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Abstract: This paper proposes an extended semi-supervised regression approach to enhance the
prediction accuracy of housing prices within the geographical information science field. The method,
referred to as co-training geographical weighted regression (COGWR), aims to fully utilize the
positive aspects of both the geographical weighted regression (GWR) method and the semi-supervised
learning paradigm. Housing prices in Beijing are assessed to validate the feasibility of the proposed
model. The COGWR model demonstrated a better goodness-of-fit than the GWR when housing price
data were limited because a COGWR is able to effectively absorb no-price data with explanatory
variables into its learning by considering spatial variations and nonstationarity that may introduce
significant biases into housing prices. This result demonstrates that a semisupervised geographic
weighted regression may be effectively used to predict housing prices.

Keywords: semi-supervised regression; geographical weighted regression; spatial nonstationarity;
housing prices

1. Introduction

The housing market is defined as one where housing services are allocated by the mechanism
of supply and demand and could be influenced by macro-economic variables, spatial differences,
characteristics of the community structure and environmental amenities [1,2]. Changing housing prices
have been of concern to both residents and governments in that they influence the socio-economic
conditions and have a further impact on the national economic stability [2]. Therefore, the issue of
predicting housing prices has recently been a focus of research in the geo-information field [3–6].

Housing prices are typically predicted via the establishment of a regression model that uses
house price parameters (e.g., structural and neighborhood characteristics of the real estate) [7,8]. Many
authors have focused on the hedonic model to predict housing prices, and different hedonic models
are compared in real estate economics [9–11]. Although hedonic regression models are widely adopted,
the presence of spatial dependence is detrimental to the efficiency and unbiasedness of the OLS model
in traditional hedonic models. Spatial location is an important factor in housing prices [10]. Real estate
prices tend to be spatially heterogeneous [12]. Therefore, spatial economics models have been proposed
to address these issues. LeSage and Pace provide a broad review of these methods [13,14]. Goodman
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and Thibodeau introduce the concept of hierarchical linear modeling in which dwelling characteristics,
neighborhood characteristics and submarkets interact to influence housing prices [15]. Brunsdon and
Fotheringham propose a geographically-weighted regression as a local variation modeling technique
to explore spatial nonstationarity [6,7].

Supposing that the number of house samples is limited, researchers have yet to determine how
to enhance the goodness-of-fit of housing prices by using explanatory variables for houses where
the price is unknown. Semi-supervised learning is an efficient approach that attempts to integrate
no-price data to achieve a strong generalization by using multiple learners, and some studies have
utilized semi-supervised regression models to address this issue [16–20]. However, when traditional
semi-supervised regression methods are applied to spatial data, the processes are assumed to be
constant over space, which is not accurate. For housing price data, the assumption of stability over
space is generally unrealistic, as housing price parameters tend to vary over a study area [21].

In recognizing the above challenges, this research proposes an extended semi-supervised
regression approach to fully utilize the advantages of both the geographical weighted regression
and the semi-supervised learning methods to increase the goodness-of-fit with respect to housing
price data.

The remainder of this paper is organized as follows. In Section 2, related studies are briefly
reviewed. In Section 3, the experimental data and proposed approach are introduced. Section 4
describes the experimental results. Section 5 provides concluding remarks.

2. Literature Review

The term hedonic is used to describe “the weighting of the relative importance of various
components among others in constructing an index of usefulness and desirability” [22]. The hedonic
price model is based on the hedonic hypothesis that goods are valued for their utility-bearing attributes
or characteristics [23]. If the prices of these attributes are known, or can be estimated, and the
attribute composition of a particular differentiated good is also known, the hedonic methodology will
provide a framework for value estimation [24]. The hedonic model regards houses as a composite
commodity formed by structural attributes (age of house, number of bedrooms, presence of a garage,
etc.), by locational attributes that vary between properties (good transport links, accessibility to shops
and services, proximity to downtown, etc.) and by neighborhood attributes (population density,
unemployment, measures of social stress, etc.). The price of a property is assumed to be a realization of
the values of these attributes [25].

