
 International Journal of

Geo-Information

Article

Methodology for the Efficient Progressive
Distribution and Visualization of 3D
Building Objects

Bo Mao 1,* and Lars Harrie 2

1 College of Information Engineering, Collaborative Innovation Center for Modern Grain Circulation and
Safety, Jiangsu Key Laboratory of Modern Logistics, Nanjing University of Finance and Economics,
Tielu North Road 128, 210003 Nanjing, China

2 Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12,
SE-223 62 Lund, Sweden; lars.harrie@nateko.lu.se

* Correspondence: bo.mao@njue.edu.cn; Tel.: +86-25-8349-3900

Academic Editors: Sisi Zlatanova and Wolfgang Kainz
Received: 29 April 2016; Accepted: 21 September 2016; Published: 10 October 2016

Abstract: Three-dimensional (3D), city models have been applied in a variety of fields. One of the
main problems in 3D city model utilization, however, is the large volume of data. In this paper, a
method is proposed to generalize the 3D building objects in 3D city models at different levels of detail,
and to combine multiple Levels of Detail (LODs) for a progressive distribution and visualization of
the city models. First, an extended structure for multiple LODs of building objects, BuildingTree,
is introduced that supports both single buildings and building groups; second, constructive solid
geometry (CSG) representations of buildings are created and generalized. Finally, the BuildingTree is
stored in the NoSQL database MongoDB for dynamic visualization requests. The experimental results
indicate that the proposed progressive method can efficiently visualize 3D city models, especially for
large areas.

Keywords: 3D city models; symbolization; visualization; CSG representation; X3D; NoSQL

1. Introduction

The number of city models and their importance are increasing. In addition to the traditional
commercial or institutional authorities’ models, crowd-sourced models are also now available [1].
Three-dimensional (3D) city models as multi-purpose models of spatial environments are used in
a growing number of different application domains [2]. For example, 3D navigation maps have
become ubiquitous, both in automotive and pedestrian navigation systems, which include 3D city
models—in particular, terrain models and 3D building models—in order to enhance visual depiction
and simplify recognition of locations. In urban planning, 3D city models provide a means for project
communication and better acceptance of development projects through visualization, and therefore
avoid monetary loss through project delays. For emergency, risk and disaster management systems, 3D
city models provide a conceptual framework. In particular, they are useful for simulating fire, floods,
energy applications [3], noise analysis [4,5], fine dust distribution modeling [6,7], and explosions [8].
In Geodesign, virtual 3D models of the environment (e.g., landscape models or urban models) facilitate
exploration and presentation, as well as analysis and simulation. 3D city models can be helpful in
architecture engineering and construction, where modeling the full 3D space, including outdoor and
indoor environments, is needed to provide an efficient total solution [9–11].

The amount of data in city models is often very large. This implies that there is a need for
efficient methods to store, manipulate, distribute and visualize these models. The focus of this study is

ISPRS Int. J. Geo-Inf. 2016, 5, 185; doi:10.3390/ijgi5100185 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2016, 5, 185 2 of 23

finding an efficient method for 3D building objects which, in most cases, is the most prominent feature
type of most city models. Distributing detailed 3D building objects to mobile devices, such as smart
phones, is still limited by bandwidth. To circumvent this problem, we should only send a detailed
description of the buildings that are close to the user; for other buildings, generalized versions are
sufficient. However, as the user moves through the environment, new representations of the buildings
are visualized on the screen, i.e., the user will notice an abrupt change in the scene. A method to
avoid these abrupt changes is to use the progressive transfer of data from the server to the mobile
device. In the progressive transfer of data, only generalized versions of the buildings are first sent
to the mobile device. For objects that then need a more detailed representation, only the additional
features of the objects have to be transferred. This also ensures that progressive transfer is efficient in
terms the amount of data that has to be transferred.

CityGML is an international standard for city models, proposed by the Open Geospatial
Consortium [12]. A main focus of CityGML is to represent the semantic aspects of the features
in a city. To support this, CityGML contains a comprehensive information model, divided into
several sub-models of buildings, tunnels and bridges, city furniture (e.g., lamp poles), vegetation, etc.
Furthermore, CityGML supports multiresolution modeling. The coarsest level, Level of Detail 0 (LOD0),
is merely a digital surface model, while the most detailed level, LOD4, contains detailed representations
of both outdoor and indoor features [13]. Its multi-resolution modeling capabilities enable CityGML
to be used for multiple representation databases where representations of the same features in varying
levels of detail are stored. However, CityGML is not designed for efficient visualization, while Collada
or X3D can be employed for visualization. For 3D buildings which are inputted in different formats,
they are firstly processed with their own parsers, respectively. Then the extracted geometry and,
if applicable, semantic data about the building is converted into their counterparts in CityGML. In this
study, CityGML is used as an intermediate format to integrate 3D city models into different formats,
such as Collada, 3DS and X3D.

The aim of this paper is to investigate methods for the efficient handling of 3D building objects in
mobile devices. To fulfil this aim, there are several issues that have to be addressed: (i) the usage of an
efficient multiple representation data structure that supports progressive transfer; (ii) the development
of generalization methods to populate this data structure with geodata; (iii) the storage techniques
of the geodata that support the fast retrieval of data; and (iv) the implementation of a visualization
framework that supports progressive transfer. In this paper, we address all of these issues.

This paper is organized as follows. The related work is introduced in Section 2. Section 3 describes
the methodology where we explain each of the four issues mentioned above. Section 4 presents the
experimental results for both visual quality and the performance aspects. Finally, Sections 5 and 6
contain a discussion and the conclusions of the proposed methodology, respectively.

2. Related Work

2.1. Geometric Representations of 3D Objects

Considering the complexity of 3D city models, it is essential to have efficient geometric
representations. In this paper, we convert the boundary representation (B-rep) of 3D buildings into
constructive solid geometry (CSG) representation [14,15]. In the CSG representation, the geometries are
created by combining elementary geometric features (Figure 1). By using transformation parameters
(rotation, scaling, etc.) as well as combining them (adding and subtracting), the geometries can model
irregular shapes.

CSG representation is widely used in building design (CAD/CAM) and provides the efficient
storage of data for buildings that have a rectangular shape or share common parts, such as flat and
gabled roofs. As [16] points out, CSG representation has the following advantages: (i) modeling using
primitives and Boolean operations is much more intuitive than specifying boundary representation
surfaces directly; (ii) the primitives can be parameterized, thus enabling reuse and collection in

ISPRS Int. J. Geo-Inf. 2016, 5, 185 3 of 23

libraries, and reducing the file size; (iii) it can be associated with other, additional information; and
(iv) the CSG modeling tree contains implicit information that can be used for many purposes. Another
benefit of CSG is that it can easily ensure that objects are “solid” or water-tight if all of the primitive
shapes are water-tight. By comparison, when creating geometry based on boundary representations,
additional topological data is required, or consistency checks must be performed to ensure that the
given boundary description specifies a valid solid object.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 3 of 23

Another benefit of CSG is that it can easily ensure that objects are “solid” or water-tight if all of the

primitive shapes are water-tight. By comparison, when creating geometry based on boundary

representations, additional topological data is required, or consistency checks must be performed to

ensure that the given boundary description specifies a valid solid object.

Box Triangular prism Rectangular pyramid

Figure 1. Examples of elementary geometric features that are used in constructive solid geometry

(CSG) modeling.

If many buildings share similar features, it is possible to represent buildings with pre-defined

prototypes. Thiemann [17] introduces the CSG representation of 3D buildings and the CSG tree to

form the building with Boolean operations such as intersection, difference and union. Brenner [16]

compares the differences between B-rep and CSG representations, and proposes a method called

weak CSG modeling which is a combination of the two representation forms. The main idea of weak

CSG modeling is to package, or hide, the regularity constraints of objects inside the black boxes which

appear to the user as traditional CSG primitives. Meanwhile, not all buildings can be represented as

CSG. There are many buildings in real cities that cannot be described by CSGs. For these buildings,

B-rep should be used. In this paper we use CSG to represent simple regular buildings composed by

predefined structures (box, hip roof, gabled roof, tower and so on).

2.2. Multiple Representation and Progressive Transfer

Multiple representations are important in many 3D applications, such as infrastructure

construction application [18] and geology [19] and they play a prominent role in city models. To deal

with multi-scale models, it is common to develop multiple representation data structures. The models

are not the same as LODs in CityGML [20]. We mainly extend the LOD2 in CityGML to a richer level

(CSG-LOD or CLOD) to better fill the gap between LOD3 and LOD1 [21]. The progressive CSG is

used as the new LOD which is generated based on the balance between visualization performance

and computation costs.

Multiple representation data structures have been used for the progressive transfer of 2D data

[22]. For 3D city models, Coors [23] developed a data model that supports hierarchical LOD. This

data model was then implemented in a P-Tree (progressive tree) which stores a coarse representation

in the root and a more detailed representation in the leaves. Depending on the distance from the

viewer to the building, a different level of the P-tree is traversed. To ensure landmark buildings are

represented satisfactorily, they are always stored on a high level of the tree. Döllner and Buchholz

[24] proposed a building model with a continuous level of detail (denoted CLOQ buildings). The

basic idea is that each part of the building (including facades) is stored as a separate object and that

a user can select at which level of detail a building should be visualized. Zhang et al. [25] developed

a method of the progressive transfer of terrain surfaces and 3D objects based on wavelets.

Progressive data transfer can also be facilitated by sending a process description of how the

geospatial objects should be changed. Sester and Brenner [26] developed and demonstrated this

strategy for 2D geospatial data. One advantage of this approach is that it (partly) enables continuous

zooming [27].

2.3. Generalization of City Models

Figure 1. Examples of elementary geometric features that are used in constructive solid geometry
(CSG) modeling.

If many buildings share similar features, it is possible to represent buildings with pre-defined
prototypes. Thiemann [17] introduces the CSG representation of 3D buildings and the CSG tree to
form the building with Boolean operations such as intersection, difference and union. Brenner [16]
compares the differences between B-rep and CSG representations, and proposes a method called weak
CSG modeling which is a combination of the two representation forms. The main idea of weak CSG
modeling is to package, or hide, the regularity constraints of objects inside the black boxes which
appear to the user as traditional CSG primitives. Meanwhile, not all buildings can be represented as
CSG. There are many buildings in real cities that cannot be described by CSGs. For these buildings,
B-rep should be used. In this paper we use CSG to represent simple regular buildings composed by
predefined structures (box, hip roof, gabled roof, tower and so on).

2.2. Multiple Representation and Progressive Transfer

Multiple representations are important in many 3D applications, such as infrastructure
construction application [18] and geology [19] and they play a prominent role in city models. To deal
with multi-scale models, it is common to develop multiple representation data structures. The models
are not the same as LODs in CityGML [20]. We mainly extend the LOD2 in CityGML to a richer level
(CSG-LOD or CLOD) to better fill the gap between LOD3 and LOD1 [21]. The progressive CSG is
used as the new LOD which is generated based on the balance between visualization performance and
computation costs.

