ISPRS Int. J. Geo-Inf. 2015, 4, 2219-2245; doi:10.3390/1jgi4042219

ISPRS International Journal of

Geo-Information

ISSN 2220-9964

www.mdpi.com/journal/ijgi
Article

Processing: A Python Framework for the Seamless Integration
of Geoprocessing Tools in QGIS

Anita Graser * and Victor Olaya 2

! Austrian Institute of Technology, Giefinggasse 2, Vienna 1210, Austria
2 Boundless, 50 Broad Street, Suite 703, New York, NY 10004, USA; E-Mail: volayaf @ gmail.com

* Author to whom correspondence should be addressed; E-Mail: anita.graser @ait.ac.at
Academic Editor: Wolfgang Kainz

Received: 2 July 2015 / Accepted: 10 October 2015 / Published: 22 October 2015

Abstract: Processing is an object-oriented Python framework for the popular open
source Geographic Information System QGIS, which provides a seamless integration of
geoprocessing tools from a variety of different software libraries. In this paper, we present
the development history, software architecture and features of the Processing framework,
which make it a versatile tool for the development of geoprocessing algorithms and
workflows, as well as an efficient integration platform for algorithms from different sources.
Using real-world application examples, we furthermore illustrate how the Processing
architecture enables typical geoprocessing use cases in research and development, such
as automating and documenting workflows, combining algorithms from different software
libraries, as well as developing and integrating custom algorithms. Finally, we discuss
how Processing can facilitate reproducible research and provide an outlook towards future
development goals.

Keywords: QGIS; Python; geoprocessing; open source; software architecture

1. Introduction

Geographic information systems (GIS) have found widespread adoption in public administration,
industry and a multitude of research disciplines thanks to their capabilities to integrate heterogeneous
digital data and to provide data analysis, as well as their visualization functionality [1,2]. The
development of GIS follows two principal development paradigms [3,4]: the open source or the closed

ISPRS Int. J. Geo-Inf. 2015, 4 2220

source (often proprietary) development model. In the open source model, the source code is typically
published under a free software license, which grants the user four essential freedoms [5,6]: the rights
to run the code for any purpose, to study how the code works and to modify it, to redistribute copies and
even to redistribute modified copies.

QGIS [7] (formerly known as Quantum GIS) is one of the most popular open source GIS with a
growing user base and increasing importance in the education sector (see, for example, the courses
offered by [8,9]). It is a multi-purpose open source GIS, which can be used for spatial data creation,
editing, analysis and mapping. Besides the desktop GIS application, the QGIS project also provides
server and related web mapping applications, as well as versions adapted to the requirements of
mobile devices.

Processing 1s an object-oriented Python framework for QGIS. Although QGIS did include
geoprocessing tools before Processing was introduced, it lacked a comprehensive framework for spatial
analysis. The main goal of Processing is to provide a platform for the development of analysis algorithms
that makes it easy to implement and use these algorithms.

The remainder of this paper is structured as follows: Section 2 provides background information about
the development history of the QGIS Processing framework and similar existing technology. Section 3
describes the software architecture, algorithm integration for different source libraries, as well as the
current limitations of the framework. Section 4 presents a review of selected applications, and Section 5

summarizes the key points and discusses room for further development.

2. Background

QGIS is an open source GIS project, which was started in 2002. The initial goal of the QGIS project
was to create a spatial data viewer [7]. Today, QGIS has reached a point in its evolution where it is used
by a wide variety of users for daily spatial data viewing, editing, and analysis tasks [10], as well as in
education (for example, [8,9]). QGIS runs on most Linux and Unix platforms, Windows and Mac OS X
and has been published under the GNU (a collection of free software; the acronym stands for “GNU’s
not Unix”’) General Public License (GPL). The QGIS core is developed using the Qt toolkit and C++.
Additionally, QGIS provides a Python application program interface (API), which is used to expand its
functionality. As [11] note, a “powerful Python interface can help to efficiently exploit the capabilities of
a GIS” and integrate different tools and programming languages to expand it. This effect, an increasing
number of contributions, has been very noticeable since the introduction of the QGIS Python API in

QGIS 0.9 in 2007 when new developers started to add functionality using Python plugins.

2.1. Processing Goals and Motivation

The main goal of Processing is to create a platform for the development of geoprocessing algorithms
that makes it easy to implement and use these algorithms. Although QGIS did include geoprocessing
tools before Processing was developed, it lacked a comprehensive geoprocessing framework for
spatial analysis.

Already early on, QGIS provided an integration with the Geographic Resources Analysis Support
System (GRASS GIS) [12] through a dedicated GRASS plugin [4]. This plugin provides functionality

ISPRS Int. J. Geo-Inf. 2015, 4 2221

to import layers from QGIS to a GRASS mapset, apply GRASS geoprocessing algorithms to imported
layers and visualize the content of GRASS mapsets in QGIS. While this integration offers a way of using
GRASS algorithms from within the QGIS graphical user interface (GUI), it requires manual creation of
GRASS mapsets, as well as repeated imports and exports whenever the user wants to switch between
GRASS GIS and QGIS geoprocessing tools. This leads to cumbersome and error-prone workflows.

Besides the GRASS plugin, there is a variety of additional geoprocessing tools in the QGIS core
application, as well as other plugins. In particular, the following issues related to this multitude of
geoprocessing tools were identified:

e Heterogeneity: The implementation of existing tools was not homogeneous. Both in their
implementation style (such as the availability of progress indicators, automatic loading of results)
and GUI behavior (such as the order of entries in layer selectors, consistent closing of dialogues
when processes are finished, location of help buttons), the analysis tools were not consistent.

e Duplication: Code was not being reused. Routines, such as implementing a layer selector, were
implemented multiple times and not reused between tools.

e [solation: Existing tools could not be combined into processes.

Section 3 describes the Processing framework architecture and how it solves these issues in detail.

2.2. Development History

Processing is a full rewrite of the preceding Sistema Extremeio de Andlisis Territorial (SEXTANTE)
project, which was launched in 2004. Originally, SEXTANTE was written in Java and running on top
of the gvSIG desktop GIS. Eventually, SEXTANTE became an independent library with an analysis
framework, a set of algorithms built on top of it, graphical tools to use those algorithms and elaborate
analysis workflows. The original set of algorithms in the Java version of SEXTANTE was adapted from
the System for Automated Geoscientific Analyses (SAGA) project, a desktop GIS with advanced analysis
capabilities [13]. The decision to convert SEXTANTE into an independent library made it possible to
incorporate it into other Java-based GIS, such as OpenJUMP, uDig, Kosmo and OrbisGIS [14].

An important advancement in the framework design was introduced during the migration to QGIS
when the SEXTANTE framework was rewritten as a Python plugin: instead of porting the complete
set of algorithms to Python, a new approach was used, allowing SEXTANTE to connect to external
applications. Thus, the original SAGA binaries could be used to provide analytical capabilities.
We describe how this integration was achieved in detail in Section 3.4. Similar integration solutions
are implemented for other applications, such as GRASS GIS (see also Section 3.4), R (see Section 3.5)
or the ORFEO Toolbox (see Section 3.6).