The conditional parametric model termed geographical weighted regression (GWR) is an
explicitly local model and circumvents the problems discussed in the context of discrete modeling of
heterogeneity and polynomial regression [6,7]. GWR implicitly assumes continuously-changing price
functions and models. A strong advantage of GWR is its flexibility, and the price function needs no prior
assumption concerning the price determination process and its spatial variation [26,27]. Lu, B. et al.
investigates the GWR model by applying it with alternative, non-Euclidean distance (non-ED) metrics.
A case study of a London house price dataset is coupled with hedonic independent variables, where
GWR models are calibrated with Euclidean distance (ED), road network distance and travel time
metrics. The results indicate that GWR calibrated with a non-Euclidean metric can not only improve
the model fit, but also provide additional and useful insights into the nature of varying relationships
within the house price dataset [4]. A geographically- and temporally-weighted autoregressive
model (GTWAR) has been developed to account for both nonstationary and auto-correlated effects
simultaneously and formulates a two-stage least squares framework to estimate this model [5].

However, the GWR model assumes that all explanatory variables vary over space, and the global
effects are often neglected; the mixed geographically-weighted regression (MGWR) model has been
proposed to explore spatially-stationary and non-stationary effects. It is shown by the MGWR empirical
examples that significant spatial variation in some of the estimated parameters is present, while the
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global effects provide evidence for policy-based linkages and an economically-connected housing
market [28]

Considerable interest has been devoted to the non-conventional methods in real estate property
assessment. The most commonly-studied methods are neural network-based approaches. The appeal
of neural network-based methods lies in that they do not depend on assumptions about the data [29].
Neural networks are more robust to model misspecification and especially to various peculiarities in
how various explanatory variables are measured [30]. A fuzzy logic framework has also been proposed
as an alternative to conventional property assessment approaches [29,31]. Kuşan, H. et al. introduce
household-level data into hedonic models in order to measure the heterogeneity of implicit prices
regarding household type, age, educational attainment and income [32].

In the field of semi-supervised learning, labeled identifies the training examples known in advance
and unlabeled identifies the training examples that are unknown. In this paper, “labeled data” refers
to the sample of known housing prices, and “unlabeled data” refers to the explanatory variables
of houses for which prices are unknown. Brefeld et al. developed a co-regularized least squares
regression (coRLSR) algorithm to handle larger sets of unlabeled examples based on the co-learning
framework, and the experiments show a significant error reduction and large runtime improvement
for the semi-parametric approximation [17]. Zhou and Li applied the co-training mechanism to a KNN
regression. Two different KNN regression models have been utilized; each model labels unlabeled data
for the other regressor, particularly where the labeling confidence is predicted based on the influence
of labeling unlabeled samples on the labeled data [18,19].

3. Data and Methods

3.1. Data Used in the Experiments

A case study is carried out using housing price data observed in Beijing, China. Beijing is one of
the most developed cities and is an economic center in China, with tertiary industries accounting for
71.3% of its GDP. This makes it the first post-industrial city in mainland China. Along with a reform
process, both economic prosperity and rapid urbanization have boosted demand for housing in the
city. The increased demand for housing was accompanied by increased supply as prices and rents
increased [33].

An overview of the housing prices variables is shown in Table 1. A total of 1350 residential houses
are included in the study, and their geolocations are shown in Figure 1. The study data are provided by
the National Bureau of Statistics, and structural, neighborhood and temporal variables are extracted to
explain the house prices in this study.

The dependent variable (lnp) is the logarithmically-transformed sales price of the house, with
the price unit of RMB. The structural characteristics of each house are described by five covariates.
Total floor area of the house, with the area unit of m2, is logarithmically transformed as lnarea_total.
The number of bath rooms is expressed as nbath. The management fee of the property, with the fee
unit of RMB/m2, is logarithmically transformed as lnpfee. The ratio of houses is logarithmically
transformed as lnplotratio. Additionally, the green ratio is logarithmically transformed as lngratio.
The neighborhood of each house is described by the urban street network of Beijing, which defines
the city’s structural skeleton and directly affects the city’s transportation and economic performance.
The temporal variable is the age of building at time of sale (age).
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Table 1. Variables used to predict housing prices in Beijing, China.

