(

cellt
ij = suitable

)
×
(

1 + (− ln(Rnd))β
)


u × v

(14)

If the calculated global probability Pt
ij exceeds the predefined threshold ranging from 0 to 1,

the cell ij at time t will be converted to urban land use at time t + 1. Otherwise, it will retain its current
state at next time t + 1 [18,41].

3.4. Structure of the PLS-CA Model

The PLS-CA model workflow consists of five steps: raw data collection, data processing, CA rule
discovery with PLS, determination of other CA factors, and model implementation and results
assessment (Figure 3). Each step of the model plays a distinct role in the modeling as follows:
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(1) Raw data collection: Data used in the model include historical raster images such as remotely
sensed images, an administrative vector map, a topographic map, and a transportation map.

(2) Data processing: Spatial variables were extracted from raw data using the ArcGIS Spatial
Analyst tool. These spatial variables included the distance to the urban center (Durban), town centers
(Dtown), main roads (Dmrd), agricultural land (Dagri), and green space (Dgs). The five spatial variables
were normalized by:

Dnorm =
Dori
Dmax

(15)

where Dmax is the maximum value of the spatial variable, Dori is the original distance value from
the raw data, and Dnorm is the normalized value in the range (0, 1). Normalization enables a precise
interpretation of the geographic meaning of the parameters. For instance, if a cell is situated at the
urban center, its normalized Durban value will be 0, where if the cell is situated far from the urban
center, its normalized Durban will approach 1.
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(3) CA rule discovery: This module derives uncorrelated spatial components using PLS.
It determines whether the derived spatial variables satisfy the cross-validation of Q2

h ≥ 0.0975 and,
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hence, it is used to define CA parameters (i.e., weights of spatial variables) by which the land conversion
probability Pd under variables can be obtained. The PLS regression was conducted using the “PLSR”
package of R-language [48].

(4) Other CA factors: These include non-spatial factors such as neighborhood effect, constraints of
basic farmland, and a stochastic factor.

(5) PLS-CA implementation and assessment: This module enables the simulation of the PLS-CA
model and incorporates simulation accuracy assessment by generating overall accuracy, producer’s
accuracy, user’s accuracy, Kappa coefficient, and the compared urban growth rate (CUGR). The module
also displays and exports simulation outcomes.

The simulated area of each category from the CA modeling was not exactly equal to the actual
area. Therefore, an indicator termed the compared urban growth rate (CUGR) is calculated to assess
the accuracy of the PLS-CA model by comparing the observed and simulated urban growth rates.
The CUGR indicator was computed as:

CUGR =
Ssim2008

Sobs2008
× 100% (16)

where CUGR is the difference between the observed and simulated areas of each category in terms of
growth rate, Ssim2008 is the simulation area of the urban or non-urban category at 2008, and Sobs2008 is
the statistical areas of observed urban growth in 2008 or non-urban loss in 1992, respectively.

4. Results and Discussion

4.1. Assessment of Correlation

A total of 5000 samples were randomly selected from spatial variables and the classified land
use patterns in 1992 and 2008 to determine the CA transition rules. The correlation matrix of spatial
variables was calculated using the samples (Table 2), showing significant correlations among these
spatial variables. Traditional methods, such as multi-criteria evaluation (MCE) technique and logistic
regression, are not able to avoid the negative effects of multicollinearity and are relatively weak in
providing correct weights for the variables. We, therefore, applied PLS to extract the uncorrelated
principal components from spatial variables to achieve more reasonable CA transition rules and
improve the performances of the CA model.

Table 2. Correlation matrix of spatial variables.