In 2012, SEXTANTE was included as a QGIS core plugin and renamed Processing. Today, it is
the core geospatial data processing framework of the QGIS desktop GIS. Likewise, the Java version
of SEXTANTE has been integrated into gvSIG, and development is now done as part of gvSIG.
Therefore, the SEXTANTE framework is not available as an independent tool anymore.

ISPRS Int. J. Geo-Inf. 2015, 4 2222

2.3. Existing Similar Technology

Similar products exist for other desktop GIS. Apart from the already mentioned SEXTANTE platform,
which precedes Processing and had similar capabilities, Processing has many similarities with elements
in the ESRI ArcGIS platform, such as the ESRI ArcToolbox and the ESRI Model Builder. Although
similar in design, the following main differences can be identified:

e Adding algorithms to Processing does not require external development tools, but can be done
from within QGIS itself.

e Processing supports the customization of algorithm GUIs by providing access to Ul libraries.

e All parts of Processing are open source. Like all QGIS plugins, the source code of Processing has
to be released under a GPL license, since QGIS itself is released under GPL. Thus, it is possible
to verify the inner workings of each Processing component.

e On the other hand, advanced features, such as conditional flows or loops, are currently not possible
in the Processing Graphical Modeler.

3. Framework Architecture

This section presents a detailed description of the Processing framework architecture. Since this
architecture design builds on experience from multiple previous iterations of geoprocessing frameworks,
it provides a valuable reference for software engineers who might face similar challenges.
Furthermore, an understanding of the framework architecture enables researchers and developers to
choose the optimal integration strategy for their own tools.

Processing is written in Python and connects to the QGIS API, as well as external applications, such
as SAGA, GRASS GIS, R or ORFEO Toolbox binaries. It provides an integration layer between those
analytical applications and QGIS, making them easier and more efficient to use. To this end, Processing
was developed taking into account the following main goals:

e Efficiency: This enables efficient integration of analytical capabilities by connecting to original
binaries of other software, such as SAGA, GRASS GIS, R, or ORFEO Toolbox, instead of
duplicating development effort.

e Modularity: To ease the implementation of algorithms and provide consistent behavior across
different tools, the framework provides additional classes that implement commonly-needed
routines for modular integration.

e Flexibility: The implemented algorithms can be reused in any of the graphical tools included in the
framework, such as the graphical modeler or the batch processing interface. This does not require
additional work by the algorithm developer, since this flexibility is a feature of all algorithms
developed using the base Processing classes.

e Automatic GUI generation: Developers can focus on the algorithm itself instead of the GUI

elements. Processing takes care of generating GUIs based on the algorithm description.

Figure 1 provides an overview of the packages that make up Processing and their interactions with
external libraries. The following sections describe the Processing package content and the interactions
of the contained classes in detail.

ISPRS Int. J. Geo-Inf. 2015, 4 2223

qgis

processing

core tools gui modeler script

algs

qgis grass gdal GDAL/OGR

................... ---uses

I

r saga otb “. lidar taudem

USeS" | TauDEM

R SAGA ORFEO Toolbox GRASS GIS LAStools |

uses uses uses uses uses

Figure 1. Package diagram with Processing packages (highlighted in yellow) and
related packages.

The core package contains the central classes of the Processing framework. Figure 2 shows the
most important classes in this package (please note that for reasons of clarity, as well as to stay within
the restrictions of the paper format, we do not show every error, output, parameter or GUI class in
the following class diagrams). When the plugin is loaded, the ProcessingPlugin instance initializes
the core Processing class. This in turn initializes the ProcessingConfig and Processinglog and loads
the configured AlgorithmProviders. Each AlgorithmProvider contains a list of GeoAlgorithms, which
contain the logic for geospatial analysis algorithms, such as the required Parameters and Outputs.

More specifically, the implementation of algorithms in the GeoAlgorithm class involves two main
steps: first, the inputs required by the algorithm and the outputs that it will produce are specified.
These should be included in the defineCharacteristics() method, which populates the arrays of inputs
and outputs, defining the semantics of the algorithm. Additional parameters that describe the algorithm,
such as the name of the associated group, are also defined in this method. In some cases, for example,
where algorithms use a backend, such as GRASS or SAGA, parameters are not directly defined in these
methods. Instead, defineCharacteristics() reads the input and output descriptions from a file and uses
that information to populate the input and output arrays. This is done to simplify the process of adding
the large collections of algorithms that these backends provide by taking advantage of the fact that most
of them provide some mechanism of describing their algorithms. This makes is easier to adapt to new
versions of the backend software, where algorithms might have changed, since the necessary adaptations

are limited to changes in the description files and no Processing code has to be rewritten.

ISPRS Int. J. Geo-Inf. 2015

4

2224

ProcessingPlugin algs
init_) modeler | i qgis | grass | gdal | taudem |
initGui() ' | | | |
unload() :
openCommander H "
oEenTooIbox() 0 gui script H r | saga | otb | lidar | tools
openModeler() : | | | |
openResults() | | H
openHistory() N H N
9 X classes in these packages K '
openConfig() — 1 s ise aaa‘rnh'e;?}m? core classes ™™™ ;
core initiTzes \E/ ---use ---
X '
Processing GeoAlgorithm H
listeners parameters | OutputVector =
providers outputs
algs name —|
actions group 1
contextMenuActions crs %7
modeler showInToolbox
: showInModeler
addProvider() Processingtog allovlgOnllygpte:iAdL;yers Output
;TF?I"é?I'i::ﬂr::,lggrrr(l)l\lame() startLogging() S gfg"i;g'n e gzg'éeri tion
getPre initializes | addToLog() el P
initialize() mo value
updateAlgsList() hidden
loadFromProviders() H _init_() | open
updateProviders() use getCopy() n
addAlgListListener() ! geticon() +_init_()
;ﬁgxézﬁlsgtﬂztsl-gz:ggo initializes v/ gg;s(?faultlcon() : g::\\//:llllj:g.s(_‘,ommandLineParameter()
loadAlgorithms() i i processAlgorithm() .
loadActions() ProcessingConfig defineCharacteristics() +typeName():
loadContextMenuActions - etCustomParametersDialo
getAlgorithm() 0 |n|t|a||zg() Luser-- getcustomModeIerParametggDialog()
getAlgorithmFromFullName() getSettlng() getParameterDescriptions()
getObject() readSettings() checkBeforeOpeningParametersDialog() Parameter
runandload() A checkParametersValuesBeforeExecuting() 1 name
runAlgorithm() H execute() > description
H checkParameterValuesBeforeExecuting()
[} : runPostExecutionScript() value
use PreEecutionScript() isAvanced
S runPreEecutionScrip! S| hidden
n : runHookScript() n
. . ! convertUnsupportedFormats()
AlgorithmProvider | getFormatShortNameFromFilename() __init__()
activate checkOutputFileExtensions() setValue()
actions resolveTemporaryOutputs() getValueAsCommandLineParameter()
contextMenuActions setOutputCRS() typeName()
algs resolveDataObjects()
name checkInputCRS()
addOutput() Z}
addParameter()
__init__() 1 n | setParameterValue() | ParameterVector M
loadAlgorithms() et setOutputValue() —|
initializeSettings() getVisibleOutputsCount():
unload() getVisibleParametersCount() 2
getName() getHTMLOutputsCount()
getDescription() getOutputValuesAsDictionary()
geticon() commandLineName()
getSupportedOutputRasterLayerExtensions() removeOutputFromName()
getSupportedOutputVectorLayerExtensions() getOutputFromName()
getSupportedOutputTableExtensions() getParameterFromName()
supportsNonFileBasedOutputs() getParameterValue()
getOutputValue()
getAsCommand()

Figure 2. Class diagram of the core package and its connection to other packages.