Abbreviation Description Minimum Mean Maximum

lnp Log sales transactions price of the house 12.468 14.897 17.990
Structural covariates

lnarea_total Log of total floor area 2.303 4.317 6.385
nbath Number of bath rooms 0 1 3
lnpfee Log fee of property management ´1.513 0.470 6.534

lnplotratio Log plot ratio of houses ´1.323 0.693 3.401
lngratio Log green ratio ´4.605 3.401 4.443

Temporal covariates
age Age of building at time of sale (1996–2015) 1 9 20

Neighborhood covariates
ringroad Within the major road ring 2 4 6ISPRS Int. J. Geo-Inf. 2016, 5, 4; doi:10.3390/ijgi5010004  4 of 12 
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3.2. Methods

3.2.1. Geographically-Weighted Regression Model

GWR is a non-stationary technique that models the spatially-varying relationships between
independent and dependent variables [3–5,34]. The GWR model can be expressed as:

yi “ β0 pui, viq `

p
ÿ

k“1

βk pui, viq xik ` εi i “ 1, 2, ¨ ¨ ¨ , n (1)

where the coordinate of point i in space is expressed as pui, viq; β0 pui, viq represents the intercept value;
and βk pui, viq represents a set of values for the number p of parameters at point i. The random error,
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which conforms to a normal distribution, is denoted as εi, εi „ N
`

0, σ2˘. There is no correlation in
random error between different points: Cov

`

εi, ε j
˘

“ 0 pi ‰ jq. The regression parameter β̂i at point i
can be attained using the least squares model.

β̂i “
`

X1WiX
˘´1 X1Wiy (2)

The fitted value ŷ is:

ŷ “

»

—

—

—

–

ŷ1

ŷ2

¨ ¨ ¨

ŷn

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

X1
`

X1W1X
˘´1 X1W1

X2
`

X1W2X
˘´1 X1W2

¨ ¨ ¨

Xn
`

X1WnX
˘´1 X1Wn

fi

ffi

ffi

ffi

fl

y (3)

where the weighting matrix Wi is based on the distances between regression point i and the data
points around it. Two types of weighting matrix are used, fixed and adaptive kernels. In a fixed
kernel function, an optimum spatial kernel bandwidth is calculated and applied over the study area.
The most commonly-used fixed weighting function is the Gaussian function:

Wij “ exp

˜

´
d2

ij

h2

¸

(4)

where h is a nonnegative parameter known as bandwidth and produces a decay of influence with the
distance between locations i and j.

The commonly-used adaptive weighting is the bi-square function, which represents different
bandwidths at location i.

Wij “

$

’

&

’

%

«

1´
ˆ

dij

h

˙2
ff2

, if dij ă h

0, otherwise

(5)

If the predicted value of yi from GWR is denoted by ŷi phq, the sum of the squared error can be
written as:

CV phq “
ÿ

i

pyi ´ ŷ‰i phqq
2 (6)

The bandwidth is achieved automatically with an optimization technique by minimizing
Equation (6) in terms of goodness-of-fit statistics.

3.2.2. Co-Training Learning Paradigm

The co-training paradigm is one of the most prominent semi-supervised approaches. It was
first proposed by Blum and Mitchell, trains two classifiers separately on two different views, e.g.,
two independent sets of attributes, and uses the prediction of each classifier on unlabeled examples to
enhance the training set of the other [16]. As shown in Figure 2, the standard co-training algorithm
requires that attributes be naturally partitioned into two sets, each of which is sufficient for learning
and conditionally independent of the other given the class label [35].
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Goldman and Zhou extended the co-training algorithm so that it would not require two views,
but two different special learning algorithms [36]. Zhou and Li proposed to use three classifiers, called
tri-training, to explicate unlabeled data. In their process, an unlabeled example is labeled and used to
teach one classifier for whether the other two classifiers agree on its labeling [37]. Li and Zhou further
extended this idea by integrating more classifiers into the training process [38].

3.2.3. Co-Training Geographically-Weighted Regression Approach

Let L “
!

px1, y1q , ¨ ¨ ¨ ,
´

x|L|, y|L|
¯)

denote the housing price sample set, where the i-th instance xi

is described by d attributes, yi is the housing price value and |L| is the number of real-value examples;
let U denote the no real value dataset, where the instances are also described by d attributes, whose
real values are unknown, and |U| is the number of no real value examples. The procedure is described
as follows:

1 Initialize: Build up the adaptive Gauss kernel co-training geographical weighted regression
(COGWR) regressor R1 and the adaptive bi-square kernel COGWR regressor R2 with the labeled
samples L. Randomly select a small number of unlabeled samples and construct an unlabeled data
pool P.

