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Abstract: This paper proposes a method for combining stereo visual odometry, Light Detection
And Ranging (LiDAR) odometry and reduced Inertial Measurement Unit (IMU) including two
horizontal accelerometers and one vertical gyro. The proposed method starts with stereo visual
odometry to estimate six Degree of Freedom (DoF) ego motion to register the point clouds from
previous epoch to the current epoch. Then, Generalized Iterative Closest Point (GICP) algorithm
refines the motion estimation. Afterwards, forward velocity and Azimuth obtained by visual-LiDAR
odometer are integrated with reduced IMU outputs in an Extended Kalman Filter (EKF) to provide
final navigation solution. In this paper, datasets from KITTI (Karlsruhe Institute of Technology and
Toyota technological Institute) were used to compare stereo visual odometry, integrated stereo visual
odometry and reduced IMU, stereo visual-LiDAR odometry and integrated stereo visual-LiDAR
odometry and reduced IMU. Integrated stereo visual-LiDAR odometry and reduced IMU outperforms
other methods in urban areas with buildings around. Moreover, this method outperforms simulated
Reduced Inertial Sensor System (RISS), which uses simulated wheel odometer and reduced IMU.
KITTI datasets do not include wheel odometry data. Integrated RTK (Real Time Kinematic) GPS
(Global Positioning System) and IMU was replaced by wheel odometer to simulate the response of
RISS method. Visual Odometry (VO)-LiDAR is not only more accurate than wheel odometer, but it
also provides azimuth aiding to vertical gyro resulting in a more reliable and accurate system. To
develop low-cost systems, it would be a good option to use two cameras plus reduced IMU. The cost
of such a system will be reduced than using full tactical MEMS (Micro-Electro-Mechanical Sensor)
based IMUs because two cameras are cheaper than full tactical MEMS based IMUs. The results
indicate that integrated stereo visual-LiDAR odometry and reduced IMU can achieve accuracy at the
level of state of art.
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1. Introduction

Stand-alone stereo visual odometer, LiDAR odometer and Inertial Measurement Unit provide
6-DOF (Degree Of Freedom) state estimation. However, the drawbacks using each sensor alone,
motivate the researchers to integrate those sensors. IMUs, especially MEMS (Micro-Electro-Mechanical
Sensor) based ones, accumulate errors very rapidly. Visual odometry requires moderate lighting
conditions, and it suffers from various error sources in images, such as noise, motion blur, and
distortion. The visual measurements are also ambiguous in featureless, self-similar or dynamic
environments or during rapid motion which causes many mismatches in the corresponding image
points [1]. In LiDAR odometry, the position of range finder is estimated by matching two different
scans which are collected at consecutive epochs. ICP (Iterative Closest Point), is one of the most
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dominant algorithms to find translation and rotation between two point clouds in order to match
them by iteratively finding the closest points [2]. ICP algorithms, accumulate error over time, and it
is prone to be erroneous under fast motion; furthermore, it fails, if the point clouds are very sparse,
especially in suburban areas where two sides of the road are covered with vegetation. ICP algorithms
always converge to the local minimum. Therefore, it needs a good initial guess of transformation
to converge to the global minimum [3]. Another problem of ego motion estimation by moving the
LiDAR odometer, involves motion distortion in point clouds due to the different receiving time of
the range measurements [4]. Stereo cameras and LiDAR can be complementary sensors. Stereo VO
(Visual Odometry) not only gives a good initial guess for ICP algorithm but also helps compensating
the motion distortion. We assume that velocity and angular velocity are constant during the scanning
period. Then, we can calculate the transformation of each point of the point cloud to the first point
coordinate system of the point cloud using stereo VO rotation and translation. Afterwards, ICP will
refine the initial transformation.

A new integration method for stereo visual-LiDAR odometry and 3D (Three-Dimensional)
reduced IMU is proposed in this paper. The wheel odometer in RISS (Reduced Inertial Sensor
System), which was proposed by Noureldin et al. [5], is replaced by a stereo visual-LiDAR odometer.
The integrated stereo visual-LiDAR odometry and reduced IMU consists of two accelerometers in
the x and y directions, one gyroscope in the z direction and two cameras and LiDAR. The horizontal
accelerometers determine roll and pitch. Vertical gyro is used for azimuth determination and two
cameras and LiDAR measure displacement and rotation between two consecutive LiDAR coordinate
systems. This system outperforms simulated RISS. Stereo visual-LiDAR odometer provides not only
the translation, but also the rotation between two LiDAR coordinate systems at consecutive epochs.
Therefore, we can calculate the visual-LiDAR azimuth at each epoch by estimating the transformation
between the LiDAR coordinate system, the IMU coordinate system and the navigation frame at the
first epoch. The visual-LiDAR azimuth is integrated with the initial azimuth (which is obtained by
vertical gyro’s output, forward translation obtained from visual-LiDAR odometer and roll and pitch)
by Kalman Filter (KF) resulting in more accurate vehicle azimuth with less number of spikes. To sum
up, stereo VO-LiDAR is not only more accurate than wheel odometer, but it also provides azimuth
aiding to vertical gyro solution.