Multiple representation data structures have been used for the progressive transfer of 2D data [22].
For 3D city models, Coors [23] developed a data model that supports hierarchical LOD. This data
model was then implemented in a P-Tree (progressive tree) which stores a coarse representation in the
root and a more detailed representation in the leaves. Depending on the distance from the viewer to
the building, a different level of the P-tree is traversed. To ensure landmark buildings are represented
satisfactorily, they are always stored on a high level of the tree. Döllner and Buchholz [24] proposed a
building model with a continuous level of detail (denoted CLOQ buildings). The basic idea is that
each part of the building (including facades) is stored as a separate object and that a user can select
at which level of detail a building should be visualized. Zhang et al. [25] developed a method of the
progressive transfer of terrain surfaces and 3D objects based on wavelets.

Progressive data transfer can also be facilitated by sending a process description of how the
geospatial objects should be changed. Sester and Brenner [26] developed and demonstrated this

ISPRS Int. J. Geo-Inf. 2016, 5, 185 4 of 23

strategy for 2D geospatial data. One advantage of this approach is that it (partly) enables continuous
zooming [27].

2.3. Generalization of City Models

There has also been extensive research on generalization methods, such as for populating multiple
representation databases with geodata. Much of this work has concentrated on the generalization
of single buildings [28]. Theimann and Sester [29] segmented a building in boundary representation
into several parts where the parts are stored in a CSG representation. In later work, Theimann and
Sester [30] developed a method to optimize the size of the parts by adapting templates using the least
squares method. Mayer [31] and Forberg [32] created a scale-space technique partly based on the
morphological operators opening and closing to simplify the 3D building model. A half space model
is used by Kada [33] to detect the main outline of a building. The half-space-based segmentation
method is then extended in Kada [34] to include the roof structures, utilizing pre-defined roof types.
Lu et al. [35] suggested using a transition polygon to represent 3D buildings, but this method can
only support flat roof structures. Fan and Meng [36] generated 3D building exterior representation by
combining the roof and ground plan. Their method is based on: (i) the ground plan being generated
from the 3D building object and simplified; (ii) the roof polygons being merged and typified depending
on their spatial relationships; and (iii) the building exterior shell being constructed by increasing the
ground plan in height and intersecting with the roof structure. This approach is efficient for many
simple structured buildings but will fail if there is one non-vertical wall structure. There have also been
studies, for example by Baig and Abdul-Rahman [37], on creating generalization routines to convert
buildings from the different levels of detail in CityGML.

For building groups, Glander and Döllner [38] developed a method to generalize all buildings
within a city block, or other structures created by a hierarchical network, to a common building object.
Their method pays particular attention to landmark buildings to improve the orientation capability
of the model. Mao et al. [39] developed a methodology of typification of building groups, based
on minimum spanning tree structures, and Guercke et al. [40] designed an aggregation method for
buildings, based on optimization using mixed integer programming.

A specific case of building generalization is the conversion of building construction models [41].
This conversion includes both semantic and geometric conversions which have to be treated
simultaneously. Isikdag and Zlatanova [42] provided a framework of how IFC objects (IfcWall,
IfcWindow, etc.) can be used to generate CityGML objects in different LODs. For the semantic
conversion, El-Mekawy et al. [43] proposed the use of a unified building model which encapsulates
both the CityGML and IFC models.

The evaluation of the quality of 3D geodata generalization has not received the same attention as
2D [44]. One study by Mao et al. [39] which is based on methods in pattern recognition develops a
methodology to compare the original and generalized 3D data, based on Attributed Relational Graphs.

2.4. Storage Method of 3D City Models

Today, 3D city models are generally stored in object-relational databases, such as Oracle and
PostGIS and, in most cases, these databases are extended with dedicated city model tools, such as
3DCityDB [45] and DB4Geo [46]. Strauss and Carey [47] introduced object-oriented databases for 3D
model management; these databases have also been used for 3D building applications [48]. Kunde [49]
implemented the CityGML schema in an object-relational database. Zhang et al. [11] proposed a 3D
geospatial database engine based on Oracle 11 and a file system. Koch and Lowner [50] recently
used BaseX an XML database for CityGML. However, the CityGML schema is complex and leads to
hundreds of tables in the database although most of these tables may not be used in most applications.

Cloud computing and NoSQL technology have been developed to provide high performance,
big data storage, high scalability and high availability. These properties make the technology suitable
for 3D model management. Luan et al. [51] proposed a 3D model management strategy based on

ISPRS Int. J. Geo-Inf. 2016, 5, 185 5 of 23

the Hadoop distributed file system to tackle the big data problem which 3D model management is
facing. Sugumaran et al. [52] developed and implemented a web-based 3D data processing system
using Amazon’s EC2 cloud computing environment. Their tests demonstrated the advantages of
cloud computing over traditional approaches in terms of time, cost and performance. Dobos et al. [53]
employed a NoSQL database (MongoDB) to store 3D models to assist public consultation. Han and
Stroulia [54] built their 3D data management system based on another NoSQL database called Hbase.
Cloud computation methods, such as Map-Reduce, can be deployed on a NoSQL database to increase
the analysis speed. It is suitable for big data applications, such as 3D city model generalization
and visualization.

In this paper, we use the NoSQL database MongoDB to store multiresolution 3D building objects.
MongoDB is document-oriented and schema-less, which is suitable for the integration of different
XML-based 3D city model standards, such as KML and CityGML. MongoDB has previously been used
in various applications such as building information modeling (BIM) applications. Dobos et al. [53]
developed a unified and integrated framework, called 3D Repo, which supports collaborative editing
and the distribution of 3D assets, the results showing that MongoDB is suitable for 3D city model
management. An advantage of NoSQL databases, in comparison with object-relational databases,
is that they have a better capability for automatic data distribution and load balance. Furthermore,
they are easier to extend and parallelize.

2.5. Visualization Frameworks for City Models

The fast visualization of 3D building models is essential for several applications, especially
for online situations. The use of mobile devices, such as smart phones, to view city models also
creates an extra demand for efficient methods of visualization. Due to the diversity of mobile devices,
browser-based 3D visualization is widely required. X3DOM [55] can integrate X3D with HTML5 and
create interactive 3D scenes for the Web, similar to the way SVG currently works in 2D. Jung et al. [56]
indicate that X3DOM provides a single declarative developer interface, based on current web standards,
and supports various back ends through a powerful fallback model for runtime and rendering modules.
However, according to Mao and Ban [57], the system performance of X3DOM reduces significantly
when the number of complicated 3D buildings increases in online visualization. Therefore, it is
important to find methods to generate lower LODs from higher LODs automatically by generalizing
city objects. In addition, unnecessary details need to be hidden to avoid visual cluttering.

3. Methodology

In this study, we have developed a multiple representation structure BuildingTree (Section 3.1),
generalization methods to generate a BuildingTree (Section 3.2), and storage and visualization methods
for the BuildingTree (Sections 3.3 and 3.4).

3.1. Multiple Representation Structure—BuildingTree

The multiple representation data structure BuildingTree in this study is a partial hierarchy; it is an
improved and extended version of the independent level data structure in Mao et al. [21]. The previous
CityTree model is mainly generated for building groups or blocks in LOD1 or LOD2 by the aggregation
operation while the current version of the BuildingTree is designed for building objects, where the
data are stored in LOD3 and LOD4 models (as shown in Figure 2):

• LOD3 Exterior Shell (LOD3ES) is a detailed building shell models with boundary representation.
This is an LOD3 model which has the basic content of an LOD3 model but only consists of the
exterior shell. This model is stored as a boundary representation. Compared with LOD3, LOD3ES
can provide high visualization similarity while greatly reducing the data volume. Meanwhile,
the LOD3ES can be processed faster for CSG detection than LOD3 since the number of polygons
are reduced.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 6 of 23

• CLOD—a total hierarchical multiple representation model stored in CSG representation.
The model stores features in LOD1 to LOD3.

The CLOD sub-tree is built by the following four levels (Figure 3). Leve1 1: box models of
buildings (LOD1); Level 2: building roof structure (LOD2); Level 3: building parts (extensions of the
ground plan, windows, doors, roof details etc.) that are larger than a threshold (large CSGs); Level 4:
building parts that are smaller than a threshold (small CSGs). This implies that a building in CLOD is
built by all four levels. A higher level can only be shown if all the lower levels are shown. However,
there is no ordering of the elements within each level. The elements that will be transferred and
visualized on a level is dependent on the user’s position. The distance between the user’s position and
the model is calculated to determine the visualization levels of the model. In this study, only landmark
buildings have all four levels. For ordinary buildings, levels 3 and 4 can be merged.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 6 of 23

is built by all four levels. A higher level can only be shown if all the lower levels are shown. However,

there is no ordering of the elements within each level. The elements that will be transferred and

visualized on a level is dependent on the user’s position. The distance between the user’s position

and the model is calculated to determine the visualization levels of the model. In this study, only

landmark buildings have all four levels. For ordinary buildings, levels 3 and 4 can be merged.

LOD3ES model

LOD3

model

Building Parts

(small CSGs)

Building Parts

(large CSGs)

Roof Structure

(LOD2)

Box model (LoD1)

CLOD

BuildingTree

LOD4

model

Figure 2. BuildingTree structure.

Figure 3. The levels in the CLOD total hierarchical tree.

It should be noted that the BuildingTree only stores limited semantic information (e.g., private

or public). The reason that not more semantic information is stored is that the BuildingTree is only

used for visualization, and the rich semantic data that are available in e.g., CityGML models are not

necessary. However, a BuildingTree contains the reference to the original LOD3 or LOD4 model

Figure 2. BuildingTree structure.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 6 of 23

is built by all four levels. A higher level can only be shown if all the lower levels are shown. However,

there is no ordering of the elements within each level. The elements that will be transferred and

visualized on a level is dependent on the user’s position. The distance between the user’s position

and the model is calculated to determine the visualization levels of the model. In this study, only

landmark buildings have all four levels. For ordinary buildings, levels 3 and 4 can be merged.

LOD3ES model

LOD3

model

Building Parts

(small CSGs)

Building Parts

(large CSGs)

Roof Structure

(LOD2)

Box model (LoD1)

CLOD

BuildingTree

LOD4

model

Figure 2. BuildingTree structure.

Figure 3. The levels in the CLOD total hierarchical tree.