As the second step, the algorithm code, which will use the inputs provided to the algorithms and
produce the outputs, is implemented in the processAlgorithm() method. This method must take the values
of the algorithm input parameters (which have been set by the user through any of the UI elements of
processing, such as the toolbox, batch processing interface, etc.) to compute outputs. Outputs are stored
in the locations specified by the user-defined output configuration (at the moment, only file output is
supported). Once the algorithm is implemented, it is added to the list of available algorithms. Processing
can then setup the algorithm, prepare the input datasets, execute the algorithm and later process the
resulting outputs. When the algorithm is executed, Processing runs the processAlgorithm() method,
along with ancillary methods, which check the integrity of the input and output configuration, resolve
output names (in the case of using temporary outputs, in which Processing itself sets the output file

ISPRS Int. J. Geo-Inf. 2015, 4 2225

path), among other tasks needed to ensure the correct execution. Specific algorithm implementations in
the different subpackages of the algs package will be discussed in the respective sections.

Besides core, the tools package contains essential utility functions and classes, which are used by
other packages. Utility functions include alglist(), which returns the full list of available algorithms.
Similarly, alghelp() displays the algorithm help text and parameter descriptions, and runalg() runs the
algorithm. See Listing 1 for usage examples.

Listing 1: Syntax of important utility functions of the tools package (for usage examples see https:

//docs.qgis.org/2.8/en/docs/user_manual/processing/console.html)

import processing

processing . alglist ()

processing . alghelp(name_of_the_algorithm)

processing .runalg (name_of_the_algorithm , paraml, param2, ..., paramN,
Outputl , Output2, ..., OutputN)

3.1. Graphical User Interface

Processing algorithms can be used by any of the framework’s graphical user interface elements.
The following GUI elements are currently implemented in the gui and modeler packages, as depicted in
Figures 3 and 4, respectively:

e The Toolbox (the gui.ProcessingToolbox class; for an example, see Figure 5) lists all available
algorithms in its algorithmTree and allows one to execute algorithms and models using the
AlgorithmDialog or BatchAlgorithmDialog. While the AlgorithmDialog is used to execute an
algorithm or model once, the BatchAlgorithmDialog (for an example, see Figure 6) enables
the repeated execution of an algorithm or model with varying parameter settings. The toolbox
furthermore implements a mechanism that provides so-called Actions. This mechanism enables
providers to extend the functionality of the toolbox and to provide tools that the provider needs.
An example of this is the Create new script action that is added by the R provider, which opens a
dialog for editing R scripts.

e The Commander (the gui. CommanderWindow class; for an example, see Figure 5) provides quick
access to algorithms and models through a quick launcher interface. This enables the user to
find and launch a geoprocessing tool by starting to type its name and picking the tool from the
suggested search results.

e The Graphical modeler (the modeler.ModelerDialog class; for examples, see Figures 7 and 8)
enables workflow automation by chaining individual tools into geoprocessing models. The visual
representation of the model is drawn in the ModelerScene and consists of ModelerGraphicltems
represented as boxes for input ModelParameters, Algorithms and ModelerOutputs, as well as
ModelerArrowltems connecting them. The available input options and algorithms are listed in
tree widgets similar to the one in the toolbox.

https://docs.qgis.org/2.8/en/docs/user_manual/processing/console.html
https://docs.qgis.org/2.8/en/docs/user_manual/processing/console.html

ISPRS Int. J. Geo-Inf. 2015, 4 2226

ProcessingPlugin core

init() AIgonthmProwder >| GeoAlgorithm Result ProcessingResults
initGui() name |
unload() fresults
openCommander() Processmg initializes filename 9
openToolbox() ' : init_() addResult()
openModeler() : = — getResult()
openResults() H ProcessingConfig |[-.__ | \
openHistory() use —_— execute
openConfig) | | /7777 Tttt .
gui
| ConfigDialog Ié/ ProcessingToolbox , AlgorithmClassification
) 3 modeComboBox : > — : \
ResultsDialo searchBox getClassification() ' 3 :
| 9 Ié’ algorithmTree : = ; AlgorithmExecutor use
v use” T . ;
| CommanderWindow Ié’ init e : Lo :32::gl(t)erating()
:] —init_() I >| AlgorithmDialog r_ S
textChanged() [JIPR 1
| HistoryDialog _filterltem() [| use use
Ié’ modeHasChanged() ---t-shpw 3 N Peel H
: > algListHasChanged() [k ST BatchAlgorithmDialog NES V
updateProvider() ' : E - - _> Postprocessing
showPopupMenu() N .
editRenderingStyles() b >| MessageDialog | handleAlgorithmResults()
executeAlgorithmAsBatchProcess() 1
executeAlgorithm() I
fillTree() AN >| EditRenderingStylesDialog |
addRecentAlgorithms() ' |: | AlgorithmDialogBase
fillTreeUsingCategories() H
fillTreeUsingProviders() H alg
1 mainWidget
1 TreeProviderltem _init__()
setMainWidget()
n| _init_ () error()
- refresh() D resetGUI()
: populate() setlnfo()
ToolboxAction setCommand()
1 setDebuglnfo()
__init__() -, n ! n setConsolelnfo()
setData() J \& ’ Q/ setPercentage()
getlcon() ' setText()
A S l TreeActionltem | TreeAlgorithmltem 1 setParamValues()
—I ContextAction o> setParamValue()
| —| alg accept()
finish()

Figure 3. Class diagram of the gui package and its connections to other packages.

Customization of the graphical user interface associated with each algorithm is possible, both for
execution from the toolbox, as well as for using the algorithm as part of a model. If no custom interface
is provided, Processing creates the interface automatically. This is the case for most algorithms. To create
the GUI, Processing uses the input and outputs of the algorithm, as defined in the algorithm description
method. Depending on the data type of the input or output, the corresponding widget is selected, and all
of them are arranged together in a simple AlgorithmDialog.

It is worth noting that models are instances of the ModelerAlgorithm class, which derives from the
core GeoAlgorithm class. This way, Processing can treat models like any other algorithm, and it is
possible to use both algorithms and existing models to build new models.

The following sections describe how Processing integrates algorithms from different analytical
applications, such as QGIS ftools, MMQGIS, GDAL/OGR, SAGA, GRASS GIS, R and ORFEO
Toolbox. These applications are supported by Processing out of the box. Further applications that
are integrated in Processing by default, but are discussed only briefly in Section 3.7 due to their limited
scope are TauDEM and Lastools. Finally, we show how new custom algorithms can be added and discuss

the current limitations of the Processing framework.