The paper is organized as follows: Previous works are addressed in Section 2. Section 3 introduces
an integrated visual-Lidar odometry and reduced IMU methodology, the results and analysis are
provided in Section 4. Conclusion and discussion are given in Section 5. Finally, future work is given
in Section 6.

2. Previous Works

In this section, previous works in visual odometry, LiDar odometry and sensor integration
are described.

2.1. Visual Odometry

The key idea of visual odometry is to estimate the motion of a vehicle or robot by visually tracking
landmarks using an on-board camera [1]. In other words, the 6 degrees of freedom (6DoF) ego-motion
estimation (including three position increments and three alignment increments), merely from image
measurements is called visual odometry [6]. This technique is considered as a dead reckoning (DR)
approach. Therefore, a visual odometer is a relative positioning system with position and alignment
increments estimated at each epoch. Similar to a DR system, visual odometry accumulates errors
over time [1], and it suffers from various error sources in images such as noise, motion blur and
distortion. The visual measurements are also ambiguous in featureless, self-similar or dynamic
environments and during rapid motion, which causes many mismatches in the corresponding image
points. The following assumptions are made for visual odometry [7]:

(1) There is sufficient illumination in the environment
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(2) Static objects in the image dominates over moving objects
(3) There is enough texture to allow apparent motion to be extracted
(4) There is sufficient scene overlap between consecutive frames

Visual odometry is a particular case of Structure from Motion (SfM). VO focuses on camera pose
estimation from sequential images. SfM, which is more general than VO, focuses on both camera pose
estimation and 3D scene point reconstruction [7]. Sometimes, SfM is used as a synonym of SLAM
(Simultaneous Localization And Mapping). SLAM, enables the ALV (Autonomous Land Vehicle) to
build a map of environment while it simultaneously uses this map to estimate the vehicle pose [8].
Many different types of SLAM are known. Sonar, laser range and visual SLAM are the most commonly
used [9].

Visual navigation is likely to become a widely used navigation solution because cameras are
already common on robots, laptops, smartphones and tablets. Cameras are also relatively cheap and
they do not interfere with other sensors. Furthermore, Cameras are not easily misled and require no
additional infrastructure. In theory, visual odometry can work in any environment where there is
enough light and texture that static features can be identified. One main advantage of visual odometry
is the high accuracy compared to wheel speed sensors, especially in slippery terrains where wheel
speed sensors often yield low accuracy performance [6]. The wheel odometer measures distances
travelled by the vehicle. On slippery ground, a wheel odometer cannot provide accurate forward
velocity. In addition, a wheel odometer shows the measured distances per second at turnings (where
the vehicle’s wheel direction is not parallel with the vehicle’s forward direction) instead of vehicle’s
forward velocity which is used in a reduced inertial sensor mechanization. The visual odometry drift
rates are mostly smaller than the drift rates of low-cost MEMS based IMUs, especially when the vehicle
is static or has low dynamics [6].

A lot of visual odometry algorithms have been developed for monocular, binocular (stereo) and
multi-ocular cameras. Further subdivision is possible into methods using feature tracking over a whole
sequence of images and methods that are matching features between consecutive images [6]. Binocular
and multi-ocular cameras yield better results because they do not suffer from scale ambiguities. In
stereo visual odometry, we can perform triangulation followed by resectioning repeatedly [1]. There
are also other methods for which the recovery of the three-dimensional scene structure is not needed [6].
A lot of methods have been developed for finding mismatches and detecting outliers. Kitt et al. [6]
proposed a bucketing technique combined with the RANSAC (RANdom Sample Consensus) based
outlier rejection .

Figure 1 summarizes the major steps in visual odometry steps [9] which will be described in
the following.
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The first step in VO is capturing image sequences. The next step is feature extraction, Features are
special points which can stably be re-detected from later images, taken from another point of view [9].
In Feature matching (or tracking), we will find correspondences between features in the current frame
with features in previous frames [9,10]. There are several methods for motion estimation [7], e.g.,
2D-to-2D, 3D-to-3D and 3D-to-2D methods. Compared to the other two methods for stereo VO,
3D-to-2D, drifts slower and gives more accurate results [7]. We can optimize the estimated rotation and
translation between the camera coordinate systems using optimization methods including windowed
camera pose estimation, Bundle Adjustment (BA), Bucketing and Loop closure [11].

In this paper, we implemented a 3D-to-2D VO algorithm. We used windowed processing,
bucketing and bundle adjustment to reduce growth rate of the VO errors.