Variable Dtown Dmrd Dagri Dgs y

Durban 0.6462 0.6109 −0.5372 −0.5280 0.2264
Dtown 0.7058 −0.4496 −0.7754 0.5635
Dmrd −0.4714 −0.4971 0.2518
Dagri 0.8537 −0.1572
Dgs −0.1893

4.2. CA Transition Rules

Among the three components acquired by PLS regression, only the first two satisfied the
cross-validation requirement but explained more than 95% of the total variance (Table 3). The first
component is mainly related to urban center, and the second component is principally related to main
roads. For the third component, its Q2

h is less than the critical value and, therefore, it is not a valid
component. By comparison, PCA can reduce data redundancy but it extracts exactly five components
for the same samples used in this research. Its first three explained 84.268% of the variance, lower
than that of the PLS regression. Based on PLS regression, suitable weights for CA models can be
easily defined, since the principal components are independent, avoiding the repeated counting
that may occur in general MCE [21]. The CA parameters acquired by logistic regression are quite
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different with Dmrd (1.7590) being very large and Dtown (0.5846) relatively small (Table 4) as compared
with those in the PLS regression. This indicates that the logistic-CA model over-weights Dmrd but
undervalues Durban. In contrast, PLS regression generated CA parameters that more reasonably reflect
the actual urban growth in Songjiang. In the PLS approach, the negative weights for the distance
factors are: Durban (−1.1063), Dmrd (−0.8274), Dtown (−0.5841), followed by the positive weights of Dagri
and Dgs which reflect the factors that tend to prevent non-urban land from being developed. The land
conversion potential was produced as map layers based on the calibrated logistic regression and PLS
methods (Figure 4), which varied from 0.38 to 0.72 for logistic-CA and from 0.34 to 0.70 for PLS-CA.

Table 3. Principal components derived from PLS.

Component
Cross-Validation Spatial Variables

R Q2
h

Critical
Value

Urban
Center

Town
Center

Main
Road

Agricultural
Land

Green
Space

1 0.8625 0.8517 −0.0975 −0.8156 −0.4744 0.3012 −0.2290 −0.2967
2 0.3240 0.1054 −0.0975 −0.3694 −0.2536 −0.5515 0.6557 0.3553
3 0.1572 −0.0092 −0.0975 −0.0916 0.1228 0.2031 0.1232 0.0802

Table 4. Comparison of CA parameters generated by PLS and logistic regression.

Models
Variable

Durban Dtown Dmrd Dagri Dgs

PLS-CA −1.1063 −0.5841 −0.8274 0.1924 0.1513
logistic-CA −0.5846 −0.2837 −1.7590 2.0263 1.5978
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4.3. Simulation Results

The PLS-CA model was applied to simulate urban growth of Songjiang from 1992 to 2008
(Figure 5). In the simulation, land use types were generalized as urban, non-urban, and water body.

Before running the model, the best combination of threshold value Pthd and the number of
iterations was determined for the calibration of the PLS-CA model. The meaning of each iteration
should also be defined. As an initial trial, a Pthd value of 0.40 was used to test if a non-urban cell
can be converted to an urban cell. By running the model, simulated results that approximated the
actual urban growth were realized within a certain number of iterations. For the next trial, Pthd
was increased by 0.02 and a simulation result with the highest overall accuracy was acquired with
another number of iterations. Pthd increased by 0.02 from 0.40 to 0.80, indicating that there were
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21 trials for this model. After comparing the results of all trials with different Pthd values, the PLS-CA
model generated the highest overall simulation accuracy of 85.8% at Pthd = 0.68 and Iteration = 16.
By comparison, a logistic-CA model was also calibrated with the best overall simulation accuracy of
83.5% at Pthd = 0.66 and Iteration = 16.