2 Absorb unlabeled samples: In each round, select an unlabeled record r from the unlabeled data
pool P.

(1) Assign the predicted value ŷr of the no real value record using COGWR regressor R1 and add the
record to the COGWR regressor R1

1. If the R2 of R1
1 decreases in relation to the original R2 using

Equation (2), this record will be absorbed by regressor R2
1.

The goodness of r can be evaluated using the criterion shown in Equation (7).

∆r “
ÿ

XiPL

pyi ´ R1 pxiqq
2
´

ÿ

XiεL

`

yi ´ R1
1 pxiq

˘2 (7)

If the value of ∆r is positive, then utilizing pxr, ŷrq is beneficial.

(2) Otherwise, assign the predicted value ŷr of the no real value record using the COGWR regressor
R2 and add the record to the COGWR regressor R2

1. If the R2 of R2
1 decreases in relation to the

original R2, this record will be absorbed by the regressor.

The goodness of r can be evaluated using the criterion shown in Equation (8).

∆r “
ÿ

XiPL

pyi ´ R2 pxiqq
2
´

ÿ

XiεL

`

yi ´ R2
1 pxiq

˘2 (8)

If the value of ∆r is positive, then utilizing pxr, ŷrq is beneficial.
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(3) If the unlabeled record is absorbed by neither regressor R1 nor regressor R2, then end the iteration.

3 Predict: Calculate the average value of regressor R1 and regressor R2.
A flowchart of the COGWR approach is shown in Figure 3.
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4. Experimental Results and Comparisons

In this section, the GWR model using Gaussian kernel functions to consider the spatial
heterogeneity of housing price data was adopted to validate the reliability of housing price predictions
in Beijing. Secondly, the housing price data were analyzed using the GWR and COGWR methods.

4.1. The Results of GWR Model

In linear regression models, strong collinearity between explanatory variables could increase
the variance of the estimated regression coefficients and result in misleading conclusions about
relationships in the phenomenon under study. In the local linear regression setting, this could lead to
imprecise coefficient patterns with counter-intuitive signs in significant portions of the study area [39].
For example, Wheeler shows that collinearity can degrade coefficient precision in GWR and lead to
counter-intuitive signs for some regression coefficients at some locations in the study area [40].

In this study, multicollinearity is diagnosed using the diagnostic tools of the variance inflation
factor (VIF), condition index and variance-decomposition proportions. The VIF values are indicators
for the severity of multicollinearity, and variables with VIF values greater than 10 should be eliminated.
It is suggested by Belsley to use condition indexes greater than or equal to 30 and variance proportions
greater than 0.50 for each variance component as an indication of collinearity in a regression model [41].
In this study, the VIF values of explanatory covariates are less than 10, and the condition index of all
explanatory covariates and the intercept is less than 30.

It is known that an adaptive bandwidth has been proven to be highly suitable in practice compared
to a predefined and fixed bandwidth [27,29]. In this experiment, the adaptive Gauss kernel function
have been adopted. The GWR model is tested, and the results are shown in Table 2 [27,42,43].
The statistics indicate that housing prices in Beijing can be modeled using explanatory variables.
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Approximately 70.1% of the variation in housing prices could be explained by the model according
to R2. The signs for all of the parameters between the lower quartile (LQ) and upper quartile (UQ)
are shown in Table 2. Descriptive statistics for the local parameter coefficients produced by GWR
reveal much variance in the parameter values, suggesting the presence of spatial non-stationarity
in the relationships between house prices and the explanatory variables. The floor area, number of
baths and age of building at time of sale have positive parameter values, whereas the fee of property
management, the plot ratio of houses, the green ratio and ringroad have both negative and positive
parameter values.

Table 2. GWR model parameter estimate statistics. LQ, lower quartile; UQ, upper quartile.

Parameter Min LQ Med UQ Max

constant 11.29 11.59 11.70 11.86 12.24
lnarea_total 0.79 0.84 0.86 0.89 0.98

nbath 0.02 0.08 0.10 0.13 0.17
lnpfee ´0.01 0.00 0.00 0.01 0.01

lnplotratio ´0.23 ´0.19 ´0.16 ´0.13 ´0.07
lngratio ´0.01 0.00 0.00 0.01 0.03

age 0.01 0.02 0.02 0.02 0.04
ringroad ´0.03 ´0.01 0.00 0.01 0.02

Diagnostic information
R2 0.701

AdjustedR2 0.677
AIC 846.410

For the test of non-stationarity, the F-test proposed by Leung et al. (2000) was conducted [42].
Table 3 lists the variances, F-statistic values of regression coefficients and their corresponding p-values.
Those statistically-significant values at the 5% level are marked with an asterisk “*”. It can be found
that only one variable exhibits nonsignificant spatial variations in GWR: the number of bath rooms
(nbath). The remaining variables display significant spatial variations.