2.2. LiDAR Odometry

LiDAR has become a useful range sensor in Automatic Vehicle Localization (AVL) and robot
navigation. Several methods have been developed during the last two decades to find transformation
between two point clouds. A feature based registration method can be used to find initial
transformation between two point clouds. This method finds several keypoints in each point cloud
and computes descriptors for each keypoint. The next step is matching. The corresponding keypoints
are found using keypoint descriptors. In order to obtain better results, the mismatches have to be
found. RANSAC based methods can be used in order to reduce the effect of undetected mismatches.
As the final step, the rotation and translation between corresponding keypoints are calculated [12].

NDT (Normal Distribution Transform) is another method for point cloud registration. NDT uses
standard optimization techniques which are applied to statistical models of 3D points to determine the
most probable registration between two point clouds [13].

ICP (Iterative Closest Point) is one of the most dominant algorithms for LiDAR odometry and has
become the most widely used method for aligning point clouds [2]. ICP converges to local minima, and
it is based on minimizing the squared error. Several versions of the ICP method have been developed
during the last decade. In point-to-point ICP, each point in the first point cloud is paired with the
closest point in the second point cloud to form correspondence pairs. The next step is iteratively
finding the rotation and translation by minimizing sum of the squared distance between points in each
correspondence pair [14]. Equation (1) shows the point-to-point ICP objective function [12]:

min
R,T

ÿ

Xi

||pRXi ` T´Yiq||
2 (1)

where T and R are the translation vector and rotation matrix between two point sets, Xi is the point in
the first point cloud and Yi is the point at the second point cloud.

In the point-to-plane ICP method, the sum of squared distance between each point in the first point
cloud and the tangent plane at the corresponding point in the second point cloud is minimized [14].
Equation (2) shows the point-to-plane ICP objective function [12]:

min
R,T

ÿ

Xi

`

pRXi ` T´Yiq . nYi

˘2 (2)

where nYi is the normal vector to the surface at point Yi.
Generalized ICP (plane-to-plane ICP) generalizes over point-to-point and point-to-plane ICP

method, and it outperforms both point-to-point and point-to-plane ICP [15]. It uses covariance of
the local point neighborhoods in order to align underlying surfaces rather than point [12]. This
approach is more robust to incorrect correspondences. In this paper, we used Generalized ICP which
is implemented in PCL (Point Cloud Library). Equation (3) shows the plane-to-plane ICP objective
function [12]:

min
R,T

ÿ

Xi

dt
i pC

Y
i `QCX

i Qtq
´1

di (3)
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where Q “

˜

R T
03x1 1

¸

, d “ Yi ´ pRXi ` Tq , CX
i and CY

i are the covariance matrices of the local

point neighborhoods.

2.3. Sensor Integration

Stand-alone stereo visual odometer, LiDAR odometer and IMU are dead reckoning systems
which can provide navigation solution. However, the drawbacks using each sensor alone motivate
the researchers to integrate those sensors. IMU and camera are two complementary sensors and
several loosely coupled and tightly coupled camera/IMU integration methods have been designed
and implemented in the last decade [16–18].

Sirtkaya et al. [16] and Kleinert et al. [19] worked on the integration of IMU and monocular
camera. The IMU provides the position and attitude information of the system to remove monocular
camera depth ambiguity. Nützi et al. [20] suggested the inertial aided monocular SLAM to estimate
the absolute scale of a single camera. For loosely coupled integration, the stereo cameras and IMU
provide separate navigation solutions independently, making the data fusion more flexible. The inertial
predictions in EKF (Extended Kalman Filter) can be corrected by rotation and translation obtained by
visual odometry [21]. Similarly, the inertial measurements could also correct the 6 degree-of-freedom
(DOF) ego-motion estimated by visual odometry [22]. For tightly coupled integration, the IMU and
vision data are processed together to obtain the navigation solution. Tardif et al. [23] suggested a
new approach of vision aided inertial navigation. In the proposed method, IMU provides the pseudo
gravity measurements when acceleration is low. In [24], the IMU outputs and pixel coordinates in
images are used to correct system motion, under certain situations. Using this method, the 3D feature
points, expressed in a global coordinate system, are also included in the state vector of the Kalman
Filter. This big size of state vector, considerably increases the computational complexity.

Motion estimation and distortion correction become a problem in LiDAR odometry without
aiding from other sensors [4]. Scherer et al. [25] registered LiDAR point clouds by state estimation
from integrated visual odometry and IMU. Scherer et al. [25] combined visual odometry and LiDAR
odometry. In this method, ego motion is first estimated by visual odometry to register point clouds
and then LiDAR odometry refines the motion estimation. Visual odometry also helps remove the
motion distortion in the point clouds.