It should be noted that the BuildingTree only stores limited semantic information (e.g., private

or public). The reason that not more semantic information is stored is that the BuildingTree is only

used for visualization, and the rich semantic data that are available in e.g., CityGML models are not

necessary. However, a BuildingTree contains the reference to the original LOD3 or LOD4 model

Figure 3. The levels in the CLOD total hierarchical tree.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 7 of 23

It should be noted that the BuildingTree only stores limited semantic information (e.g., private
or public). The reason that not more semantic information is stored is that the BuildingTree is only
used for visualization, and the rich semantic data that are available in e.g., CityGML models are not
necessary. However, a BuildingTree contains the reference to the original LOD3 or LOD4 model which
means that semantic information could be added to the model. The preservation of the semantic data
could benefit further interactive visualization and analysis.

The P-Tree structure presented in [23] is mainly focused on the multiple buildings or building
groups while our method deals with single buildings. In [24], the CLOQ (Continuous Level of Quality)
is composed by floor, wall and roof structure, while in this paper, the CLOD is composed of CSGs
which represent a part of building including floor, wall and roof structures.

3.2. Generalization Methods to Generate a BuildingTree

The BuildingTree is automatically generated from detailed models in LOD3 (which are stored
in boundary representation). This generation is done stepwise. First, LOD3ES is generated from the
LOD3 model. Then, the total hierarchical structure CLOD is generated from LOD3ES.

3.2.1. Generating the LOD3ES Model from LOD3

LOD3ES is automatically generated from LOD3. The method used is based on the tree step
process described in Fan and Meng [36] (see Section 2.3).

3.2.2. Generating the CLOD Model from LOD3ES

The generation of the CLOD model from LOD3ES is only done for 3D building objects that
are sufficiently regular to be decomposed (as shown in Figure 4); building objects that are not
decomposable (those that have a round shape or other non-rectangle structures) are preserved as
LOD3ES. For regular building objects, the basic approach in this step is to identify the building parts
in the LOD3ES model and store them in a total hierarchical data structure. The generation of the CSG
representation CLOD is done in three steps: building segmentation, decompose cross-sections and prototype
extraction and classification.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 7 of 23

which means that semantic information could be added to the model. The preservation of the

semantic data could benefit further interactive visualization and analysis.

The P-Tree structure presented in [23] is mainly focused on the multiple buildings or building

groups while our method deals with single buildings. In [24], the CLOQ (Continuous Level of Quality)

is composed by floor, wall and roof structure, while in this paper, the CLOD is composed of CSGs

which represent a part of building including floor, wall and roof structures.

3.2. Generalization Methods to Generate a BuildingTree

The BuildingTree is automatically generated from detailed models in LOD3 (which are stored

in boundary representation). This generation is done stepwise. First, LOD3ES is generated from the

LOD3 model. Then, the total hierarchical structure CLOD is generated from LOD3ES.

3.2.1. Generating the LOD3ES Model from LOD3

LOD3ES is automatically generated from LOD3. The method used is based on the tree step

process described in Fan and Meng [36] (see Section 2.3).

3.2.2. Generating the CLOD Model from LOD3ES

The generation of the CLOD model from LOD3ES is only done for 3D building objects that are

sufficiently regular to be decomposed (as shown in Figure 4); building objects that are not

decomposable (those that have a round shape or other non-rectangle structures) are preserved as

LOD3ES. For regular building objects, the basic approach in this step is to identify the building parts

in the LOD3ES model and store them in a total hierarchical data structure. The generation of the CSG

representation CLOD is done in three steps: building segmentation, decompose cross-sections and

prototype extraction and classification.

Building Segmentation

Cross-Sections

Decompose

Building Parts

LOD3ESIs decomposable

Prototype Generate

CLOD

LOD3ESIs prototypable

No

Yes

No

Yes

Figure 4. CLOD generation workflow.

Building Segmentation

Figure 4. CLOD generation workflow.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 8 of 23

Building Segmentation

The segmentation process starts by identifying cross-sections using Algorithm 1, i.e., all points in
the building geometry are grouped if they are the same height (or a height within a threshold distance).
Currently, the cross-sections method can only deal with the horizontal structure, and the vertical or
non-horizontal method will be further studied in future work. The input of the algorithm is Point Set
(CS) and the output is a list of cross-sections that are composed of its 3D points. In Figure 5, the original
building is modelled with three horizontal cross-sections (AA′, BEE′B′, and CDD′C′). Then, each
cross-section is classified into one of three classes: polygon (if the nodes are in a horizontal polygon of
the building, for example BEE′B′ in Figure 5a), line (if the nodes are connected, for example AA′ in
Figure 5a) and point (e.g., a top of a pyramid tower). The generated point set is ordered and saved
according to the polygon, therefore, the plane can be recreated from the point set.

Algorithm 1: Building Segmentation. CLOD generation workflow

1. procedure Segmentation(CS)
2. Cross_Sections = []
3. for all c in CS do
4. isInserted = False
5. for all cross_section in Cross_Sections do
6. if isSameHeight(c, cross_section) then
7. insert(cross_section, c)
8. isInserted = True
9. end if

10. end for
11. if not isInserted then
12. new_cross_section = [c]
13. insert(Cross_Sections, new_cross_section)
14. end if
15. end for
16. return Cross_Sections
17. end procedure

ISPRS Int. J. Geo-Inf. 2016, 5, 185 8 of 23

The segmentation process starts by identifying cross-sections using Algorithm 1, i.e., all points

in the building geometry are grouped if they are the same height (or a height within a threshold

distance). Currently, the cross-sections method can only deal with the horizontal structure, and the

vertical or non-horizontal method will be further studied in future work. The input of the algorithm

is Point Set (CS) and the output is a list of cross-sections that are composed of its 3D points. In Figure

5, the original building is modelled with three horizontal cross-sections (AA′, BEE′B′, and CDD′C′).

Then, each cross-section is classified into one of three classes: polygon (if the nodes are in a horizontal

polygon of the building, for example BEE′B′ in Figure 5a), line (if the nodes are connected, for example

AA′ in Figure 5a) and point (e.g., a top of a pyramid tower). The generated point set is ordered and

saved according to the polygon, therefore, the plane can be recreated from the point set.

Algorithm 1：Building Segmentation. CLOD generation workflow

1. procedure Segmentation(CS)

2. Cross_Sections = []

3. for all c in CS do

4. isInserted = False

5. for all cross_section in Cross_Sections do

6. if isSameHeight(c, cross_section) then

7. insert(cross_section, c)

8. isInserted = True

9. end if

10. end for

11. if not isInserted then

12. new_cross_section = [c]

13. insert(Cross_Sections, new_cross_section)

14. end if

15. end for

16. return Cross_Sections

17. end procedure

(a) (b) (c)

Figure 5. (a) Original building stored as an exterior shell model; (b) cross-sections; and (c) CSG

representation using a box and a triangular prism.

Decompose Cross-Sections

The next phase is to decompose each cross-section into parts using Algorithm 2. The input is

detected cross-sections and the output is decomposed parts. Firstly, the cross-sections are simplified

by rules such as:

Figure 5. (a) Original building stored as an exterior shell model; (b) cross-sections; and (c) CSG
representation using a box and a triangular prism.

Decompose Cross-Sections

The next phase is to decompose each cross-section into parts using Algorithm 2. The input is
detected cross-sections and the output is decomposed parts. Firstly, the cross-sections are simplified
by rules such as:

ISPRS Int. J. Geo-Inf. 2016, 5, 185 9 of 23

• Cross-sections that consist of a small line or polygon are removed. The lowest and the highest
cross-sections are never removed.

• Cross-sections that are large polygons are simplified using Fan’s method [58]. To preserve
the building features, such as a vertical wall and a rectangle corner, the points of the merged
nodes are selected from the original points belonging to the cross-section and are adjusted to the
lower cross-section.

The next step is to approximate the cross-sections with a set of rectangles using a method based
on Minimum Containing Rectangular (MCR). The MCR is defined as the minimum area rectangle
(where the sides in the rectangle are parallel with the axis of the coordinate system) that covers the
polygon (in this case the cross-section). To deal with the situation when the polygon is not aligned to
the main axes, we rotate the polygon according to each edge so it is aligned to the main axes. After the
calculation, it will be rotated back. The original cross-section is represented by a set of MCR. If the area
difference between the cross-section and the generated MCR set is larger than the threshold (20% of
total area; denoted min_Area in Algorithm 2), the cross-section will be marked as not decomposable
and the CLOD will not be generated for the building. To generate the MCR set of a cross-section, we
continuously segment the cross-section with edges and select the maximum reduced area; an example
is given in Figure 6.

Algorithm 2: Cross Section Decompose. The procedure Generalize is defined as in [36]

1. procedure Decompose (Cross_Sections)
2. results = []
3. for all cross_section in Cross_Sections do
4. if bbox(cross_section) < min_Area then
5. remove(Cross_Sections, cross_section)
6. else
7. gcs = Generalize(cross_section)
8. parts = getMCR(gcs)
9. insert(result, parts)

10. end if
11. end for
12. return result
13. end procedure

ISPRS Int. J. Geo-Inf. 2016, 5, 185 11 of 23

MCR1

MCR2

MCR1

MCR2

3 4

(a) (b) (c)

Figure 6. Example of MCR detection. (a) Ground plan. (b) Main MCR. (c) All detected MCRs

Prototype Extraction and Classification

The CSG representation is generated from the cross-sections using a symbolization method. One

example is provided in Figure 5 where the building is replaced by a combination of a box and a

triangular prism (Figure 5c). The symbolization method works as shown in Algorithm 4 in which the

input is decomposed rectangular parts and the output is the detected set of prototypes.

Algorithm 4：Prototype Extraction

1. procedure Prototype (CS_parts)

2. results = []

3. part_org = CS_parts

4. while notEmpty(part_org) do

5. p = delete(parts_org)

6. proto_parts = selectTop(p, CS_parts)

7. proto = generateProto(proto_parts)

8. insert(result, proto)

9. end while

10. return result

11. end procedure

First, mark all cross-section parts (CS_parts) as non-processed (Parts_org). Select p from the non-

processed list Parts_org and remove p from it.

Then, select the proto parts from the cross-section parts (CS_parts) that have the closest higher

z value and can be vertically projected into p (selectTop function). For example, in Figure 5, the proto

parts results of the cross-section part CDD′C′ is BEE′B′ and the selected results of BEE′B′ is AA′.

Finally, for different proto parts, generate the representation respectively. Currently, we

implement box (two identical rectangles of different heights), gabled roof (one line and one rectangle

of the same length), hip roof (rectangle with a shorter line), and tower (one point and one rectangle).

The prototype can be extended in further applications to support more CSG geometries.