ISPRS Int. J. Geo-Inf. 2015, 4

core

2227

AlgorithmProvider

| | ProcessingPlugin

n%l GeoAlgorithm
[

Ji\

]
[}

: 1 :
: load based é
H onmodelsin _____ nx, ModelerAlgorithm I H
use modelsFolder() H
H algs E
H modelerdialog
: descriptionFile ModelerDialog 1 n. TreeAlgorithmitem
: helpContent |
! inputs alg
! scene
H view
H addAlgorithm() ModelerScene
E getNameForAlgorithm() 1 1 | paramltems
E updaIeAIgothm() editHelp() algltems
: remove/’:lgorlth:n()() runModel() outputitems
: removeParameter|
; hasDependencies() leed ::\ezagzlerﬂ?ge() N
: getDependsOnAlgorithms() openModel() getParameterPositions()
: getDependenthlgorithims{) fillAlgorithm TreeUsingProviders() 1
: setPositions() filAigorithmTreeUsingCategories() ModelerArrowitem
H prepareAlgorithm()
: s use------- deactivateAlgorithm()
! : activateAlgorithm() H— ModelerGraphicltem
' \/ getSafeNameForOutput() . —_—
: - resolveValue() Vo
: ModelerUtils getMinCoveringExtent() . >, ValueFrominput
H - addToRegion() o " —-_—=
: allAigs: d'_c“f’"_a"y setModelerView() Vo
i.5,| Providers: dictionary updateModelerView() i | | AddModelFromFileAction ~ ValueFromOutput
todict() - T
modelsFolder() ;OJS?J”() nfgze
getAlgorithm() f:ngzg:gile() N
E E : exeaute() c Action DeleteModelAction

EditModelAction

E|

V

AlgorithmClassification

| AlgorithmDialog

ToolboxAction ContextAction

Figure 4. Class diagram of the modeler package and its connections to other packages.

&

Project Edit View Layer Plugins

DEEBRR

Settings

QGIS cb7f9b4 - 0
Vector Raster Datsbase Web MMQGIS Processing Help
< e o

OB 2L P RPPL RS

abe

g e AO0RTIRO 2 A

Procassing Toolbox

GES]

P/ B2 -
Layers
buffer|

el A g = g

|-

% [ne 10m admin ...

Browser
LT ®TO
1. ne_10m_admin_1_statd~|
ne_10m_admin_1_stal

ne_10m_admin_0_anta
ne_10m_admin_0_anta

ne_10m_admin_0_bour

ne_10m_admin_0_bou
ne_mm_admun_n_hnu:@

4

NP AHHOVYINAN

Th

Processing algorithm:
Processing algorithm:
Processing algorithm:
Processing algorithm:
Processing algorithm:
Processing algorithm:
Processing algorithm:
Menu action: Buffer(s)...

Menu action: Create Buffers

Buffer vectors

rbuffer - Creates a

Single sided buffers (and offset lines) for lines

w.bufferdistance - Creates a buffer around features of given type.
v.buffer.column - Creates a buffer around features of given type.

Variable distance buffer
Fixed distance buffer

Recently used algorithms
Concave hull by k-nearest neighbars [2 ge...
& GDAL/OGR [45 geaalgorithms]

GRASS commands [160 geoalgorithms]
3 Orfeo Toobox (Image analysis) [83 geoslg
7 QGIS geoslgorithms [27 geoalgorithms]

Models [4 geoalgorithms]
E Scripts [10 geoalgorithms]

raster map layer showing buffer zones surroundi..

11.54,64.36

Advanced interface

2| Render @ ersciaszs @ y

-

cale 1:17056 454 | ¥

.otation | 0,0

Figure 5. Processing Toolbox (right panel) and Commander with auto-complete (top center).

ISPRS Int. J. Geo-Inf. 2015, 4

2228

Parameters Log | Help
® =
Input layer Distance Segments Dissolve result Buffer Load in QGIS
I 10.0 5 No - \ Yes -
I 10.0 5 No - \ Yes -
I 10.0 5 No - “ Yes -
0% |
Run] [Close]
Figure 6. Processing Batch processing GUI.
] I/] Processing modeler (RN
BR| (2|
[Search... [Feature_Overlap_Slopels [Seismic_Micmzonation_[level_l]
»- & GDAL/OGR =
»-y GRASS commands e
*- &% Modeler-only tools P
*- & Models . // e ‘W v.to.rast.attribute - Conver... §|
* - Orfeo Toolbox (Image analysis) - S
- ¥ QGIS geoalgorithms / Out
[SAGA (2.1.4) /
& o
_==In =
T
/’/ |ﬁ rsurf.contour - Surface gen...§|
Out *~—
4:'
|i Slope g‘
Out =l
\\ /_'_,,—’
H“‘“‘L/O'Iln
"f r.mapcalculator - Calculate §|
out —
o
|ﬁ Polygonize (raster to vector) 5‘
\x Out -~
ey o
e
T en
|’! Intersection 5‘
Out -~
\

Inputs | Algerithms

KID)

Figure 7. Model for the creation of Level 1 seismic microzonation maps as used for [15]
and described in [16].

ISPRS Int. J. Geo-Inf. 2015, 4

2229

B B | & |E
[} Parameters Check positional accuracy Netwark comparison
4 Boolean — — — — =]
o Exent 4 reference graph o | buffer size o | regions 2| | graph o =
4k File .
4P Mumber In Disselve result In In
aster layer x egments ™
dF Raster lay P 5 t: 2 p i
4F String . Reproject reference graph & Distance + Reproject regions & # Reproject graph i
4 Table out = Input layer out 2 out =]
F Table field Reprojected layer in B Reprojected layer Reprojected layer L
aP Vector layer >
£ Buffer reference graph Vi
Qut =]
Buffer
Difference layer
Input layer
In a
4 e Lines count field name Lines count field name
Difference & Lines length field name Lines length field name
out g Palygons Palygons
Differefie Lines Lines
In =] In a
Difference layer p %X [x
Input layer <+ Sum line lengths in buffer & 4 Sum line lengths in regions &
In =} out =] out =]
p - Result Result
/ Difference2 s
Formula
&g I
Out =] Create new field
Difference Field precision
P xn Table field 2 Field length
: & Table fie Field type
F region id field 2 bl field d
Ifput layer 2 Result field name
Input layer Input layer
In a In a
4 X |y x
Join attributes table & # Field calculator &
Cut Out
¥ positional accuracy check... =]
Inputs | Algorithms < G

Figure 8. Positional accuracy comparison model; updated version of the model published
in [17].

core

AlgorithmProvider GeoAlgorithm

lpmmmmmmmmmm e e e mm~
T

algorithms use classes and —
fungtions from these packages

script

ScriptUtils

QGISAlgorithmProvider

1 ‘ — |each
<<-{-use --} - >—— ExtractNodes |

algorithm is
, limplemented

ui L in its own

class

Figure 9. Class diagram of the qgis package and its connections to other packages.

3.2. QGIS Ftools and MMQGIS Integration

ftools and MMQGIS [18] are two algorithm collections focusing on vector geoprocessing tools,
which are provided as QGIS plugins. The algorithms from these collections were manually converted

to Processing algorithms and are organized in the qgis package, as illustrated in Figure 9. This was

ISPRS Int. J. Geo-Inf. 2015, 4 2230

achieved by adapting the tool code to the specific format of the GeoAlgorithm class, which is the base
for all Processing algorithms.