Noureldin et al. [5] proposed RISS (Reduced Inertial Sensor System) in which a wheel odometer
and a 3D reduced IMU (two horizontal accelerometers and one vertical gyro) are integrated. This
method has advantages over using a full IMU. With a full IMU, uncompensated accelerometer and gyro
biases cause velocity and position degradation. Uncompensated accelerometer bias

´

b f

¯

introduces
errors in velocity as a linear function of time (t) and errors in position which grow as a quadratic
function of time [5]:

δv “
ż

b f dt “ b f t (4)

δp “
ż

δvdt “
1
2

b f t2 (5)

where δv and δ p are the errors in velocity and position, respectively. The uncompensated horizontal
gyro bias pbwq introduces roll or pitch error (δθ) as follows [26]:

δθ “

ż

bwdt “ bwt (6)

The roll and pitch error will incorrectly project the acceleration vector from the body frame to the
local level frame as follows [26]:

δa “ gsin pδθq « gδθ “ gbwt (7)
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This acceleration error causes velocity error proportional to t2 (δv “
ş

bwgtdt “
1
2

bwgt2) and

position error proportional to t3 (δp “
ş

δvdt “
ş 1

2
bwgt2dt “

1
6

bwgt3) [23].

Furthermore, the uncompensated vertical gyro bias, bwz, causes azimuth error proportional to t,
δA “

ş

bwzdt “ bwzt [26].

In RISS, the platform pitch (p) and roll (r) are calculated as follows [5]:

p “ sin´1

˜

f y ´ aod

g

¸

(8)

r “ sin´1p
f x ` vodwz

gcosp
q (9)

where f x is acceleration in x direction, f y is acceleration in y direction, wz is angular velocity in z
direction, g is normal gravity, vod and aod are odometer velocity and odometer acceleration, respectively.
Therefore, the roll and pitch error calculated from RISS are not proportional with time t [5]. In addition,
the wheel odometer provides velocity rather than the integration of accelerometers’ outputs. The RISS
roll and pitch error will therefore project the velocity vector rather than the accelerometer vector from
the body frame to the local level frame which causes an error in velocity proportional with t and
position error proportional with t2. The azimuth error caused by uncompensated vertical gyro bias is
the only remaining main source of error in 3D RISS.

3. Methodology

A new integration method for stereo visual-LiDAR odometry and 3D reduced IMU is proposed
in this paper. The wheel odometer in RISS, which was proposed by [5], is replaced by the stereo
visual-LiDAR odometer. Figure 2 shows a diagram of the software system. The overall system is
divided into three sections: visual odometry, LiDAR odometry and reduced IMU section. The stereo
visual odometry section estimates frame to frame motion at image frame rate using input stereo
images [11]. In this section, feature detection block extracts visual features (we used Harris corner)
from left image at epoch tk. Feature tracking block, tracks the extracted features along the right
image at epoch tk and the left image at epoch tk`1 (KLT (Kanade-Lucas-Tomasi) tracker was
used) [7]. The 3D-to-2D motion estimation block performs the triangulation followed by resectioning.
A triangulation method is used to reconstruct the 3D scene points from the 2D feature points on the
left and right image at epoch tk. The camera pose is obtained using reconstructed 3D points at epoch
tk and 2D feature points of the left image at epoch tk`1 by resectioning (we used P3P (Perspective
3 Point) method) [7]. The feature detection block extracts new feature points if the number of the
tracked features is less than a threshold. The local optimization blocks optimizes the ego motion
estimation using RANSAC (RANdom SAmple Consensus), windowed camera pose estimation, Bundle
Adjustment (BA) and Bucketing. In visual odometry, the tracked points are usually contaminated
by outliers; in others words, there are incorrect data associations. The RANSAC method was used
in the resectioning part to remove the outliers. We used windowed processing to reduce the growth
rate of VO errors. Instead of consecutive triangulation and resectioning, we did the triangulation at
the first epoch of the reference frame of each window, followed by resectioning at other frames of the
window. The length of each window depends on the number of tracked features. If the number of
tracked features is less than the desired threshold, we can define a new reference frame and repeat
the above procedure. we used Bundle Adjustment (BA) to improve the camera pose estimation if we
have matched features across more than two frames [27]. In stereo vision BA, we have to use LM
(Levenberg-Marquardt) method which interpolates between the Gauss-Newton algorithm (GNA) and
the method of gradient descent. If we use Gauss–Newton algorithm for bundle adjustment, the normal
matrix will be singular so we have to use LM algorithm.
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Bucketing is another method which was used in the VO local optimization block. In bucketing,
the image is divided into several non-overlapping rectangles. In every rectangle, we select a certain
number of features randomly [6]. Bucketing has several benefits; first, the computational complexity is
reduced and a smaller number of feature points are processed, which is very important for real time
applications [6]. Bucketing guarantees that all the feature points are well distributed along the z axis;
therefore, both near and far feature points are used for camera pose estimation [6]. Furthermore, in a
dynamic scene, where considerable number of points are detected on moving objects, bucketing helps
to filter out some of the points located on the moving objects. Therefore, bucketing reduces the drift
rate in visual odometry. We used OpenCV library (C++ version) for feature point detection, feature
tracking and feature matching, triangulation and resectioning.
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The LiDAR odometry section refines the ego motion estimated by stereo VO. Point cloud
registration block aligns point clouds collected at consecutive epochs using VO rotation and translation.
VO rotation and translation can be used for LiDAR motion distortion removal as well. We ignored
the motion distortion correction because Velodyne HDL-64E was used for data collection which is
capable of collecting data that can be used to produce quality maps even while moving. Furthermore,
LiDAR data rate is high (10 Hz) while the vehicle velocity was low. In addition, we used half of the
data (180 degree) for ICP, which reduces the effect of motion distortion.