Table 3. The non-stationarity test results for the GWR models.

Parameter Variance F-statistic p-Value

constant 7.221 37.620 <0.001 *
lnarea_total 0.029 2.417 <0.001 *

nbath 0.024 1.241 0.185
lnpfee 0.005 6.564 <0.001 *

lnplotratio 0.001 2.767 <0.001 *
lngratio 0.011 4.572 <0.001 *

age 0.000 3.956 <0.001 *
ringroad 0.624 149.913 <0.001 *

Note: * Denotes 5% statistical significance.

One important characteristic of the GWR-based technique is that the local parameter estimates
that denote local relationships are mappable and thus allow for visual analysis. Taking the coefficients
of logarithmically-transformed floor area as an example, we can group them into several intervals and
color each interval to visualize the spatial variation patterns of this variable. As is shown in Figure 4,
it could been seen that house prices are influenced by the floor area. In the central part of Beijing,
a large amount of houses has been built with a small dwelling size. The reason is that central area
of Beijing was planned in earlier times and no more land could be used to build houses. In recent
years, with the fast development of the economy and the rapid progress of urbanization, a large-scale
movement of urban expansion has emerged all over the country, and large-sized houses are built in
the external part of Beijing.



ISPRS Int. J. Geo-Inf. 2016, 5, 4 9 of 12

ISPRS Int. J. Geo-Inf. 2016, 5, 4; doi:10.3390/ijgi5010004  8 of 12 

 

be found that only one variable exhibits nonsignificant spatial variations in GWR: the number of bath 

rooms (nbath). The remaining variables display significant spatial variations. 

Table 3. The non-stationarity test results for the GWR models. 

Parameter Variance F-statistic p-value 

constant 7.221 37.620 <0.001 * 

lnarea_total 0.029 2.417 <0.001 * 

nbath 0.024 1.241 0.185 

lnpfee 0.005 6.564 <0.001 * 

lnplotratio 0.001 2.767 <0.001 * 

lngratio  0.011 4.572 <0.001 * 

age 0.000 3.956 <0.001 * 

ringroad 0.624 149.913 <0.001 * 

Note: * Denotes 5% statistical significance. 

One important characteristic of the GWR-based technique is that the local parameter estimates 

that denote local relationships are mappable and thus allow for visual analysis. Taking the 

coefficients of logarithmically-transformed floor area as an example, we can group them into several 

intervals and color each interval to visualize the spatial variation patterns of this variable. As is shown 

in Figure 4, it could been seen that house prices are influenced by the floor area. In the central part of 

Beijing, a large amount of houses has been built with a small dwelling size. The reason is that central 

area of Beijing was planned in earlier times and no more land could be used to build houses. In recent 

years, with the fast development of the economy and the rapid progress of urbanization, a large-scale 

movement of urban expansion has emerged all over the country, and large-sized houses are built in 

the external part of Beijing. 

 

Figure 4. Spatial variation of the logarithmically=transformed floor area coefficient. Figure 4. Spatial variation of the logarithmically = transformed floor area coefficient.

4.2. Comparison of the COGWR with the GWR Model

In this paper, we have introduced an efficient semi-supervised regression approach to predict
housing prices. A popular routine in evaluating semi-supervised algorithms is adopted [18,19].
In detail, the residential plots are randomly partitioned into labeled/unlabeled/test datasets according
to certain ratios. About 25% of the data is kept as test examples, while the remaining 75% of the
data is used as the set of training data. In the training set, labeled and unlabeled data are partitioned
under different label rates including 10%, 20%, 30%, 40% and 50%. Fifty runs of the experiments
are conducted; in each run, the RSS (Residual Sum of Squares), MSE (Mean Squared Error) and AIC
values are recorded. In the experiments, the maximum number of iterations is set to 50, and the size
of the pool used in the learning process is fixed to 50. Since the learning process may stop before the
maximum number of iterations is reached, and in that case, the final RSS, MSE and AIC values are
used in computing the average RSS, MSE and AIC values of the iterations.