Listing 2: Implementation of the ftools Extract nodes tool (shortened, for the full script see https://github.
com/qgis/QGIS/blob/master/python/plugins/processing/algs/qgis/ExtractNodes.py)

from qgis.core import QGis, QgsFeature, QgsGeometry
from processing.core.GeoAlgorithm import GeoAlgorithm
from processing.core.parameters import ParameterVector
from processing.core.outputs import OutputVector

from processing.tools import dataobjects , vector

class ExtractNodes (GeoAlgorithm):
INPUT = ’INPUT’
OUTPUT = ’OUTPUT’

def defineCharacteristics(self):
self .name = “Extract nodes’
self.group = *Vector geometry tools’
self .addParameter (ParameterVector(self .INPUT,
self.tr(’Input layer’),
[ParameterVector . VECTOR_TYPE_POLYGON,
ParameterVector . VECTOR_TYPE_LINE]))
self.addOutput(OutputVector(self .OUTPUT,

self.tr (’Output layer ’)))

def processAlgorithm (self , progress):
layer = dataobjects.getObjectFromUri (
self.getParameterValue (self .INPUT))
writer = self.getOutputFromName (self .OUTPUT)
.getVectorWriter (
layer.pendingFields () .toList (),
QGis. WKBPoint, layer.crs())
outFeat = QgsFeature ()
outGeom = QgsGeometry ()
for f in vector.features (layer):
points = vector.extractPoints (f.geometry())
outFeat.setAttributes (f.attributes ())
for 1 in points:
outFeat.setGeometry (outGeom. fromPoint (1))
writer .addFeature (outFeat)
del writer

https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/qgis/ExtractNodes.py
https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/qgis/ExtractNodes.py

ISPRS Int. J. Geo-Inf. 2015, 4 2231

These tools make extensive use of the QGIS Python API and the geoprocessing algorithms
implemented in the QGIS core application. Listing 2 shows a shortened version of the Processing
implementation of the ftools Extract nodes tool. This example illustrates how the new algorithm
extends the GeoAlgorithm class and implements the two methods defineCharacteristics() and
processAlgorithm(), which, respectively, describe and run the algorithm.

3.3. GDAL/OGR Integration

GDAL (Geospatial Data Abstraction Library) is a translator library for raster and vector geospatial
data formats. Traditionally, GDAL used to focus on the raster part of the library and OGR the
vector part for simple features. Starting with GDAL 2.0, both parts have been integrated more
tightly. Multiple applications, such as QGIS, use this library for reading and writing spatial data.
It implements a single raster abstract data model and vector abstract data model for all supported
formats. Additionally, GDAL comes with a variety of command line utilities for data translation and
processing [19].

The GdalOgrAlgorithmProvider integrates GDAL-based algorithms into the Processing framework,
as illustrated in Figure 10. Individual algorithms extend the GdalAlgorithm or OGRAlgorithm class and
have been implemented using two different mechanisms: calling the GDAL/OGR Python bindings or
using the GDAL command line interface.

core tools

1
AlgorithmProvider @——n> GeoAlgorithm I Y .

A A ;
algs e usée A

gdal

N> OGRAIgorithm I I T algorithms use functions
(from this package

rasterize

GdalOgrAlgorithmProvider 1¢4 u \Vi
L GdalUtils
r—)
runGdal()
N> GdalAlgorithm - - use- > getConsoleOutput
getSupportedRasters|()
e 4 getSupportedRasterExtensions()
L= getFormatShortNameFromFilename()
GdalAlgorithmDialog ExtractProjection M escapeAndJoin()

Figure 10. Class diagram of the gdal package and its connections to other packages.

ISPRS Int. J. Geo-Inf. 2015, 4 2232

When GDAL/OGR Python bindings exist for a function, the corresponding GdalAlgorithm or
OGRAlgorithm calls GDAL/OGR, as shown in the example in Listing 3, which uses GDAL to extract
projection information from an input file.

Listing 3: Integration of Extract projection using GDAL Python bindings (shortened, for the full script
see https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/gdal/extractprojection.py)
from osgeo import gdal, osr

from processing.algs.gdal.GdalAlgorithm import GdalAlgorithm
class ExtractProjection (GdalAlgorithm):

def processAlgorithm (self , progress):
rasterPath = self.getParameterValue (self .INPUT)
createPrj = self.getParameterValue (self.PRJ_FILE)
raster = gdal.Open(unicode(rasterPath))
crs = raster.GetProjection ()

Listing 4: Integration of Clip raster by extent using the command line interface (shortened, for the full
script see https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/gdal/ClipByExtent.py)
from processing.algs.gdal.GdalAlgorithm import GdalAlgorithm

from processing.algs.gdal.GdalUtils import GdalUtils

class ClipByExtent(GdalAlgorithm):

def processAlgorithm (self , progress):
out = self.getOutputValue (self.OUTPUT)
noData = str(self.getParameterValue(self .NO_DATA))
projwin = str(self.getParameterValue (self .PROJWIN))
extra = str(self.getParameterValue(self .EXTRA))
arguments = []
arguments . append(’—of)

arguments . append (GdalUtils . getFormatShortNameFromFilename (out))

regionCoords = projwin.split(’,”)
arguments . append(’—projwin)
arguments . append (regionCoords [0])
arguments . append (regionCoords [3])
arguments . append(regionCoords [1])
arguments . append (regionCoords [2])
GdalUtils .runGdal ([> gdal_translate ’
GdalUtils .escapeAndJoin (arguments)], progress)

b

https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/gdal/extractprojection.py
https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/gdal/ClipByExtent.py

ISPRS Int. J. Geo-Inf. 2015, 4 2233

Other algorithms, such as warp, translate, contour or clipping (see Listing 4), are called directly using
the command line interface. All algorithms in the GDAL provider that call GDAL tools on the command
line rely on the GdalUtils.runGdal() method. This method takes care of preparing the command line
based on the parameter values, as well as the platform being used. It also handles the output created by
the GDAL algorithms and provides progress indication and logging of output content.

3.4. SAGA and GRASS GIS Integration

SAGA and GRASS have been integrated in Processing in a similar manner; therefore, their integration
is described together in this shared section.

The System for Automated Geoscientific Analyses (SAGA) is a GIS focusing on spatial data
processing and analysis [13]. SAGA functions are organized as modules in framework-independent
module libraries and can be accessed via SAGA’s graphical user interface or various scripting
environments, such as shell scripts, Python or R [20].

The Geographic Resources Analysis Support System (GRASS GIS) is a multi-purpose open source
GIS [21]. It supports 2D and 3D raster and vector data and includes vector network analysis functions,
spatial modeling algorithms, 3D visualization, as well as image processing routines pertaining to LiDAR
and multi-band imagery [4].

core
- " 1 n -
AlgorithmProvider P GeoAlgorithm ---->| ProcessinglLog ProcessingConfig
A
------------------------ use
algs H !
saga : :
SagaAlgorithmProvider
supportedVersions | i s
¢ 1 SagaGroupNameDecorator
load based n : :
— SagaAlgorithm212 ' roups
on description gafgort : group
files in A :
sagaDescriptionPath() L : getDecoratedName()
|
supports :
different SagaAlgorithm213 u:se SagaUtils
versions of \
SAGA: 2.1.2, |. ! sagaBatchJobFilename()
2.1.3,and 2.1.4| ‘ findSagaFolder()
N >->>! sagaPath()
SagaAlgorithm214 H sagaDescriptionPath()
| createSagaBatchJobFileFromSagaCommands()
use | getSagalnstalledVersion()
' executeSaga()
SplitRGBBands
> 1

Figure 11. Class diagram of the saga package and its connections to other packages.