Visual inspection demonstrates a good match between the observed and simulated patterns,
for both the logistic-CA and PLS-CA models (Figure 5). Further, all three observed and simulated
urban patterns in 2008 show that urban growth of Songjiang occurred around the urban centers and
northeastern areas in the late 1990s to early 2000s.ISPRS Int. J. Geo-Inf. 2016, 5, 243  11 of 16 
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4.4. Accuracy Analysis

To quantitatively evaluate the simulation accuracy and the performance of the PLS-CA model,
a pixel-by-pixel comparison was used to calculate a confusion matrix about the concordance between
the simulated results and the observed pattern [11,21,49,50]. The reference land use map illustrating
the observed urban growth was the classified result using a supervised minimum distance classifier in
ENVI 5.2. The confusion matrix derived from the simulated results and the observed reference map
was produced for comparison (Table 5). Kappa coefficients were also calculated to quantify their actual
degree of agreement [51,52].

User’s accuracy was 72.9% for non-urban areas and 96.8% for urban areas in 2008, while the
producer’s accuracies for non-urban and urban categories were 95.2% and 80.7%, respectively (Table 5).
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The user’s accuracy of urban informs that, of all the observed cells considered as urban in the classified
patterns, 96.8% were correctly classified in the simulated pattern, and the probability of identification
of urban mislabeled as non-urban (i.e., commission error) was 3.2% [53]. For the same urban category
in Table 5, of all the urban cells in the simulation result, 80.7% actually correspond to urban in the
classified pattern. In other words, the probability of identification of a cell erroneously labeled as urban
category (i.e., an omission error) was 19.3%. The overall accuracy shows that 85.8% of all the cells
under assessment were correctly categorized in the simulation result. The Kappa coefficient means
that the simulation achieved an accuracy that was 70.9% better than what would be expected from the
chance assignment of cells to categories.

Table 5. Confusion matrix between remote sensing-based classification and simulated urban pattern
using the PLS-CA model for Songjiang in 2008.

Item
Observed (%)

Urban Non-Urban Total

Simulated (%)
Urban 33.6 12.5 46.1

Non-urban 1.7 52.2 53.9
Total 35.3 64.7 100

User’s Accuracy Commission error

Non-urban = 33.6/46.1 = 72.9% 27.1%
Urban = 52.2/53.9 = 96.8% 3.2%

Producer’s Accuracy Omission error

Non-urban = 33.6/35.3 = 95.2% 4.8%
Urban = 52.2/64.7 = 80.7% 19.3%

Overall accuracy 85.8%
Kappa coefficient 70.9%

4.5. Discussion

The detailed simulation accuracies were calculated for Songjiang in 2008 for the logistic-CA
and PLS-CA models for Songjiang (Figure 6). The user’s accuracy for non-urban generated by the
PLS-CA model was 3.5% greater than that of the logistic-CA model, and the producer’s accuracy for
non-urban from the PLS-CA model was nearly equal to that of the logistic-CA model (94.9%). For the
urban category, the user’s and producer’s accuracies of the logistic-CA model were 96.5% and 77.3%,
respectively, lower than those of the PLS-CA model. The overall accuracy of the simulation results
in 2008 was 83.5% for the logistic-CA model, 2.3% less than the new PLS-CA model. The Kappa
coefficient of the PLS-CA model was 70.9%, which outperforms the logistic-CA model (66.6%).
The comparison suggests that the PLS-CA model generated more accurate results compared to the
logistic-CA model.

The CUGR indicator illustrates the growth rate of the simulated urban area compared with the
actual urban development. A CUGR for urban areas larger 100% indicates that the simulated growth
exceeds the observed growth; otherwise, the simulation growth is slower than the observed growth.
A CUGR value approaching 100% suggests that the CA model performs well in terms of the area control.
Statistics for observed urban growth (excluding water bodies) were retrieved from remote sensing,
corrected by the data from the local government of Songjiang. Logistic-CA and PLS-CA models both
simulated more urban growth than actually occurred (Table 6). The CUGR of the urban category was
114.2% for the PLS-CA model, lower than that of the logistic-CA model (121.1%). The CUGR of the
non-urban was 92.3% for the PLS-CA model, which is closer to 100% than that for the logistic-CA
model (88.6%). This result suggests that the overall area control performance of the PLS-CA model was
better than that of the logistic-CA model, while still overestimating urban growth and underestimating
the persistence of non-urban.
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Table 6. Observed and simulated urban growth rates from 1992–2008 (CUGR stands for compared
urban growth rate).