It is necessary to investigate whether the COGWR model performs significantly better than the
GWR models. The improvements of the RSS, MSE and AIC values between COGWR and GWR are
shown in Table 4.

Table 4. Improvement between the COGWR and GWR models.

Comparison between Different Models The Labeling Ratio of Housing Price Data

10% 20% 30% 40% 50%

COGWR (Gauss kernel
function) regressor/GWR

Improvement

RSS 3.242 3.375 3.551 ´0.144 ´0.314
MSE 0.010 0.010 0.011 0.000 ´0.001
AIC 23.716 36.479 41.921 ´2.892 ´4.812

COGWR (bi-square kernel
function) regressor/GWR

Improvement

RSS 2.216 2.801 2.909 0.101 ´1.633
MSE 0.007 0.008 0.009 0.000 ´0.005
AIC 18.645 21.328 22.899 2.204 ´16.641
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First, we compared RSS and MSE between COGWR and GWR. All COGWR regressors (Gauss and
bi-square kernel functions) achieve better performance than the GWR regressors at the label rates of
10%, 20% and 30%. For instance, compared to the GWR regressors, the improvement in RSS achieved
by the COGWR regressors was (3.242, 2.216), (3.375, 2.801) and (3.551, 2.909), respectively. However,
for label rates of 40% and 50%, no significant improvement was observed when compared to the GWR
regressor. For example, the improvement of RSS calculated using the COGWR regressor was (´0.144,
0.101) and (´0.314, ´1.633), respectively.

Second, we compared AIC values between the COGWR and GWR models and determined
whether the COGWR model is significantly more reliable than the GWR models. According to
Fotheringham and Bo Wu [5,44], a “serious” difference between the two models is generally regarded
as one in which the difference in AIC values between the models is greater than three. When the
labeled rate is 10%, 20% or 30%, significant improvements are achieved by using the COGWR when
compared to the GWR. For instance, when the label rate is 10%, 20% and 30%, the difference between
the COGWR and GWR models was (23.716, 18.645), (36.479, 21.328) and (41.921, 22.899), respectively.
However, no significant improvement is achieved by using the COGWR when the labeled rate is 40%
or 50%. When the labeled rate is 40% and 50%, the difference between the COGWR and GWR is
(´2.892, 2.204) and (´4.812, ´16.641), respectively.

With the increasing of the label rate, the improvement of goodness-of-fit endowed by exploiting
unlabeled house price data seems to be decreasing. This is not strange, since it can be perceived from
the performance of labeling that the initial GWR regressors become robust when more labeled house
price data are available and, therefore, are more difficult to enhance.

5. Conclusions

Traditional semi-supervised regression methods could not be directly applied to spatial data, since
the assumption of stability over space is generally unrealistic. This paper introduced novel co-training
GWR approaches, which fully utilize the advantages of both the geographical regression and the
semi-supervised learners to increase the goodness-of-fit with respect to unlabeled house structural,
locational and neighborhood characteristics and geographical data.

The COGWR model, which fully utilizes the positive aspects of both the geographical weighted
regression (GWR) method and semi-supervised learning paradigm, was implemented, and the results
reveal that when the amount of labeled data is small, the COGWR method significantly improves the
performance of the GWR method. By absorbing unlabeled data, this method converts sparse data
areas into dense data areas. Therefore, the robustness of the regressors is enhanced. This suggests that
incorporating no-price data into a GWR model could yield meaningful results. When the label rate of
housing price data increases, the gains from absorbing unlabeled data decrease because the regressors
trained on the labeled training examples become stronger and are thus more difficult to improve.

This study is a beneficial attempt in the research of geo-information and real estate economics.
It offers a reference to both the decision-making and the theoretical research. The spatial diversity of
the regression coefficients is of utmost importance for locally-acting decision-makers [12]. When the
amount of house price data is limited, the COGWR approach is a useful tool for real estate practitioners
to fully exploit no-price data with explanatory variables.

Some limitations still remain in our study, and further work is required. In this paper,
not all explanatory variables vary over space, and the mixed geographically-weighted regression
(MGWR) approach should be investigated to prevent the limitations of fixed effects by exploring
spatially-stationary and non-stationary effects in the future [12]. Spatiotemporal heterogeneity prevails
in real estate data, and a temporal semi-supervised GWR must still be pursued.
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