If the rectangular parts are not the same for the two cross-sections, the situation becomes more

complicated; typical examples are the roofs. To represent as many roofs as possible with a limited

number of geometric prototypes, the roofs can be separated into more primary parts using the

standard geometries in Figure 1. By combining and transforming these geometries, we can construct

a large proportion of the common roof structures. However, in many cases, it requires several

geometries. If, for example, the basic geometric prototypes in Figure 1 are used, a gabled roof can be

typified using one triangular prism and four rectangular pyramids. To avoid this large number of

geometries in our study, we define a prototype for a gabled roof structure which enables us to model

such a roof with only one prototype. The disadvantage of this is that a prototype definition has to be

Figure 6. Example of MCR detection. (a) Ground plan; (b) Main MCR; (c) All detected MCRs.

The pseudocode of MCR is given in Algorithm 3 in which getMCRArea is the function to calculate
the Minimum Containing Area of a point set. To calculate the MCR area, the rotating calipers method

ISPRS Int. J. Geo-Inf. 2016, 5, 185 10 of 23

is employed [59]. The input of the getMCR is generalized cross-section (gcs) and the output is
decomposed minimum containing rectangles to present the gcs.

Algorithm 3: Minimum Containing Rectangular

1. procedure getMCR (gcs)
2. d_area_max = 0
3. results = []
4. area_gcs = getMCRArea(gcs)
5. if area_gcs < d_min then
6. insert(result, gcs)
7. return results
8. end if
9. for all ls in gcs.edges do

10. c1, c2 = segment(gcs, ls)
11. area1 = getMCRArea(c1)
12. area2 = getMCRArea(c2)
13. d_area = area_gcs - area1 - area2
14. if d_area < d _area_ max then
15. c1_max = c1
16. c2_max = c2
17. d _area_ max = d_area
18. end if
19. end for
20. if d_area_max < d_th then
21. c1r = getMCR(c1_max)
22. c2r = getMCR(c2_max)
23. insert(result, c1r)
24. insert(result, c2r)
25. return result
26. end if
27. end procedure

In Algorithm 3, d_Min is the threshold area that the polygon will be further segmented into. If the
MCR area of the input polygon is smaller than d_min, it will not be further segmented and directly
inserted into the result list. getMCRArea is a procedure that calculates the minimum containing
rectangle area of the input polygon. d_area_max is used to select the segmentation that can reduce
the area most. d_th is a predefined threshold that is used to determine if the segmentation is in effect.
For example, after the segmentation, if the reduced area (d_area_max) is bigger than d_th, it means
that the segmentation is worth as shown in following Figure 6b. Otherwise, in Figure 6c the reduced
area (d_area_ max) is too small (<d_th) meaning that the segmentation is not necessary. This function
computes a set of rectangles that together constitute a simplified cross-section.

The computational complexity of the rotating calipers method is O(n) where n is the number of
points [59]. The segmentation number is the number of edges in the cross-section, which is also less
than n. Then the complexity for each around is O(n2). After the segmentation, the number of points and
edges is not increased. Therefore, in worst cases, the overall complexity is less than O(n3). In further
analysis, according to the definition, the time complexity of cross-section decomposition algorithm is
mainly composed by generalization and getMCR functions. Suppose a cross-section contains n points.
The generalization algorithm according to [36] is O(n2). In the getMCR function, the complexity of

ISPRS Int. J. Geo-Inf. 2016, 5, 185 11 of 23

getMCRArea is O(n2) according to the [59], so the complexity of segmentation edge selection part in
getMCR is n*O(n2) = O(n3). Meanwhile, the function getMCR is recursive; it segments the polygon into
two parts and computes the getMCR respectively. Because in each segmentation the area reduction
is more than d_th, the number of segment rounds is smaller than a constant (polygon_area/d_th).
Therefore, the overall complexity of getMCR is O(n3).

Prototype Extraction and Classification

The CSG representation is generated from the cross-sections using a symbolization method.
One example is provided in Figure 5 where the building is replaced by a combination of a box and a
triangular prism (Figure 5c). The symbolization method works as shown in Algorithm 4 in which the
input is decomposed rectangular parts and the output is the detected set of prototypes.

Algorithm 4: Prototype Extraction

1. procedure Prototype (CS_parts)
2. results = []
3. part_org = CS_parts
4. while notEmpty(part_org) do
5. p = delete(parts_org)
6. proto_parts = selectTop(p, CS_parts)
7. proto = generateProto(proto_parts)
8. insert(result, proto)
9. end while

10. return result
11. end procedure

First, mark all cross-section parts (CS_parts) as non-processed (Parts_org). Select p from the
non-processed list Parts_org and remove p from it.

Then, select the proto parts from the cross-section parts (CS_parts) that have the closest higher z
value and can be vertically projected into p (selectTop function). For example, in Figure 5, the proto
parts results of the cross-section part CDD′C′ is BEE′B′ and the selected results of BEE′B′ is AA′.

Finally, for different proto parts, generate the representation respectively. Currently, we implement
box (two identical rectangles of different heights), gabled roof (one line and one rectangle of the same
length), hip roof (rectangle with a shorter line), and tower (one point and one rectangle). The prototype
can be extended in further applications to support more CSG geometries.

If the rectangular parts are not the same for the two cross-sections, the situation becomes more
complicated; typical examples are the roofs. To represent as many roofs as possible with a limited
number of geometric prototypes, the roofs can be separated into more primary parts using the standard
geometries in Figure 1. By combining and transforming these geometries, we can construct a large
proportion of the common roof structures. However, in many cases, it requires several geometries.
If, for example, the basic geometric prototypes in Figure 1 are used, a gabled roof can be typified using
one triangular prism and four rectangular pyramids. To avoid this large number of geometries in our
study, we define a prototype for a gabled roof structure which enables us to model such a roof with
only one prototype. The disadvantage of this is that a prototype definition has to be created and also
several transformation parameters have to be handled. But in these cases where a geometry is very
common, such as gabled roofs, this is often more efficient. Currently, the prototype is defined by hand,
based on the experiences of the 3D city model maker. If the geometry cannot be typified, this part will
be represented by a polygon.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 12 of 23

When the prototypes are created, they are classified into levels (see Section 3.1). The box created
by the largest MCR (denoted main MCR) of the first cross-section is classified as level 1 (LOD0).
The roof prototypes (defined by hand) are classified as level 2. Finally, the remaining prototypes are
classified as either level 3 or 4 depending on their sizes (and possibly also building type).

3.3. Storage Methods of the BuildingTree

Figure 7 shows the storage system architecture. Since city models can be generated from different
sources, the storage system should support multiple formats for data input. In this study, CityGML is
selected as the standard for 3D city dataset integration. Meanwhile, a 3D visualization format such
as Collada and X3D are also supported. 3D city/visualization data in different formats are first read
into the system with specific parsers; for example, we use citygml4j for CityGML files, xj3d for X3D
files and j3d for KML and Collada files. Then, the geometry content and semantic features (if any)
of the input 3D models are extracted and stored in the NoSQL database in JSON format which can
support different schemas for different models (for more details, refer to Section 4). In this paper, we
employ the polygon set to present the geometry data which is consistent with CityGML. For example,
all buildings have common features such as ID, type, centroid, height and so on, but one building may
have the feature “owner” while the others do not. The data on all these buildings can be stored in a
collection of NoSQL, which is not supported in a table of relational databases since its columns have to
be predefined. Furthermore, to simplify the 3D data storage, we export the 3D polygons as raw text
which can be easily imported into programming languages (Python or Java) as polygon list objects.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 12 of 23

created and also several transformation parameters have to be handled. But in these cases where a

geometry is very common, such as gabled roofs, this is often more efficient. Currently, the prototype

is defined by hand, based on the experiences of the 3D city model maker. If the geometry cannot be

typified, this part will be represented by a polygon.

When the prototypes are created, they are classified into levels (see 3.1). The box created by the

largest MCR (denoted main MCR) of the first cross-section is classified as level 1 (LOD0). The roof

prototypes (defined by hand) are classified as level 2. Finally, the remaining prototypes are classified

as either level 3 or 4 depending on their sizes (and possibly also building type).

3.3. Storage Methods of the BuildingTree

Figure 7 shows the storage system architecture. Since city models can be generated from

different sources, the storage system should support multiple formats for data input. In this study,

CityGML is selected as the standard for 3D city dataset integration. Meanwhile, a 3D visualization

format such as Collada and X3D are also supported. 3D city/visualization data in different formats

are first read into the system with specific parsers; for example, we use citygml4j for CityGML files,

xj3d for X3D files and j3d for KML and Collada files. Then, the geometry content and semantic

features (if any) of the input 3D models are extracted and stored in the NoSQL database in JSON

format which can support different schemas for different models (for more details, refer to Section

4). In this paper, we employ the polygon set to present the geometry data which is consistent with

CityGML. For example, all buildings have common features such as ID, type, centroid, height and so

on, but one building may have the feature “owner” while the others do not. The data on all these

buildings can be stored in a collection of NoSQL, which is not supported in a table of relational

databases since its columns have to be predefined. Furthermore, to simplify the 3D data storage, we

export the 3D polygons as raw text which can be easily imported into programming languages

(Python or Java) as polygon list objects.

Collada
File

CityGML
File

Geospatial
Query

LOD3ES

3D Id
3D data

NoSQL Dataserver

3D City
Models

CLOD
CSGi

Id
type
3D Id
Centroid
Rotation

Model
Input

(JSON)

MapReduce
Analysis

Model
Output

CityGML
File

3D Max
File

BuildingTree
Root

Id
LOD3ES
CLOD
metadata

X3D
File

Text
results

Figure 7. 3D city model management framework.

3.3.1. NoSQL Databases—MongoDB

To store the 3D city models, a database is required. Compared with relational databases such as

Oracle, MySQL or PostgreSQL, it is better to store the dataset in the cloud environment, considering

extensibility. MongoDB is a cross-platform, document-oriented database built for the cloud

environment. Classified as a NoSQL database, MongoDB eschews the traditional table-based

Figure 7. 3D city model management framework.

3.3.1. NoSQL Databases—MongoDB

To store the 3D city models, a database is required. Compared with relational databases
such as Oracle, MySQL or PostgreSQL, it is better to store the dataset in the cloud environment,
considering extensibility. MongoDB is a cross-platform, document-oriented database built for the
cloud environment. Classified as a NoSQL database, MongoDB eschews the traditional table-based
relational database structure in favor of JSON-like documents with dynamic schemas (MongoDB
calls the format BSON), making the integration of data in certain types of applications easier and
faster. Here, we build a MongoDB framework for city models using four computers as a cluster. This
structure can be easily extended by adding more data nodes to support larger and more cities.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 13 of 23

Then, the web server side can employ the MapReduce programming method to communicate
with the database. MapReduce is suitable for parallel computing and can take advantage of the
server cluster. The MapReduce framework is widely applied for big data processes. It can divide
the work loads of an operation, such as searching or analysis, onto multiple computers and run
the process simultaneously. The MapReduce framework can increase the analysis speed by adding
more computers to the system, which is usually achieved by replacing the existing system with
better machines. MongoDB supports the MapReduce framework which will improve the process
performance for big city models.