Both SAGA and GRASS GIS offer a great number of algorithms, and their executables are included
in most QGIS packages, so there is no need to install them separately to have this functionality available.
Although both SAGA and GRASS GIS can be called from Python using their corresponding Python

ISPRS Int. J. Geo-Inf. 2015, 4 2234

APIs, Processing uses their command line interfaces, since these have proven to provide more stability
(at least at the time of the initial implementation) and allowed for a quicker implementation of a large
number of algorithms. As shown in Figure 11, Processing currently supports SAGA Versions 2.1.2,
2.1.3 and 2.1.4 through the SagaAlgorithm212, SagaAlgorithm213 and SagaAlgorithm214 classes
implemented in the saga package, respectively. Similarly, GRASS 6 and 7 are supported through the
grass and grass7 packages, as shown in Figure 12.

core
1 n
lAIgori(hmProvider l. >l GeoAlgorithm }>[ProcessingLog I l ProcessingConfig
B ; ;
algs () : use
USe T m e ‘ !
grass7 grass : '
I Grass7AlgorithmProvider l ‘ I GrassAlgorithmProvider l 77777777777777777777777777777777 N GrassUtils
E ; E { .
Josianad \.ivke : grassBatchJobFilename()
the grass nviz : grassScriptFilename()
aclga e for : getGrassVersion()
P g " H grassPath()
GRASS 6 getTempFilename() : grassWinShell()
expornt\éeciorll:ayer() ‘ grassDescriptionPath()
exfg f aicer"ayer() e o createGrassScript()
load based getDefaultCellsize() H createGrassBatchJobFileFromGrassCommands()
on dﬁscr_'p“on H grassMapsetFolder()
lles in
> use-=» grassDataFolder()
grassDescriptionPath() - : > createTempMapset()
GrassAlgorithm : writeGrassWindow()

: prepareGrassExecution()
exportVectorLayer() H executeGrass()
setSessionProjectionFromProject() | ../ startGrassSession()
setSessionProjectionFromLayer() endGrassSession()

n exportRasterLayer() getSessionLayers()
getTempFilename() addSessionLayers()
checkGrasslsInstalled()

Figure 12. Class diagram of the grass and grass7 packages and their connections to
other packages.

More specifically, SAGA and GRASS GIS integration is achieved using four main steps: description
of algorithm inputs and outputs, input data preparation, algorithm execution and output handling.

Listing 5: Algorithm description for GRASS v.voronoi (as given in https://github.com/qgis/QGIS/blob/
master/python/plugins/processing/algs/grass/description/v.voronoi.txt)
v.voronoi
v.voronoi — Creates a Voronoi diagram from an input vector layer
containing points.
Vector (v.x)
ParameterVector|input|Input points layer |0l False
ParameterBoolean|—1|Output tessellation as a graph (lines),not areas
| False
ParameterBooleanl—t|Do not create attribute tablelFalse

OutputVector | outputl| Voronoi diagram

Descriptions of the algorithm inputs and outputs are necessary to automatically create the GUI,
run the algorithm, as well as to know which outputs will be generated. This information is stored
in a separate file for each algorithm. The location of these description files can be accessed using
SagaUtils.sagaDesriptionPath() and GrassUtils.grassDescriptionPath(), respectively. Both SAGA and

https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/grass/description/v.voronoi.txt
https://github.com/qgis/QGIS/blob/master/python/plugins/processing/algs/grass/description/v.voronoi.txt

ISPRS Int. J. Geo-Inf. 2015, 4 2235

GRASS provide methods to describe their algorithms. These methods simplify the integration, since
it is not necessary to create the algorithm description files manually. Listing 5 shows an example
description for the GRASS GIS v.voronoi algorithm, which features one input and one output, as well as
two configuration parameters.

The second integration step is the preparation of the input datasets. This is necessary since SAGA
and GRASS GIS use their own formats for vector and raster data, and layers in popular formats that
are supported by QGIS cannot be directly used by them. Therefore, Processing takes care of converting
layers into the required formats before calling the algorithm. This provides a seamless integration into
QGIS, allowing the user to use data, even if it is stored in a format that is not natively supported by
SAGA or GRASS GIS. Additionally, in the case of vector layers, the data conversion can also make
SAGA and GRASS GIS aware of feature selections by converting only the selected features before
calling the algorithm.

In the third integration step, the algorithm is executed using either the original input layer (if the data
type is natively supported) or the converted layers.

The final and fourth integration step is the handling of outputs. Processing receives the output
generated by SAGA/GRASS GIS and adds it to the current QGIS project. If the output format specified
by the user is not supported by SAGA/GRASS GIS, Processing will take care of converting the output
before loading the layer. For instance, SAGA does support conversion from its native raster format into
TIFF format, but cannot produce a TIFF file directly. Therefore, if the user specifies a TIFF output, it is
necessary to first create a native SAGA raster layer, which can then be converted to TIFF by calling the
SAGA conversion algorithm.

Depending on the format, data conversions for both input and output are performed using
functions provided by QGIS or the external application. Conversions using SAGA/GRASS GIS
require several calls to the application. Therefore, all calls necessary to convert data and run the
algorithm are written to a script file using SagaUtils.createSagaBatchJobFileFromSagaCommands()
and GrassUtils.createGrassBatchJobFileFromGrassCommands(), respectively, which is then executed

in one go.

3.5. R Integration

R is a system for statistical computation and graphics. It consists of a language plus a run-time
environment to run programs stored in script files [22]. The R project also provides packages, functions,
classes and methods for handling spatial data [23].

Processing integrates R into QGIS, enabling users to run R scripts from within QGIS and use QGIS
layers as inputs. Figure 13 shows the classes of the r package. Similar to the SAGA/GRASS GIS
integration, R integration includes data conversion routines for inputs and outputs, and it runs R on the
command line using RUtils.executeRAlgorithm(). The main difference is that the RAlgorithmProvider
does not offer any predefined algorithms. Instead, it enables the users to create their own algorithms,
which can be written using a built-in text editor and can be stored and used in future sessions.

The location of the R scripts can be accessed using RUtils.RScriptsFolder().

ISPRS Int. J. Geo-Inf. 2015, 4 2236

R scripts in Processing use the standard R syntax extended by additional header elements (represented
by code lines starting with double hashes ##), which provide the information Processing needs to
understand the context, as well as the inputs and outputs of the algorithms. An example using R to

compute and display a histogram is given in Listing 6.