Urban Growth Urban Non-Urban

Observed
Area 1992 (km2) 17.9 565.1
Area 2008 (km2) 205.2 377.8

logistic-CA Area 2008 (km2) 248.4 334.6
CUGR (%) 121.1 88.6

PLS-CA
Area 2008 (km2) 234.3 348.7

CUGR (%) 114.2 92.3

Urban development is a complex open system whose trajectory is affected by drivers that may be
significantly, spatially correlated. Integrated with the analytical functions of GIS, logistic regression
can be used to evaluate the impact of these factors on urban growth. However, logistic regression
cannot eliminate the correlation of spatial variables, while PCA can eliminate spatial correlation
only to a certain degree, and the principal components found in the independent variables may not
adequately explain the dependent variables [35]. The proposed PLS method can extract variables
that are uncorrelated from amongst the explanatory variables, and also between the explanatory
and response factors [36,37], resulting in the discovery of transition rules from a number of driving
factors that are usually highly correlated. This relationship could explain why PLS-CA modeling
outperformed the traditional logistic-CA model, at least from a theoretical point of view. Our results
show that the simulated patterns of urban growth accord well with the actual urban pattern of
Songjiang. Compared with the logistic-CA model, the PLS-CA model achieved better simulation
accuracies in modeling the urban growth of Songjiang through time. We speculate that our model is
better than the PCA-based CA model as inferred by the principal components, but not necessarily
better than auto-logistic regression which performs nearly as well as ANN [33]. It still needs to be
tested whether the PLS-CA model is more or less accurate than other CA models based on artificial
intelligence and machine learning. However, our new model poses the advantages that it is simpler
than these models and generates parameters having clear physical meanings.

In addition, CA models contain various types of uncertainty caused by several other factors
such as sampling, neighborhood configuration, constraints, stochastic perturbation, and spatial
scale [19,47,54,55]. We took only one group of samples for training the PLS-CA model in this study.
Like any other CA models, our PLS-CA could be sensitive to samples that are determined by both
sampling method and sample grouping [9]. The effect of sampling on the simulation results is reflected
by the CA parameters of drivers. Such an effect is relatively greater for statistically significant drivers,
whereas it is much smaller for statistically non-significant drivers which can even be excluded in
modeling [32,56]. Neighborhood configuration such as the shape and number of neighbors influences
the CA models by local interactions [19,57]. A stochastic factor in CA transition rules is to simulate less
tangible uncertainties and perturbations that may affect the simulation results [11,42,47]. Moreover,
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raster-based CA models are also sensitive to cell size (grain size) in terms of simulation accuracy and
landscape structure [39,55,58,59]. The proposed PLS-CA model is no exception because it depends on
a rasterized space.

5. Conclusions

This paper demonstrates that CA models can accurately simulate urban growth using global
and local constraints that reflect various environmental concerns. The advantages of urban growth
simulation by GIS-based CA modeling include the identification of the driving factors of land use
change and the identification of spatial patterns across space and over time. The most important part
of developing these new models is to discover mature CA transition rules. Our PLS-CA model is
capable of extracting uncorrelated factors from the candidate explanatory variables. Thus, PLS-CA
can well eliminate redundancy of the input data and, thus, allow for the discovery of better and more
reasonable transition rules. The PLS-CA model was successfully applied to simulate the urban growth
in Songjiang, demonstrating better simulation accuracy than a conventional logistic-CA model.

Further improvements could be made by testing the response and robustness of the PLS-CA model
on sampling, neighborhood configuration, constraints, and spatial scale. In addition, advanced CA
models could be packaged with simple, robust, and easily implementable modules such as real-time
and dynamic display of simulation results.
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