We used Point Cloud Library (PCL) for LiDAR odometry. Noisy measurements in the point clouds
were removed using statistical analysis techniques. PCL outlier removal is based on the computation
of the distribution of a point to neighbor points’ distances in the input dataset. For each point, the
mean distance from it to all its neighbors has to be computed. As the next step, all points, whose mean
distances are outside an interval defined by the global mean and standard deviation, can be considered
as outliers and filtered out from the dataset. We did not use all the point clouds as the input of ICP
algorithm. We used 180 degrees of point cloud. We also filtered out the points farther than 20 m. Many
of the points in point cloud fall on the ground and are less informative for our purpose. These points
are eliminated from the point cloud, using a plane fitting. The SAmple Consensus (SAC) segmentation
method, which is implemented in PCL, was used to detect and filter out the ground points. In this
method, data points further away than a threshold are filtered, then surface normal at each point are
estimated and a plane model is set as the method type of SAC method to find the ground points and
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filter them out. Now, the consecutive point clouds are ready for the Generalized ICP block which
refines the ego motion estimation.

The Reduced IMU section consists of two horizontal accelerometers and one vertical gyroscope.
The first step in reduced IMU mechanization is initialization. Initial position (initial latitude,
initial longitude and initial height) can be obtained by GPS. In order to obtain the initial attitudes,
we will go through alignment process [26]. The initial pitch and initial roll can be obtained by
Equations (8) and (9). In the following section, we assume the stereo cameras look forward and
they are leveled. The x axis of the camera coordinate system points toward the right direction of the
vehicle, the y axis points down and the z axis points toward the forward direction of the vehicle. We
assume LiDAR is leveled as well, the x axis of the LiDAR coordinate system points toward forward
direction of the vehicle, the y axis points toward the left direction of the vehicle and the z axis points up.
The stereo visual-LiDAR odometer estimates the parameters of the translation (Tk) and rotation (Rk` 1

k )
between the two consecutive LiDAR frames at epoch k and epoch k+1. The forward displacement and
velocity, which are used in mechanization, can be obtained as follows:

∆xVO´LiDAR
k (10)

vVO´LiDAR f orward
k “

∆xVO
k

∆t
(11)

where: X “

¨

˚

˚

˚

˝

∆xVO´LiDAR
k

∆yVO´LiDAR
k

∆zVO´LiDAR
k

˛

‹

‹

‹

‚

“ ´

´

Rk`1
k

¯´1
Tk.

The initial azimuth can be obtained by GPS velocity, A0 “ tan´1p
vE

GPS
vN

GPS
q [5]. After the

initialization, the roll, pitch and azimuth, velocity and position can be calculated for each epoch.
The Equations (8) and (9) can be applied to calculate the pitch and roll respectively while the azimuth
is calculated using the following Equation (5):

Ak “ tan´1p
UE

UN q `wesinϕk´1∆t`
∆xVO´LiDAR

k´1 sinAk´1cospk´1tanϕk´1

RN ` hk´1
(12)

where
UE “ sinAk´1cospk´1cosγz

k ´ pcosAk´1cosrk´1 ` sinAk´1sinpk´1sinrk´1q sinγz
k,

UN “ cosAk´1cospk´1cosγz
k ´ p´sinAk´1cosrk´1 ` cosAk´1sinpk´1sinrk´1q sinγz

k

we is the Earth’s rotation rate, ϕ is the latitude of vehicle, γz
k “ wz

k ∆t , RN is the radius of the curvature
of the prime vertical.

The next step is the integration of the azimuth from Equation (12) and the VO-LiDAR azimuth
using Kalman Filter. Since VO-LiDAR gives transformation between consecutive epochs and the
transformation between LiDAR coordinate system, IMU coordinate system and navigation frame
at first epoch is known, we can calculate the VO-LiDAR azimuth (AVO´ LiDAR

k ) at each epoch. The
error-state system model can be written as:

δx̂k “ Φk´1δx̂k´1 ` Gkwk (13)

where δx̂k “ rδAzk, δwzs , Φk´1 “

«

1 ´∆t
0 1´ βz∆t

ff

, Gk “

«

0
p2βz variance pwzqq

ff

, βz is the

correlation time for gyro bias, wz is the gyro measurement around the z axis, δwz is the gyro error. The
measurement model is as follows:

δzk “ Ak ´ AVO´LiDAR
k “ r1 0s δx̂k ` vk (14)
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Finally, the estimated azimuth is:

A f inal
k “ Ak ´ δx̂k p1q (15)

The velocity in the east, north and up directions can be obtained using the following formula [5]:

V “

»

—

—

–

vE
k

vN
k

vU
k

fi

ffi

ffi

fl

“

»

—

—

—

–

vVO´LiDAR f orward
k sin Afinal

k cospk

vVO´LiDAR f orward
k cos Afinal

k cospk

vVO´LiDAR f orward
k sinpk

fi

ffi

ffi

ffi

fl

(16)

The position can be obtained by the following formula [5]:

P “

»

—

—

–

ϕk

λk

hk

fi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

ϕk´1 `
∆xVO´LiDAR

k cos Afinal
k cospk

RM ` hk

λk´1 `
∆xVO´LiDAR

k sin Afinal
k cospk

pRN ` hkq cosϕk

hk´1 ` ∆xVO´LiDAR
k sinpk

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(17)

where RM is the radius of the curvature in meridian.

4. Results and Analysis

4.1. Data Description

A dataset from KITTI (Karlsruhe Institute of Technology and Toyota technological Institute)
is used to assess the integrated system. The sensor data includes monochromic and color image
sequences, RTK GPS-IMU data and laser scanner data collected in both urban and suburban areas in
City of Karlsruhe, Germany. The used equipments include:

‚ GPS/IMU: OXTS RT 3003
‚ Laser scanner: Velodyne HDL-64E
‚ Grayscale cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3M-C)
‚ Color cameras, 1.4 Megapixels: Point Grey Flea 2 (FL2-14S3C-C)

The camera resolution is 1241 ˆ 376 and the data rate is 10 FPS (Frame Per Second). We used gray
scale stereo vision for VO, and we used integrated RTK GPS/IMU solution as the ground truth. The
sensor configuration is shown in Figure 3.
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The dataset #27 collected on 3 October 2011 and the dataset #28 and #18 collected on 30 September
2011 and the dataset # 61 collected on 26 September 2011 and the dataset #34 collected on 3 October
2011 are used to evaluate the pose estimation results.

4.2. Sensor Calibration

All KITTI sensors were carefully synchronized and calibrated [28]. To avoid drift over time,
sensors were calibrated every day after KITTI group data collection. In order to synchronize the
sensors, Velodyne timestamps were used. KITTI group mounted a reed contact at the bottom of
Velodyne, triggering the cameras when facing forward [28]. Unfortunately, a GPS/IMU system
cannot be synchronized that way. GPS/IMU provides updates at 100 Hz and the closest timestamp
to Velodyne timestamp was selected at each epoch. This synchronization results in maximum 5 ms
between GPS/IMU and camera/Velodyne data package. Camera to camera calibration parameters
were estimated by the approach proposed in [29]. For camera to camera calibration, a planer chessboard
pattern were used. Instead of capturing multiple images of a single chessboard, a single shot of
multiple chessboards were taken to estimate intrinsic and extrinsic camera calibration parameters [29].
The estimated intrinsic calibration parameters include left and right camera matrix:

pMi “

¨

˚

˚

˚

˝

f piq 0 cpiqx

0 f piq cpiqy

0 0 0

˛

‹

‹

‹

‚

i “ 1, 2

where f is focal length and Cx and Cy are coordinate of principle center) and image distortion
coefficients. The extrinsic camera calibration parameters are rotation and translation between left
and right camera coordinate system, essential matrix and fundamental matrix [30,31]. KITTI images
were stereo rectified and rectification transform and projection matrix for left and right camera were
estimated. The accuracy of camera calibration has a great influence on triangulation and resectioning
in VO and inaccurate camera calibration results in faster position drifts in VO. The quality of the stereo
camera calibration can be checked by using epipolar geometry constraint [10,30]. The corresponding
pixel of a pixel in the left image lies on epiline in the right image. This epiline can be expressed by
following Equation (10):

l1 “ Fx (18)

where l1 is epiline in the right image, x is the inhomogeneous pixel coordinate in the left image and F is
a 3 ˆ 3 matrix known as a fundamental matrix.

The corresponding pixel in the right image (x1) lies on the epiline in the right image and therefore:

x1T l1 “ x1T Fx “ 0 (19)
The fundamental matrix, which is one of the outputs of stereo camera calibration, can be used in

Equation (19) to assess the quality of stereo camera calibration. The average camera reprojection error
for KITTI datasets is 0.3 pixels (The reprojection error less than one pixel is acceptable).