3.3.2. Generation of the CLOD BuildingTree Model

The BuildingTree structure combines the generated LOD3ES and CLOD models. In the
BuildingTree, the metadata is used to determine which of the LOD3ES or CLOD models should
be visualized based on the stored height, area (defined as projected area on the ground) and location
(building centroid) and the metadata are used in dynamic visualization to determine how many parts
from one building (in CLOD model) should be loaded into the client browser from the server. This
will reduce the loading time and reduce network traffic which is important in a mobile situation.
Furthermore, the metadata store pointers to the LOD3ES and CLOD models.

The leaves of the BuildingTree are defined below. The attribute values are stored in normal text
and the pointers to other leaves in Roman style, e.g., lod3es and clod are references to the LOD3ES
and CLOD.

BuildingTree root = {id, lod3es, clod, Metadata}
lod3es = {building_id, polygon set of building exterior shell}
clod = {building_id, CSG1, CSG2 . . . CSGn}
Metadata = {location, area, height, type, lod3es_info, clod_info}
lod3es_info = {size, number_of_polygons}
clod_info = {number_of_CSGs}
CSGi = {area, height, type, scale, centroid, rotation}

The metadata containing the root of the BuildingTree is actually an index that can be used to
determine how many details should be loaded in the visualization. The CSG are stored in the CLOD as
a tree structure. In our implementation, a building usually has less than 5 CSG parts which are ordered
by their volume (area*height). The size of the BuildingTree root is small compared to the models,
therefore, we could load all the roots in a nearby area, based on which of the 3D data of LOD3ES or
CLOD can be dynamically loaded.

3.3.3. Storage of BuildingTree in MongoDB

The multiple representation data are stored in three collections in the NoSQL database (similar to
tables in the relational database):

BuildingTree: The BuildingTree collection contains information on the multiple representation data.
CLOD(CSG): This collection stores the CSG attribute data of the building parts, such as type,

centroid, orientation, etc.
LOD3ES: This collection stores the 3D exterior shell representation of a building or a generalized

building group.
The reason for separating the two latter collections in this study is performance. The querying of

the data is mainly implemented on the Geo collection which supports a 2D geospatial index. It should
be noted that the NoSQL database does not support joint operations between collections. It is therefore
vital that the CLOD(CSG) table contains all the relevant information used in the data search. In other
words, semantic information on the building is stored in the Geo table; 3D geometry data is stored in
the 3D table (a structure used to store the 3D geometry data) and its dynamic visualization structure is
stored in the BuildingTree.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 14 of 23

Querying on 3D information is implemented by a map-reduce method. Since the map-reduce
method makes full use of parallel computing, it is suitable for the large volume of 3D data.

3.4. Visualization Frameworks for the BuildingTree

For the flying through application, the computation for visualization is heavy as the city scene
changes rapidly. To support this, a preloaded BuildingTree is necessary, while for ground users such as
road navigation, the proposed BuildingTree structure can be loaded online which may save quite a bit
of storage on local devices. The main challenge with the visualization framework is to provide the
user with a proper view of the buildings (without abrupt changes in the geometric representations)
with a minimum of data transfer.

Figure 8 is an Unified Modeling Language (UML) sequence diagram to illustrate the interaction
between user client and 3D model server. The blank box represents a delay or the processing time
on the client side. The visualization rule should be defined according to the specific application
requirements. The basic rules proposed in this paper are summarized from the visualization aspect in
which visual similarity is the main consideration. In this framework, the client first requests a 3D city
model, then a BuildingTree without 3D geometry data related to the selected city area will be supplied.
Based on this BuildingTree, the client can calculate which buildings are necessary for the visualization.
In this framework, users have more flexibility to adjust the 3D visualization strategy. In other words,
3D rendering is determined more by the user side than the server side. The BuildingTree allows the
user to decide which buildings and which levels should be transformed from the server, according to
the bandwidth, memory size or current CPU status.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 14 of 23

In other words, semantic information on the building is stored in the Geo table; 3D geometry data is

stored in the 3D table (a structure used to store the 3D geometry data) and its dynamic visualization

structure is stored in the BuildingTree.

Querying on 3D information is implemented by a map-reduce method. Since the map-reduce

method makes full use of parallel computing, it is suitable for the large volume of 3D data.

3.4. Visualization Frameworks for the BuildingTree

For the flying through application, the computation for visualization is heavy as the city scene

changes rapidly. To support this, a preloaded BuildingTree is necessary, while for ground users such

as road navigation, the proposed BuildingTree structure can be loaded online which may save quite

a bit of storage on local devices. The main challenge with the visualization framework is to provide

the user with a proper view of the buildings (without abrupt changes in the geometric

representations) with a minimum of data transfer.

Figure 8 is an Unified Modeling Language (UML) sequence diagram to illustrate the interaction

between user client and 3D model server. The blank box represents a delay or the processing time on

the client side. The visualization rule should be defined according to the specific application

requirements. The basic rules proposed in this paper are summarized from the visualization aspect

in which visual similarity is the main consideration. In this framework, the client first requests a 3D

city model, then a BuildingTree without 3D geometry data related to the selected city area will be

supplied. Based on this BuildingTree, the client can calculate which buildings are necessary for the

visualization. In this framework, users have more flexibility to adjust the 3D visualization strategy.

In other words, 3D rendering is determined more by the user side than the server side. The

BuildingTree allows the user to decide which buildings and which levels should be transformed from

the server, according to the bandwidth, memory size or current CPU status.

ClientClient Server

3D City Model Request

Required BuildingTree Without Geometry

3D Geometry Data Request

Request 3D Geometry Data

Figure 8. Interaction between client and server of BuildingTree visualization.

The following are the basic rules for the user by which to select the 3D models that should be

transferred.

 The Level 1 and Level 2 prototypes which should be displayed are only determined by a distance

threshold from the user’s position.

Figure 8. Interaction between client and server of BuildingTree visualization.

The following are the basic rules for the user by which to select the 3D models that should
be transferred.

• The Level 1 and Level 2 prototypes which should be displayed are only determined by a distance
threshold from the user’s position.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 15 of 23

• For the Level 3 (and 4) prototypes, only the features that are potentially seen from the user’s
position are shown. These features are ordered by importance (as defined by the size of the
features) and the most important feature is transferred first.

4. Case Study

4.1. Implementation

To evaluate the efficiency of the proposed BuildingTree, we implement an online framework
(Figure 9). The implementation is based on open standards and tools. The feedback from the user is
mainly the operation or interaction between the user and the 3D models such as zoom in/out, move,
turning and etc.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 15 of 23

 For the Level 3 (and 4) prototypes, only the features that are potentially seen from the user’s

position are shown. These features are ordered by importance (as defined by the size of the

features) and the most important feature is transferred first.

4. Case Study

4.1. Implementation

To evaluate the efficiency of the proposed BuildingTree, we implement an online framework

(Figure 9). The implementation is based on open standards and tools. The feedback from the user is

mainly the operation or interaction between the user and the 3D models such as zoom in/out, move,

turning and etc.

Details of the implementation. The generalization routines are developed in Java utilizing, for

example, the geometry library JTS [60] and citygml4j [61]; the development environment is Eclipse

3.4.1. The server is a PC with Inter 2.4 GHz Core2 Duo CPU, 2.39 GHz 3.25 GB RAM, and Microsoft

Window XP SP3. The client is a smart phone MX2 from Meizu with an Android 4.1 operation system,

Samsung 1.4 GHz CPU, and 2 GB memory. The 3D models are visualized with X3DOM through the

Firefox 21.0 browser for Android.

Client

X3DOM

localstorage

Feed Back

Server

3D Geometry info

NoSQL

CityGML

3D City

User request
JavaScript

HTML5

User

MapReduce

JSON

Websocket
Web Server

Figure 9. System implementation.

The web server is Nodejs, a JavaScript-written web server using event-driven, asynchronous I/O

to minimize overhead and maximize scalability.

Nodejs supports Websocket and other HTML5 features through extension modules. It also can

integrate MongoDB queries and MapReduce operations within the existing modules. These modules

in Nodejs can be easily installed by Nodejs Package Management (npm) functions, which makes the

development much faster and easier.

4.2. Test Data

We use a dataset in LOD3 of a 3D city model of Ettenheim in Germany from CityGML.org

(Figure 10). This dataset is in CityGML 1.0, which can be converted into CityGML 2.0 with

Application Programming Interfaces (APIs) such as citygml4j. In this paper, we directly read the

CityGML file and extract its semantic and geometric information with the Python XML library lxml.

Figure 9. System implementation.

Details of the implementation. The generalization routines are developed in Java utilizing,
for example, the geometry library JTS [60] and citygml4j [61]; the development environment is
Eclipse 3.4.1. The server is a PC with Inter 2.4 GHz Core2 Duo CPU, 2.39 GHz 3.25 GB RAM,
and Microsoft Window XP SP3. The client is a smart phone MX2 from Meizu with an Android 4.1
operation system, Samsung 1.4 GHz CPU, and 2 GB memory. The 3D models are visualized with
X3DOM through the Firefox 21.0 browser for Android.

The web server is Nodejs, a JavaScript-written web server using event-driven, asynchronous I/O
to minimize overhead and maximize scalability.

Nodejs supports Websocket and other HTML5 features through extension modules. It also can
integrate MongoDB queries and MapReduce operations within the existing modules. These modules
in Nodejs can be easily installed by Nodejs Package Management (npm) functions, which makes the
development much faster and easier.

4.2. Test Data

We use a dataset in LOD3 of a 3D city model of Ettenheim in Germany from CityGML.org
(Figure 10). This dataset is in CityGML 1.0, which can be converted into CityGML 2.0 with Application
Programming Interfaces (APIs) such as citygml4j. In this paper, we directly read the CityGML file and
extract its semantic and geometric information with the Python XML library lxml.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 16 of 23
ISPRS Int. J. Geo-Inf. 2016, 5, 185 16 of 23

Figure 10. Original LOD3 model (LOD3).

4.3. Generation of the BuildingTree and Visualization Result

The aim of this section is to provide details of all levels in the generation of the BuildingTree. Of

special interest is the visualization result, i.e., the visual properties of the buildings in each level.

Another important aspect is the data storage in all the levels.

4.3.1. LOD3 to LOD3ES

From LOD3 to LOD3ES, all exterior polygons are preserved, therefore the generalized model

looks similar to the original model. Figure 11 shows the generalized 3D city models which contain

192 buildings. The size of the model in X3D is 1.6 MB (34856 points and 7583 polygons), while the

original model is 15.1 MB (327,198 points and 73,840 polygons). Figure 12 compares the LOD3 and

LOD3ES model in transparency visualization, clearly showing that in the same transparency level

(0.5 in this paper), the LOD3 model contains many more polygons than LOD3ES.