3.6. ORFEO Toolbox Integration

The ORFEO Toolbox (OTB) is a library of image processing algorithms, which is based on the
medical image processing library Insight Segmentation and Registration Toolkit (ITK) . It provides
functionality for remote sensing image processing in general and for high spatial resolution images in

particular [24].
core
1
AlgorithmProvider ‘ﬁ\n GeoAlgorithm ProcessinglLog ProcessingConfig
N A A A
algs T T ; '
] | |
i ! us'e
RAlgorithmProvider ~ |-------f--- US@-==g=mmmmmmmmmmmmn ' :
loadFromFolder() e > RUtils
1 RScriptsFolder()
RAlgorithm RLibs()
S RScriptsFolder()
+ item: atribute createRScriptFromRCommands()
getRScriptFilename()
load based defineCharacteristicsFromScript() getConsoleQutputFilename()
on files in defineCharacteristicsFromFile() executeRAlgorithm()
RScriptsFolder() | parseDescription() createConsoleOutput()
getVerboseCommands() getConsoleOutput()

n | createDescriptiveName() checkRlsInstalled()
processParameterLine() getRequiredPackages()
getFullSetOfRCommands()
getExportCommands()
getlmportCommands() /\
getRCommands() }-------s Use -------- A

Figure 13. Class diagram of the R package and its connections to other packages.

Listing 6: Processing R script for the R Histogram function (as given in https://github.com/qgis/QGIS/blob/
release-2_8/python/plugins/processing/algs/r/scripts/Histogram.rsx)

##Vector processing=group

##showplots

##Layer=vector

##Field=Field Layer

hist(Layer [[Field]], main=paste (" Histogram of",Field),
xlab=paste (Field))

https://github.com/qgis/QGIS/blob/release-2_8/python/plugins/processing/algs/r/scripts/Histogram.rsx
https://github.com/qgis/QGIS/blob/release-2_8/python/plugins/processing/algs/r/scripts/Histogram.rsx

ISPRS Int. J. Geo-Inf. 2015, 4 2237

Figure 14 shows the classes of the otb package. The integration of OTB into Processing is
similar to that of SAGA and GRASS GIS, since it calls the corresponding command line tools,
which are located in the OTBUftils.otbDescriptionPath() and then loads the output images generated
by them. To simplify the execution of certain algorithms that require similar parameters, some of
those parameters have been added to the OTBAlgorithmProvider configuration settings, so that they
can be configured once and then be used automatically whenever an algorithm that requires them is
run. In particular, the SRTM (Shuttle Radar Topography Mission) tiles folder parameter (which can be
accessed using OTBUtils.otbSRTMPath()) and the geoid file parameter (which can be accessed using
OTBUtils.otbGeoidPath()) will be used by default in the parameters dialog of an OTB algorithm that
uses any of them.

core

1
AlgorithmProvider |@—n,| GeoAlgorithm | _____ >| ProcessingLog ProcessingConfig
[N A A A

algs \ S rmmmmee !

otb \ usle
Y : :
OTBAlgorithmProvider [______|____. USE@--mmmmmmmm ¢ .
‘ OTBUtils
» .
> findOtbPath()
load based OTBAIgorithm otbPath()
on description findOtbLibPath()
files in + item: attribute otbLibPath()
otbDescriptionPath() --use---> otbSRTMPath()
n : : otbGeoidPath()
‘| adapt_list_to_string() L
get_list_from_node() othetscgfglonPath()
defineCharacteristicsFromFile() executeOtb()

Figure 14. Class diagram of the otb package and its connections to other packages.

3.7. Integration with Other Backends

Algorithm providers that integrate other backends, such as LWGEOM, are available, as well.
However, these providers are not part of Processing itself and exist as independent plugins that work
on top of Processing, taking advantage of its modular and pluggable architecture.

The TauDEM provider represents a special case. TauDEM (Terrain Analysis Using Digital Elevation
Models) is a suite of digital elevation model (DEM) tools for the extraction and analysis of hydrological
information from topography as represented by a DEM [25]. The TauDEM provider is a core provider
due to historical reasons. It was added to Processing when the framework itself was still in development,
and it has been kept there despite being highly specific rather than of general interest.

A similar situation is found in the case of the LiDAR provider, which provides a frontend for two
popular tools for working with LiDAR data: LAStools and Fusion. Although part of the core Processing

ISPRS Int. J. Geo-Inf. 2015, 4 2238

distribution, these providers are disabled by default, as they require backends that need to be installed
separately and are not included in the most common QGIS distributions.

The number of QGIS plugins that extend Processing with new providers is growing, and most of them
use techniques similar to the ones described in the above sections. Those providers are, however, not
described here. The following section describes this expanding Processing with new providers, as well

as other available options.

3.8. Development of New Algorithms

New algorithms can be integrated into Processing using three different techniques, with increasing
complexity: writing a Python Processing script, creating a new QGIS plugin, which implements a
Processing provider, or adding new classes to the Processing core.

Creating a python script is the most straight-forward way to add new algorithms to Processing. These
scripts are handled by the script package depicted in Figure 15. Scripts are simple to create, since
they can be written directly in QGIS, using the built-in editor. This is the recommended approach for
most cases. Users can share scripts and associated documentation (in .help files) on a dedicated Github
repository [26], and other users can download these tools using the built-in “Get scripts/models from

online source” functionality. The location of the scripts can be accessed using ScriptUtils.scriptsFolder().

gui
ToolboxAction core |
L 1 n -
5;3;58 | AlgorithmProvider M GeoAlgorithm Il>| ProcessingLog | | ProcessingConfig
getlcon() L D ! A x
script L\l \ eoUges e n oo 4
AddScriptFromFileAction \ :
| ScriptAlgorithmProvider |....uSe... > ScriptUtils
name
roup
i NN & 1 _________________ APPSR S, > scriptsFolder()
execute() loadFromFolder()
load based ScriptAlgorithm
on files in
scriptsFolder() I defineCharacteristicsFromScript()

createDescriptiveName()
processParameterLine()
processDescriptionParameterLine()

Figure 15. Class diagram of the script package and its connections to other packages.

Listing 7 shows an example script, which increments the value in the given input field of the input
vector layer by one and outputs the result as a new vector layer. The first three lines marked by
double hashes ## contain the input and output configuration. The remainder of the script performs the
data processing. This example also serves to show how Processing supports efficient implementation
by providing easy to use functions, such as processing.getObject() to read the input data and the
processing.core.VectorWriter class to save the results.

The second option is creating a new QGIS plugin, which implements a Processing provider.
A provider wraps a set of algorithms, and it can be registered on the Processing framework, telling
Processing to display its algorithms to the user. This allows one to create new stand-alone plugins that

ISPRS Int. J. Geo-Inf. 2015, 4 2239

integrate with Processing. Their algorithms can be enabled or disabled by enabling or disabling the

respective plugin using the QGIS plugin manager.

Listing 7: Example Processing script demonstrating script input and output configuration

##input=vector
##field=field input

##results=output vector

from qgis.core import x

from processing.core.VectorWriter import VectorWriter

layer = processing.getObject(input)

writer = VectorWriter(results , None, layer.pendingFields (),

for

del

layer.dataProvider () .geometryType () ,
layer.crs())

feat in layer.getFeatures ():

feat.setAttribute (field , feat|[field]+1)

writer .addFeature (feat)

writer

The most advanced third option is to add classes to the Processing core. This is restricted to core

developers and not recommended for regular users.

3.9. Limitations

Processing has certain limitations, particularly when it comes to integrating external applications.