The transformation between the IMU and Velodyne coordinate system and Velodyne and camera
coordinate system were estimated by the approach proposed in [29] as well. As we mentioned above,
Generalized Iterative Closest Point (GICP) uses stereo VO outputs as initial guess; therefore, the GICP
results depend on the accuracy of transformation between Velodyne and a camera coordinate system.
The accuracy of the transformation between IMU and Velodyne is important for integration of stereo
visual- Lidar and reduced IMU as well. The Velodyne HDL-64E accuracy is +/´2 cm; therefore, the
lever arm accuracy which is on the millimeter level accuracy does not affect the system performance.
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4.3. Sensor Integration Results and Analysis

As we mentioned above, five datasets were used to evaluate and compare the following system
configurations in both urban and suburban areas: (1) the stereo VO; (2) the integrated stereo VO and
reduced IMU; (3) the Stereo VO-LiDAR; and (4) integrated Stereo VO-LiDAR and reduced IMU.

Figure 4 shows images taken at two epochs of dataset #27, dataset #28, dataset #18, dataset #61
and dataset #34.ISPRS Int. J. Geo-Inf. 2016, 5, 3  11 of 24 
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Figure 4. (a) shows images at two epochs for dataset #27; (b) for dataset #28; (c) for dataset #18; (d) for
dataset #61 and (e) for dataset #34.

Figure 5 shows the pose estimation results for dataset #27, dataset #28, dataset #18, dataset #61
and dataset #34.
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Figure 5. Results of ego estimation using stereo VO, integrated stereo VO and reduced IMU, Stereo
VO-LiDAR and integrated Stereo VO-LiDAR and reduced IMU. (a) shows results for dataset #27;
(b) shows results for dataset #28; (c) shows results for dataset #18; (d) shows results for dataset #61 and
(e) shows results for dataset #34.
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Figure 6 shows the RMSE (Root Mean Square Error) in the east, north and horizontal plane for
stereo VO, integrated stereo VO and reduced IMU, Stereo VO-LiDAR and integrated Stereo VO-LiDAR
and reduced IMU. Figure 6a show the results for dataset #27, Figure 6b for dataset #28, Figure 6c for
dataset #18, Figure 6d for dataset #61 and Figure 6e for dataset #34.
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Figure 6. RMSE in east, north and horizontal plane for stereo VO, integrated stereo VO and reduced
IMU, Stereo VO-LiDAR and integrated Stereo VO-LiDAR and reduced IMU. (a) shows results for
dataset #27; (b) shows results for dataset #28; (c) shows results for dataset #18; (d) shows results for
dataset #61 and (e) shows results for dataset #34.

The measured drifts are compared to the distance traveled as the relative accuracy and listed in
Table 1.

Table 1. Relative horizontal position errors in filed test. VO: Stereo Visual Odometry, VO-RI: Integrated
Stereo Visual Odometry and Reduced IMU, VO-L: Stereo Visual-LiDAR Odometry, VO-L-RI: Integrated.
Stereo Visual-LiDAR Odometry and Reduced IMU.

Dataset No. Dist.
Relative Horizontal Position Error

VO VO-RI VO-L VO-L-RI

dataset #27 3705 m 4.62% 2.60% 1.33% 1.05%
dataset #28 4110 m 5.77% 3.64% 1.06% 0.51%
dataset #18 2025 m 2.71% 2.29% 0.73% 0.65%
dataset #61 485 m 2.78% 2.34% 1.34% 0.91%
dataset #34 4509 m 3.99% 1.94% 1.96% 1.25%

Figure 7 shows the vehicle azimuth for dataset #27, dataset #28, dataset #18, dataset #61 and
dataset #34.
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Figure 7. Vehicle azimuth calculated by VO, VO-RI, VO-L and VO-L-RI, (a) for dataset #27; (b) for
dataset #28; (c) for dataset #18; (d) for dataset #61 and (e) for dataset #34.

As we can see from the above results, the integrated stereo Visual-LiDAR odometry and 3D
reduced IMU gives more accurate results than the other methods. For all data sets, this method drifts
more slowly and gives better results than other methods. The stereo visual-LiDAR odometry gives
better results than the stand alone stereo VO and the integrated stereo VO and reduced IMU for the
first four datasets which were collected in urban areas with buildings around. For dataset # 34, it is
slightly worse than the integrated stereo VO and reduced IMU, because this dataset was collected
in small roads with vegetations in the scene. The LiDAR odometry gives poorer results in suburban
areas, and it might fail if the point clouds are very sparse without any specific shape. Furthermore, the
integrated stereo Visual-LiDAR odometry and 3D reduced IMU azimuth is more accurate than other
methods. The integrated stereo visual-LiDAR odometry and reduced IMU can achieve accuracy at the
level of state of art results proposed by [4]. Zhang et al. [4] proposed a visual-LiDAR odometry and
mapping method with an average of 0.75% of relative position drift. Our method has an average of
0.78% of relative position drift in urban areas. Zhang et al. [4] uses monocular camera for VO and uses
LiDAR to remove the camera scale ambiguity; in other words, their method tightly couples monocular
camera and LiDAR. Afterwards, they used the output of monocular camera and LiDAR as the input
of ICP in order to refine pose estimation. In this paper, a stereo camera was used to remove scale
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ambiguity, and it does not depend on other sensors. LiDAR uses stereo VO outputs as the initial guess
for ICP and if stereo VO fails, LiDAR odometry can still work (we can use point cloud registration
methods to provide initial guess for ICP). Tightly coupled monocular camera and LIDAR is more
accurate than stereo VO. Therefore, the initial guess for ICP in [4] is better than our initial guess.
Therefore, vision-LiDAR block in [4] performs better than vision-LiDAR block in our method. On
the other hand, our proposed method is more reliable. In [4], if the point clouds are sparse, no depth
can be assigned to visual keypoints and there would be no solution for that epoch. In our system, if
LiDAR fails, stereo VO can still give us the solution. Finally, we add reduced IMU to our system to
reach similar accuracy as [4].