Figure 11. Exterior shell representation of a 3D city model (LOD3ES).

(a)

Figure 10. Original LOD3 model (LOD3).

4.3. Generation of the BuildingTree and Visualization Result

The aim of this section is to provide details of all levels in the generation of the BuildingTree.
Of special interest is the visualization result, i.e., the visual properties of the buildings in each level.
Another important aspect is the data storage in all the levels.

4.3.1. LOD3 to LOD3ES

From LOD3 to LOD3ES, all exterior polygons are preserved, therefore the generalized model
looks similar to the original model. Figure 11 shows the generalized 3D city models which contain
192 buildings. The size of the model in X3D is 1.6 MB (34,856 points and 7583 polygons), while the
original model is 15.1 MB (327,198 points and 73,840 polygons). Figure 12 compares the LOD3 and
LOD3ES model in transparency visualization, clearly showing that in the same transparency level
(0.5 in this paper), the LOD3 model contains many more polygons than LOD3ES.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 16 of 23

Figure 10. Original LOD3 model (LOD3).

4.3. Generation of the BuildingTree and Visualization Result

The aim of this section is to provide details of all levels in the generation of the BuildingTree. Of

special interest is the visualization result, i.e., the visual properties of the buildings in each level.

Another important aspect is the data storage in all the levels.

4.3.1. LOD3 to LOD3ES

From LOD3 to LOD3ES, all exterior polygons are preserved, therefore the generalized model

looks similar to the original model. Figure 11 shows the generalized 3D city models which contain

192 buildings. The size of the model in X3D is 1.6 MB (34856 points and 7583 polygons), while the

original model is 15.1 MB (327,198 points and 73,840 polygons). Figure 12 compares the LOD3 and

LOD3ES model in transparency visualization, clearly showing that in the same transparency level

(0.5 in this paper), the LOD3 model contains many more polygons than LOD3ES.

Figure 11. Exterior shell representation of a 3D city model (LOD3ES).

(a)

Figure 11. Exterior shell representation of a 3D city model (LOD3ES).

ISPRS Int. J. Geo-Inf. 2016, 5, 185 16 of 23

Figure 10. Original LOD3 model (LOD3).

4.3. Generation of the BuildingTree and Visualization Result

The aim of this section is to provide details of all levels in the generation of the BuildingTree. Of

special interest is the visualization result, i.e., the visual properties of the buildings in each level.

Another important aspect is the data storage in all the levels.

4.3.1. LOD3 to LOD3ES

From LOD3 to LOD3ES, all exterior polygons are preserved, therefore the generalized model

looks similar to the original model. Figure 11 shows the generalized 3D city models which contain

192 buildings. The size of the model in X3D is 1.6 MB (34856 points and 7583 polygons), while the

original model is 15.1 MB (327,198 points and 73,840 polygons). Figure 12 compares the LOD3 and

LOD3ES model in transparency visualization, clearly showing that in the same transparency level

(0.5 in this paper), the LOD3 model contains many more polygons than LOD3ES.

Figure 11. Exterior shell representation of a 3D city model (LOD3ES).

(a)

Figure 12. Cont.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 17 of 23
ISPRS Int. J. Geo-Inf. 2016, 5, 185 17 of 23

(b)

Figure 12. Transparency comparison of LOD3 and LOD3ES models. (a) LOD3 in transparency

visualization; (b) LOD3ES in transparency visualization.

4.3.2. LOD3ES to LOD2

To generalize the 3D buildings, we generate the prototyped represented buildings (CSG

representation or LOD2) from the LOD3ES models. The generated CSG models are discussed in this

section. In Figure 13, all buildings are converted into a CSG representation in LOD2. Again, there are

180 buildings, which is the same as in Figure 11, but the size of the CSG representation in the X3D

file is only 77 KB. The data volume is reduced dramatically while the visual features are preserved,

according to the visualization results. As the prototype can be reused by many models in the same

scene, the compression rate for the symbolized model is over 97% in this case.

Figure 13 CSG representation of 3D city models (LOD2).

4.3.3. LOD2 to LOD1

From LOD2 to LOD1, the roof structures of the 3D city models are removed. The model is

represented as a block. Figure 14 gives the block representation of the test dataset. The size of the

model in LOD1 is 22 KB, less than 30% of the size in LOD2.

Figure 14. Block representation of 3D city models (LOD1).

4.3.4. BuildingTree Visualization

Figure 12. Transparency comparison of LOD3 and LOD3ES models. (a) LOD3 in transparency
visualization; (b) LOD3ES in transparency visualization.

4.3.2. LOD3ES to LOD2

To generalize the 3D buildings, we generate the prototyped represented buildings (CSG
representation or LOD2) from the LOD3ES models. The generated CSG models are discussed in
this section. In Figure 13, all buildings are converted into a CSG representation in LOD2. Again, there
are 180 buildings, which is the same as in Figure 11, but the size of the CSG representation in the X3D
file is only 77 KB. The data volume is reduced dramatically while the visual features are preserved,
according to the visualization results. As the prototype can be reused by many models in the same
scene, the compression rate for the symbolized model is over 97% in this case.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 17 of 23

(b)

Figure 12. Transparency comparison of LOD3 and LOD3ES models. (a) LOD3 in transparency

visualization; (b) LOD3ES in transparency visualization.

4.3.2. LOD3ES to LOD2

To generalize the 3D buildings, we generate the prototyped represented buildings (CSG

representation or LOD2) from the LOD3ES models. The generated CSG models are discussed in this

section. In Figure 13, all buildings are converted into a CSG representation in LOD2. Again, there are

180 buildings, which is the same as in Figure 11, but the size of the CSG representation in the X3D

file is only 77 KB. The data volume is reduced dramatically while the visual features are preserved,

according to the visualization results. As the prototype can be reused by many models in the same

scene, the compression rate for the symbolized model is over 97% in this case.

Figure 13 CSG representation of 3D city models (LOD2).

4.3.3. LOD2 to LOD1

From LOD2 to LOD1, the roof structures of the 3D city models are removed. The model is

represented as a block. Figure 14 gives the block representation of the test dataset. The size of the

model in LOD1 is 22 KB, less than 30% of the size in LOD2.

Figure 14. Block representation of 3D city models (LOD1).

4.3.4. BuildingTree Visualization

Figure 13. CSG representation of 3D city models (LOD2).

4.3.3. LOD2 to LOD1

From LOD2 to LOD1, the roof structures of the 3D city models are removed. The model is
represented as a block. Figure 14 gives the block representation of the test dataset. The size of the
model in LOD1 is 22 KB, less than 30% of the size in LOD2.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 17 of 23

(b)

Figure 12. Transparency comparison of LOD3 and LOD3ES models. (a) LOD3 in transparency

visualization; (b) LOD3ES in transparency visualization.

4.3.2. LOD3ES to LOD2

To generalize the 3D buildings, we generate the prototyped represented buildings (CSG

representation or LOD2) from the LOD3ES models. The generated CSG models are discussed in this

section. In Figure 13, all buildings are converted into a CSG representation in LOD2. Again, there are

180 buildings, which is the same as in Figure 11, but the size of the CSG representation in the X3D

file is only 77 KB. The data volume is reduced dramatically while the visual features are preserved,

according to the visualization results. As the prototype can be reused by many models in the same

scene, the compression rate for the symbolized model is over 97% in this case.

Figure 13 CSG representation of 3D city models (LOD2).

4.3.3. LOD2 to LOD1

From LOD2 to LOD1, the roof structures of the 3D city models are removed. The model is

represented as a block. Figure 14 gives the block representation of the test dataset. The size of the

model in LOD1 is 22 KB, less than 30% of the size in LOD2.

Figure 14. Block representation of 3D city models (LOD1).

4.3.4. BuildingTree Visualization

Figure 14. Block representation of 3D city models (LOD1).

ISPRS Int. J. Geo-Inf. 2016, 5, 185 18 of 23

4.3.4. BuildingTree Visualization

BuildingTree combines the generalized model from different levels into a tree structure and
can preserve the visualization similarity while reducing the unnecessary details of distant buildings.
Figure 15a gives an example of a BuildingTree-based visualization. We can see that the buildings near
the user’s viewpoint are in LOD3ES, and the buildings in the middle area and background are in LOD2
and LOD1, respectively. In Figure 15b, a street level visualization is given that indicates the proposed
BuildingTree can better preserve the visualization feature in the street level view, in which the building
in the distance usually cannot be seen.

ISPRS Int. J. Geo-Inf. 2016, 5, 185 18 of 23

BuildingTree combines the generalized model from different levels into a tree structure and can

preserve the visualization similarity while reducing the unnecessary details of distant buildings.

Figure 15a gives an example of a BuildingTree-based visualization. We can see that the buildings near

the user’s viewpoint are in LOD3ES, and the buildings in the middle area and background are in

LOD2 and LOD1, respectively. In Figure 15b, a street level visualization is given that indicates the

proposed BuildingTree can better preserve the visualization feature in the street level view, in which

the building in the distance usually cannot be seen.

(a)

(b)

Figure 15.Progressive visualization of BuildingTree. (a) Fly view. (b) Street level view

4.4. Performance Evaluation

To test the efficiency of the proposed method, we implement the BuildingTree on the huge city

model data supplied by citygml.org. This model contains 484 copies of the Ettenheim dataset with a

LOD4 building. The compressed model is 3.8 GB and 44 GB uncompressed. Using our BuildingTree

model, this huge city can be easily visualized with the X3DOM-based web page. According to our

implementation, the dataset can only be loaded in LOD1 and the BuildingTree model. Therefore, we

perform a more detailed test on a smaller dataset.

The test is carried out on a local network and the parameters are listed in Table 1. The original

model (LOD3) could not be loaded into the smart phone due to the data volume which resulted in a

system crash, so it is not listed in the table. The size of BuildingTree only contains the path to the data

rather than the data itself of LOD3ES or LOD3 models

Table 1. Test results of the generalized 3D city models.

 Frames per Second Size (KB) Loading Time (ms)

Original LOD3 Null 48000 unloadable

LOD3ES 3.22 2183 35

CLOD(CSG) 3.76 77 15

LOD1 7.22 22 15

BuildingTree 5.66 397 (without LOD3ES models) 15

Figure 15. Progressive visualization of BuildingTree. (a) Fly view; (b) Street level view.

4.4. Performance Evaluation

To test the efficiency of the proposed method, we implement the BuildingTree on the huge city
model data supplied by citygml.org. This model contains 484 copies of the Ettenheim dataset with a
LOD4 building. The compressed model is 3.8 GB and 44 GB uncompressed. Using our BuildingTree
model, this huge city can be easily visualized with the X3DOM-based web page. According to our
implementation, the dataset can only be loaded in LOD1 and the BuildingTree model. Therefore,
we perform a more detailed test on a smaller dataset.

The test is carried out on a local network and the parameters are listed in Table 1. The original
model (LOD3) could not be loaded into the smart phone due to the data volume which resulted in a
system crash, so it is not listed in the table. The size of BuildingTree only contains the path to the data
rather than the data itself of LOD3ES or LOD3 models

From Table 1, we can see that the size of the 3D models is reduced quite significantly with CSG
representation since BuildingTree only contains the address rather than the data of LOD3ES or LOD3
models. Also, the loading time is improved. However, the complete CSG representation (LOD2)
does not greatly improve the visualization speed (frames per second) because the number of nodes
is increased. We also can see that compared with the original models, it increases by less than 5% of

ISPRS Int. J. Geo-Inf. 2016, 5, 185 19 of 23

extra data by introducing these middle level LODS. For 3D rendering, it is indicated that the CSG
representation does not increase much from LOD3ES (16.7%). One of the reasons for this is the Frame
per Second (FPS) is only determined by the number of primitives being drawn, rather than the file size
of a model. Therefore, even though the data volume is reduced significantly, the FPS is not improved.

We also test the proposed NoSQL database in a computer with Win7 x64, 8G RAM, 2.6 GHz CPU
and MongoDB v2.2.7. In the test, one million records are generated and inserted into the database and
query performance is evaluated. It takes about 53 seconds to insert the one million records. Meanwhile,
it takes around 1700 ms to query in the one million records without index and 50 ms with index.

Table 1. Test results of the generalized 3D city models.

Frames per Second Size (KB) Loading Time (ms)

Original LOD3 Null 48,000 unloadable
LOD3ES 3.22 2183 35

CLOD(CSG) 3.76 77 15
LOD1 7.22 22 15

BuildingTree 5.66 397 (without LOD3ES models) 15

5. Discussion

In this paper, we import 3D building models in CityGML data into a self-designed and
MongoDB-driven middleware. The important improvement is the creation of a hierarchical tree
design to store different detailed instances of the geometry of buildings. Therefore, we developed
algorithms to extract different kinds of representations out of a CityGML building in both B-Rep
and CSG.

One of the advantages of CSG is that it can easily ensure that objects are “solid” or water-tight if
all of the primitive shapes are water-tight. By comparison, when creating geometry based on boundary
representations, additional topological data is required, or consistency checks must be performed to
ensure that the given boundary description specifies a valid solid object.

In this paper, the building is selected as the main city object to deal with. For other city objects in
CityGML specifications, such as bridges, tunnels or city facilities, the proposed algorithm can also be
applied with specific adjustment. Considering the features of the building, cross-section plane-based
segmentation can be applied. However, different segment methods should be designed for different
types of city objects. In the next study, road and city facilities, such as street lamps, will be studied for
progressive CSG representation since these objects are widely distributed across the city. However,
landmark city objects such as bridges, towers and some skyscrapers will be preserved in the LOD3
level considering their visual importance.

A main limitation of the proposed building CSG generation method is that it mainly focuses
on rectangular structures although a large proportion of total city models contain rectangular parts.
But for non-rectangular structures, the CSG representation algorithm is required and the city model
prototype set should be able to be extended automatically, according to different datasets.

6. Conclusions

This paper focused on the generalization and progressive visualization of three-dimensional
(3D) city models. A multiple representation structure of four levels, denoted as BuildingTree, was
specified. This structure is designed for the visualization of a city model at different levels of detail,
using boundary representation for the most detailed levels and parameterized prototypes (constructive
solid geometry (CSG) models) for the less detailed levels. We also developed a framework to derive
a BuildingTree from a city model for the most detailed level using building cross-section detection,
segmentation and an automatic prototype generation method. The methodology was implemented
based on open standards (CityGML, X3D, etc.) and tools. The experimental results indicate that the
proposed framework can be implemented on mainstream web browsers based on online 3D city model

ISPRS Int. J. Geo-Inf. 2016, 5, 185 20 of 23

visualization without plugins. Furthermore, the experimental results confirm the data compression
rate of BuildingTree, as well as progressive data transformation visualization. A reason for the latter
was the comparatively small data volume due to the use of parameterized prototypes to represent the
buildings. Also, it was observed that the current Frame per Second (FPS) improvement is not as great
as the data volume deduction. Therefore, for progressive data transmitted city models, a 3D rendering
engine which supports basic prototypes is essential for visualization efficiency. In future studies, we
will try to support more prototypes to deal with complex buildings and improve the visualization
efficiency by selecting or updating a rendering engine which is optimized for predefined prototypes.

Acknowledgments: This work was supported by National Science Foundation of China (41671457), Natural
Science Foundation of Jiangsu (BK20151551), Natural Science Foundation of the Higher Education Institutions of
Jiangsu (16KJA170003), Jiangsu Province Postdoctoral Research Funding (1402120C), National Key Technologies
R&D Program of China (2015BAD18B02 and 2015BAK36B02), National Center for International Joint Research on
E-Business Information Processing (2013B01035), China Special Fund for Grain-Scientific Research in the Public
Interest (201513004) and Project of the Priority Academic Program Development of Jiangsu Higher Education
Institutions (PAPD), Key Laboratory of Geological Information Technology, Ministry of Land and Resources,
Beijing and Lund University.

Author Contributions: Bo Mao and Lars Harrie conceived and designed the experiments; Bo Mao performed the
experiments; Bo Mao and Lars Harrie analyzed the data; Bo Mao wrote the paper; Lars Harrie revised the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Goetz, M. Towards generating highly detailed 3D CityGML models from OpenStreetMap. Int. J. Geogr.
Inf. Sci. 2013, 27, 845–865. [CrossRef]

2. Biljecki, F.; Stoter, J.; Ledoux, H.; Coltekin, A.; Zlatanova, S. Applications of 3D City Models: State of the Art
Review. ISPRS Int. J. Geo-Inf. 2015, 4, 2842–2889. [CrossRef]

3. Eicker, U.; Strzalka, A.; Schulte, C.; Coors, V. Large scale integration of photovoltaics in cities. Appl. Energy
2012, 93, 413–421.

4. Czerwinski, A.; Sandmann, S.; Stöcker-Meier, E.; Plümer, L. Sustainable SDI for EU noise mapping in
NRW—Best practice for INSPIRE. Int. J. Spat. Data Infrastruct. Res. 2007, 2, 90–111.

5. Lu, L. 3D Complete Traffic Noise Analysis Based on CityGML. Lect. Notes Geoinf. Cartogr. 2016, in press.
6. Ghassoun, Y.; Löwner, M.; Weber, S. Exploring the benefits of 3D city models in the field of urban particles

distribution modelling—A comparison of model results. In 3D Geoinformation Science; Springer: New York,
NY, USA, 2015; pp. 193–205.

7. Ghassoun, Y.; Ruthsb, M.; Löwner, M.; Weber, S. Intra-urban variation of ultrafine particles as evaluated by
process related land use and pollutant driven regression modelling. Sci. Total Environ. 2015, 536, 150–160.
[CrossRef] [PubMed]

8. Chen, L.C.; Wu, C.H.; Shen, T.S.; Chou, C.C. The application of geometric network models and building
information models in geospatial environments for fire-fighting simulations. Comput. Environ. Urban Syst.
2014, 45, 1–12. [CrossRef]

9. Kolbe, T.; Gröger, G. Towards unified 3D city models. In Proceedings of Joint ISPRS Workshop Challenges in
Geospatial Analysis, Stuttgart, Germany, 8–9 September 2003; pp. 8–16.

10. Tegtmeier, W.; Zlatanova, S.; van Oosterom, P. Information management in civil engineering infrastructural
development: With focus on geological geotechnical information. In Proceedings of ISPRS Workshop Vol.
XXXVIII-3-4/C3 Comm. III/4, IV/8 and IV/5: Academic Track of GeoWeb 2009 Conference: Cityscapes,
Vancouver, BC, Canada, 2009; pp. 68–73.

11. Zhang, Y.; Zhu, Q. GeoScope: Full 3D geospatial information system case study. Geo-Spat. Inf. Sci. 2011, 14,
150–156. [CrossRef]

12. Gröger, G.; Kolbe, T.H.; Nagel, C.; Häfele, K.-H. OGC City Geography Markup Language (CityGML) Encoding
Standard; OGC Doc No. 12-019; Open Geospatial Consortium: Bonn, Germany, 2012.

http://dx.doi.org/10.1080/13658816.2012.721552
http://dx.doi.org/10.3390/ijgi4042842
http://dx.doi.org/10.1016/j.scitotenv.2015.07.051
http://www.ncbi.nlm.nih.gov/pubmed/26204051
http://dx.doi.org/10.1016/j.compenvurbsys.2014.01.003
http://dx.doi.org/10.1007/s11806-011-0478-z

ISPRS Int. J. Geo-Inf. 2016, 5, 185 21 of 23

13. Löwner, M.; Benner, J.; Gröger, G.; Häfele, K. New Concepts for structuring 3D city models—An extended
level of detail concept for CityGML buildings. In Proceedings of the International Conference on
Computational Science and Its Applications (ICCSA 2013), Ho Chi Minh City, Vietnam, 24 June 2013.

14. Foley, J.D.; van Dam, A.; Feiner, S.K.; Hughes, J.F. Computer Graphics: Principles and Practice, 2nd ed.;
Addison-Wesley: Boston, MA, USA, 1996.

15. Abdul-Rahman, A.; Pilouk, M. Spatial Data Modelling for 3D GIS, 2D and 3D Spatial Data Representations;
Springer: Berlin, Germany, 2007.

16. Brenner, C. Modelling 3D Objects Using Weak CSG Primitives. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
2004, 35, 1085–1090.

17. Thiemann, F. Generalization of 3D Buildings Data. In ISPRS—GeoSpatial Theory, Processing and Applications;
ISPRS: Ottawa, ON, Canada, 2002; Volume 34, pp. 286–290.

18. Borrmann, A.; Kolbe, T.H.; Donaubauer, A.; Steuer, H.; Jubierre, J.R.; Flurl, M. Multi-scale geometric-semantic
modeling of shield tunnels for GIS and BIM applications. Comput. Aided Civil Infrastruct. Eng. 2014, 30,
263–281. [CrossRef]

19. Jones, R. Integration of regional to outcrop digital data: 3D Visualisation of multi-scale geological models.
Comput. Geosci. 2009, 35, 4–18. [CrossRef]

20. Benner, J.; Geiger, A.; Gröger, G.; Löwner, M. Enhanced LoD concepts for virtual 3D city models. In ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Proceedings of the ISPRS 8th 3D
GeoInfo Conference & WG II/2 Workshop, Istanbul, Turkey, 27–29 November 2013; pp. 51–61.