Unfortunately, online KITTI datasets did not include wheel odometer data; therefore, the wheel
odometer data in RISS, is replaced by RTK GPS/IMU forward velocity in order to compare simulated
RISS and proposed method. RTK GPS/IMU forward velocity is more accurate than wheel odometer
which suffers from many factors such as tyre slippage and tyre diameter variation due to the speed
and pressure changes [31]. Figure 8 shows RISS and integrated stereo VO-LIDAR and reduced IMU
pose estimation results for dataset #27, dataset #28, dataset #18, dataset #61 and dataset #34.
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Figure 8. Results of ego estimation using RISS and integrated Stereo VO-LiDAR and reduced IMU.
(a) shows results for dataset #27; (b) shows results for dataset #28; (c) shows results for dataset #18;
(d) shows results for dataset #61 and (e) shows results for dataset #34.
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Figure 9 shows the RMSE in the east, north and horizontal plane and horizontal error of estimated
positions for RISS and integrated Stereo VO-LiDAR and reduced IMU. Figure 9a show the results for
dataset #27, Figure 9b for dataset #28, Figute 9c for dataset #18, Figure 9d for dataset #61 and Figure 9e
for dataset #34.
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Figure 9. RMSE in east, north and horizontal plane for RISS and integrated Stereo VO-LiDAR and
reduced IMU. (a) shows results for dataset #27; (b) shows results for dataset #28; (c) shows results for
dataset #18; (d) shows results for dataset #61 and (e) shows results for dataset #34.

Although RTK GPS/IMU forward velocity is more accurate than wheel odometer as well as stereo
VO-LiDAR velocity, integrated stereo VO-LiDAR and reduced IMU outperforms simulated RISS for all
datasets except dataset # 61. In RISS, vertical gyro output, roll, pitch and forward velocity are used to
calculate the azimuth. RISS azimuth is accurate for short time and the azimuth accuracy degrades fast
due to gyro error accumulation. As we mentioned in the introduction part, stereo VO-LiDAR provides
both velocity and azimuth. Stereo VO-LiDAR azimuth is integrated with vertical gyro azimuth in the
proposed method resulting in more accurate and stable results. Simulated RISS results is better than
proposed method for dataset #61, because this dataset is very short (67 s only) and data ends before
vertcal gyro azimuth starts to deviate.

5. Conclusions

An integrated stereo visual-LiDAR odometry and reduced IMU is proposed in this paper in
which first the stereo visual odometer estimates ego motion which is used to register point clouds
then the GICP algorithm is used to refine the ego motion estimation, and, finally, the forward velocity
and azimuth obtained by a visual-LiDAR odometer are integrated with reduced IMU in an Extended
Kalman Filter (EKF) to provide final navigation solution. The proposed system outperforms the
simulated Reduced Inertial Sensor System (RISS). A stereo visual-LiDAR odometer provides not only
the translation but also the rotation between two laser scanner coordinate systems at consecutive
epochs. Therefore, we can calculate VO-LiDAR azimuth at each epoch which will be integrated with
the reduced IMU azimuth. The results show that the integrated stereo visual-LiDAR odometry and 3D
reduced IMU gives more accurate results than the stereo VO, the integrated stereo VO and reduced
IMU, and the stereo visual-LiDAR odometry. The stereo visual-LiDAR odomery is slightly worse than
the integrated stereo VO and reduced IMU in suburban areas (small roads with vegetations in the
scene). The results also indicate that the integrated stereo visual-LiDAR odometry and reduced IMU
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can achieve accuracy at the level comparable to the state-of-the-art. KITTI datasets do not include
wheel odometer data. To simulate RISS, the wheel odometer data was replaced by RTK GPS/IMU
forward velocity, which is more accurate than the wheel odometer. Integrated stereo VO-LIDAR and
reduced IMU outperforms simulated RISS for all datasets except dataset # 61. Dataset # 61 is very short
and data ends before vertical gyro azimuth starts to deviate.

6. Future Work

Extensive research has been done in odometry side slip estimation and compensation using a
standard IMU. In this paper, the KITTI datasets do not include specific data for side slip estimation,
and we will consider it as a future task.
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