21. Mao, B.; Ban, Y.; Harrie, L. A multiple representation data structure for dynamic visualisation of generalised
3D city models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 198–208. [CrossRef]

22. Van Oosterom, P. Variable-scale topological data structures suitable for progressive data transfer:
The GAP-face tree and GAP-edge forest. Cartogr. Geogr. Inf. Sci. 2005, 32, 331–346. [CrossRef]

23. Coors, V. 3D-GIS in networking environments. Comput. Environ. Urban Syst. 2003, 27, 345–357. [CrossRef]
24. Döllner, J.; Buchholz, H. Continuous level-of-detail modelling of buildings in 3D city models. In Proceedings

of the 13th Annual ACM International Workshop on Geographic Information Systems, Bremen, Germany,
31 October–5 November 2005; Volume 5, pp. 173–181.

25. Zhang, L.; Yangb, C.; Tongc, X.; Ruid, X. Visualization of large spatial data in networking environments.
Comput. Geosci. 2007, 33, 1130–1139. [CrossRef]

26. Sester, M.; Brenner, C. A vocabulary for a multiscale process description for fast transmission and continuous
visualization of spatial data. Comput. Geosci. 2009, 35, 2177–2184. [CrossRef]

27. van Kreveld, M. Smooth generalization for continuous zooming. In Proceedings of the 20th International
Cartographic Conference, Beijing, China, 6–10 August 2001; pp. 2178–2185.

28. Meng, L.; Forberg, A. 3D Building generalization. In Generalisation of Geographic Information: Cartographic
Modelling and Applications; Mackaness, W., Ruas, A., Sarjakoski, L.T., Eds.; Elsevier: Amsterdam,
The Netherlands, 2007; pp. 211–232.

29. Thiemann, F.; Sester, M. Segmentation of buildings for 3D-generalisation. In Proceedings of the ICA
Workshop on Generalisation and Multiple Representation, Leicester, UK, 20–21 August 2004.

30. Thiemann, F.; Sester, M. 3D-Symbolization Using Adaptive Templates. In Proceedings of ISPRS Technical
Commission II Symposium, Vienna, Austria, 12–16 July 2006.

31. Mayer, H. Scale-spaces for generalization of 3D buildings. Int. J. Geogr. Inf. Sci. 2005, 19, 975–997. [CrossRef]
32. Forberg, A. Generalization of 3D building data based on a scale-space approach. ISPRS J. Photogramm.

Remote Sens. 2007, 62, 104–111. [CrossRef]
33. Kada, M. 3D Building Generalization based on Half-Space Modeling. In Proceedings of the ISPRS Workshop

on Multiple Representation and Interoperability of Spatial Data, Hannover, Germany, 22–24 February 2006.
34. Kada, M. Generalisation of 3D Building Models by Cell Decomposition and Primitive Instancing.

In Proceedings of the Joint ISPRS Workshop on Visualization and Exploration of Geospatial Data, Stuttgart,
Germany, 29–30 June 2007.

35. Lu, Y.; Behar, E.; Donnelly, S.; Lien, J.M.; Camelli, F.; Wong, D. Fast and robust generation of city-scale
seamless 3D urban models. Comput. Aided Des. 2011, 43, 1380–1390. [CrossRef]

36. Fan, H.; Meng, L. A three-step approach of simplifying 3D buildings. Int. J. Geoinf. Sci. 2012, 26, 1091–1107.
[CrossRef]

http://dx.doi.org/10.1111/mice.12090
http://dx.doi.org/10.1016/j.cageo.2007.09.007
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.001
http://dx.doi.org/10.1559/152304005775194782
http://dx.doi.org/10.1016/S0198-9715(02)00035-2
http://dx.doi.org/10.1016/j.cageo.2006.11.005
http://dx.doi.org/10.1016/j.cageo.2008.11.003
http://dx.doi.org/10.1080/13658810500161286
http://dx.doi.org/10.1016/j.isprsjprs.2007.01.002
http://dx.doi.org/10.1016/j.cad.2011.08.029
http://dx.doi.org/10.1080/13658816.2011.625947

ISPRS Int. J. Geo-Inf. 2016, 5, 185 22 of 23

37. Baig, S.U.; Abdul-Rahman, A. Generalization of buildings within the framework of CityGML. Geo-Spat.
Inf. Sci. 2013, 16, 247–255. [CrossRef]

38. Glander, T.; Döllner, J. Advances in 3D Geoinformation Systems. In Lecture Notes in Geoinformation and
Cartography; van Oosterom, P., Zlatanova, S., Penninga, F., Fendel, E.M., Eds.; Springer: Berlin, Germany,
2008; pp. 381–400.

39. Mao, B.; Harrie, L.; Ban, Y. Detection and typification of linear structures for dynamic visualization of 3D
city models. Comput. Environ. Urban Syst. 2012, 36, 233–244. [CrossRef]

40. Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M. Aggregation of LoD1 building models as an optimization
problem. ISPRS J. Photogramm. Remote Sens. 2011, 66, 209–222. [CrossRef]

41. BuildingSMART. Available online: http://www.buildingsmart-tech.org/ (accessed on 25 September 2015).
42. Isikdag, U.; Zlatanova, S. Towards defining a framework for automatic generation of buildings in CityGML

using building information models. In 3D Geo-Information Sciences; Lee, J., Zlatanova, S., Eds.; Springer:
Berlin, Germany, 2009; pp. 79–97.

43. El-Mekawy, M.; Östman, A.; Hijazi, I. A unified building model for 3D urban GIS. ISPRS Int. J. Geo-Inf. 2012,
1, 120–145. [CrossRef]

44. Stoter, J.; Zhang, X.; Stigmar, H.; Harrie, L. Evaluation and usability of map generalisation outputs.
In Abstracting Geographic Information in a Data Rich World; Springer: Berlin, Switzerland, 2014; pp. 259–297.

45. Stadler, A.; Nagel, C.; König, G.; Kolbe, T. Making interoperability persistent: A 3D geo database based on
CityGML. In 3rd International Workshop on 3D Geo-Information; Lee, J., Zlatanova, S., Eds.; Springer: Seoul,
Korea, 2008; pp. 175–192.

46. Breunig, M.; Schilberg, B.; Thomsen, A.; Kuper, P.; Jahn, M.; Butwilowski, E. DB4GeO, a 3D/4D geodatabase
and its application for the analysis of landslides. In Lecture Notes in Geoinformation and Cartography; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 83–101.

47. Strauss, P.; Carey, R. An object-oriented 3D graphics toolkit. Comput. Graph. 1992, 26, 341–349. [CrossRef]
48. Long, N.; Fleming, K.; Brackney, L. An Object-oriented database for managing building modelling

components and metadata. In Proceedings of Building Simulation 2011, Sydney, Australia, 14–16 November
2011; pp. 14–16.

49. Kunde, F. CityGML in PostGIS: Portability, Usage and Performance Analysis Using the Example of the
3D City Database of Berlin. Master’s Thesis, Department of Geography, University of Potsdam, Potsdam,
Germany, 2013.

50. Koch, S.; Löwner, M.-O. Representation of CityGML instance models in BaseX. Lect. Notes Geoinf. Cartogr.
2016, in press.

51. Luan, H.; Fan, Y.; Zhou, M.; Wang, X. Towards effective 3D model management on hadoop. Lect. Notes
Electr. Eng. 2014, 279, 131–139.

52. Sugumaran, R.; Burnett, J.; Armstrong, M. Using a cloud computing environment to process large 3D spatial
datasets. In Big Data: Techniques and Technologies in Geoinformatics; CRC Press: Boca Raton, FL, USA, 2014;
pp. 53–65.

53. Dobos, J.; Steed, A. 3D Revision Control Framework. In Proceedings of the 17th International Conference on
3D Web Technology, Los Angeles, CA, USA, 4–5 August 2012.

54. Han, D.; Stroulia, E. A three-dimensional data model in hbase for large time-series dataset analysis.
In Proceedings of the IEEE 6th International Workshop on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems, Trento, Italy, 24 September 2012; pp. 47–56.

55. Behr, J.; Eschler, P.; Jung, Y.; Zöllner, M. X3DOM: A DOM-based HTML5/X3D integration model.
In Proceedings of the 14th International Conference on 3D Web Technology, Darmstadt, Germany,
16–17 June 2009.

56. Jung, Y.; Behr, J.; Graf, H. X3DOM as carrier of the virtual heritage. In Proceedings of the 4th ISPRS
International Workshop 3D-ARCH, Trento, Italy, 2–4 March 2011.

57. Mao, B.; Ban, Y. Online visualisation of a 3D city model using CityGML and X3DOM. Cartographica 2011, 46,
109–114. [CrossRef]

58. Fan, H.; Meng, L.; Jahnke, M. Generalization of 3D buildings modelled by CityGML. In Advances in GIScience.
Lecture Notes in Geoinformation and Cartography; Springer: Berlin/Heidelberg, Germany, 2009; pp. 387–405.

http://dx.doi.org/10.1080/10095020.2013.866617
http://dx.doi.org/10.1016/j.compenvurbsys.2011.10.001
http://dx.doi.org/10.1016/j.isprsjprs.2010.10.006
http://www.buildingsmart-tech.org/
http://dx.doi.org/10.3390/ijgi1020120
http://dx.doi.org/10.1145/142920.134089
http://dx.doi.org/10.3138/carto.46.2.109

ISPRS Int. J. Geo-Inf. 2016, 5, 185 23 of 23

59. Toussaint, G.T. Solving geometric problems with the rotating calipers. In Proceedings of the Mediterranean
Electrotechnical Conference 1983, Athens, Greece, 24–26 May 1983.

60. JTS. Available online: http://www.vividsolutions.com/jts/jtshome.htm (accessed on 25 September 2015).
61. Citygml4j. Available online: https://github.com/citygml4j/citygml4j (accessed on 25 September 2015).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.vividsolutions.com/jts/jtshome.htm
https://github.com/citygml4j/citygml4j
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Geometric Representations of 3D Objects
	Multiple Representation and Progressive Transfer
	Generalization of City Models
	Storage Method of 3D City Models
	Visualization Frameworks for City Models

	Methodology
	Multiple Representation Structure—BuildingTree
	Generalization Methods to Generate a BuildingTree
	Generating the LOD3ES Model from LOD3
	Generating the CLOD Model from LOD3ES

	Storage Methods of the BuildingTree
	NoSQL Databases—MongoDB
	Generation of the CLOD BuildingTree Model
	Storage of BuildingTree in MongoDB

	Visualization Frameworks for the BuildingTree

	Case Study
	Implementation
	Test Data
	Generation of the BuildingTree and Visualization Result
	LOD3 to LOD3ES
	LOD3ES to LOD2
	LOD2 to LOD1
	BuildingTree Visualization

	Performance Evaluation

	Discussion
	Conclusions