This is mostly due to restrictions in the semantics of the algorithms, which in some cases make it

difficult or impossible to create certain types of algorithms. The following limitations of the Processing

framework for defining algorithms should be noted:

e Inputs and outputs are fixed, and optional parameters or outputs are not supported. This limitation

was introduced deliberately in order to ensure correct working and efficient implementation of
algorithm workflow support using Processing models. It is worth noting that the algorithm design,
which handles the list of outputs and inputs, could easily accommodate optional parameters, but
they would increase the complexity of Processing models. Therefore, restrictions were imposed
when the GeoAlgorithm class was designed. There is currently no short- or medium-term plan to
add support for optional parameters and outputs, since this might require a rewrite of the Modeler.

e Algorithms cannot have any type of interactivity and should work in a black box way, receiving

inputs and providing output files without the user participating in the process. This limitation
was introduced to ensure that models generated from Processing algorithms can run automatically
without the need for user actions.

Performance is reduced when the input dataset has to be converted. This is particularly noticeable
with large datasets. Currently, Processing does not take advantage of the fact that it is not necessary

ISPRS Int. J. Geo-Inf. 2015, 4 2240

to convert datasets when chaining several algorithms of the same provider. An optimization

mechanism is currently under development.

In the particular case of the SAGA and GRASS GIS integration, these limitations have been handled
manually, adapting those algorithms that could not be integrated directly in their current form or

removing them in some cases. The following are some of the limitations of the SAGA integration:

e SAGA’s interactive algorithms, such as kriging with interactive variogram fitting, have not been
added to Processing.

e Single algorithms implementing multiple methods with optional parameters were split into
multiple Processing algorithms. This solution was used, for example, for the SAGA
buffer algorithm, which was split into one Processing algorithm for each method with its
respective parameters.

e SAGA support for vector data, when used on the command line, is limited to shapefiles. This leads
to inconsistent results, especially when the original dataset contains field names longer than
10 characters, which are not supported by the DBF (dBASE database file) format used to store
attribute data in shapefiles.

4. Use Cases and Application Examples

This section discusses typical geoprocessing use cases in research and development and how the
design of Processing supports them. The presented use cases include automating and documenting
geoprocessing workflows consisting of algorithms from one or more sources using models and scripts,
implementing new algorithms, as well as sharing models or scripts to facilitate reproducible research.
The real-world application examples used to illustrate these use cases span the fields of ecology, data
quality assessment, mobility research, risk assessment and geology.

4.1. Workflow Automation and Documentation

A core use case of the Processing framework is workflow automation. By automating workflows,
users can increase their efficiency by reducing time spent on repetitive tasks. Additionally, models and
scripts can also serve as a means to document workflow steps. Automation can be achieved by chaining
tools in geoprocessing models or by calling algorithms in Python scripts.

Workflow automation using geoprocessing models is used, for example, by [27], who use a model
combining SAGA and GDAL algorithms to create a hydrological network for their assessment of the
effects of forest certification on the ecological condition of Mediterranean streams. While both SAGA
and GDAL algorithms could also be accessed from the command line, the possibility of integrating
algorithms from both sources in a graphical model enables the researcher to focus fully on the actual
analysis, rather than having to deal with the particularities and command line syntax of the involved tools.

Further examples of Processing model applications can be found in the QGIS case study section: [28]
presents a model to map hotspot areas for biodiversity and ecosystem services, which combines GRASS
GIS, SAGA and QGIS tools; [29] presents a model to compute forest fire risk, which combines GRASS
GIS, SAGA and QGIS tools (more specifically, QGIS ftools and MMQGIS). Most recently, [16]

ISPRS Int. J. Geo-Inf. 2015, 4 2241

presented a model to automate the identification of unstable seismic zones combining GRASS GIS,
GDAL and QGIS algorithms, as depicted in Figure 7.

To further automate spatial analyses, Processing scripts and models can be called from the command
line and within Python scripts. For example, [30] developed a Processing script that computes energy
estimates for electric vehicles on a certain route. To compare the influence of different input datasets and
parameter settings, they employ a Python script that handles calling the Processing script with different
combinations of input datasets and parameter settings. Listing 8 shows a simplified version of the script,
which illustrates how user-generated Processing scripts (such as the estimateenergy script) and other
Processing tools (such as ggis:basicstatisticsfornumericfields) can be called using processing.runalg()
and their results used, in this example, to compute descriptive statistics.

Listing 8: Example usage of Processing on the command line (simplified version of the script used

for [30])

import processing

out_path = "/home/user/output.shp"

processing .runalg (" script:estimateenergy ",
"input.shp","i1d" ,"/home/user/input. tif",v,out_path)

stats = processing.runalg("qgis:basicstatisticsfornumericfields",
out_path ,"kWh" ,None)

avg_kwh = stats ['MEAN’]

4.2. Integration of New Algorithms

Processing facilitates the development of geoprocessing tools and adding new algorithms to the
Toolbox by allowing researchers and developers to focus on the core algorithms while the automatic
GUI generation and utility functions for accessing and writing data take care of the repetitive tasks.
Integration of the new algorithm can be achieved by writing custom Processing scripts or by developing
additional algorithm providers.

Integration of new algorithms using scripts is used, for example, by [17], who present
geoprocessing models for OpenStreetMap data quality assessment, which combine existing tools
from the Processing Toolbox and custom scripts created particularly for this task. The custom
scripts include an implementation of Hausdorff distance computations (https://github.com/anitagraser/
QGIS-Processing-tools/blob/master/1.1/scripts/hausdorff_distance_pairwise.py), which is used to
determine the similarity of street network features in different datasets. This script takes advantage
of Processing convenience tools, such as the VectorWriter class, to simplify writing the algorithm
output. Furthermore, the user interface is generated automatically when the script is executed through
the Toolbox or Modeler. The automatic GUI generation process takes care to, for example, only list
vector layers as potential input layers and keep the input fields listing the layer attributes synced to the
selected layers.

More examples of new algorithms can be found on the dedicated Github repository [26]. Users can
access the documentation stored in the .help files through both the automatically-generated user interface,

as well as the processing.alghelp(“algname”) function.

https://github.com/anitagraser/QGIS-Processing-tools/blob/master/1.1/scripts/hausdorff_distance_pairwise.py
https://github.com/anitagraser/QGIS-Processing-tools/blob/master/1.1/scripts/hausdorff_distance_pairwise.py

ISPRS Int. J. Geo-Inf. 2015, 4 2242

An example of a new algorithm provider is implemented in the Concave Hull plugin (http://plugins.
qgis.org/plugins/concavehull/), which adds tools to cluster points and to compute concave hulls around
sets of points. Besides this Processing integration, this plugin also offers a regular plugin user interface
dialog, which can be accessed through the QGIS Vector menu. This approach enables the plugin
developers to support both users who prefer classical plugin dialogs, as well as Processing users who

might want to combine these tools with other tools in the Toolbox.

4.3. Sharing and Reproducible Research

Sharing geoprocessing tools (scripts, as well as models) is an important step towards reproducible
research. Shared tools enable other researchers to study the analysis process and to reproduce the
published results in a much more straight-forward fashion than by trying to reproduce the individual
steps based on a textual description or having to implement the analysis from pseudocode.

For example, [17] describe a Processing model to assess the positional accuracy of the
OpenStreetMap (OSM) street network by comparing it to a reference network. The workflow is
based on a method described in [31], which has been applied in numerous other studies on OSM
quality. The individual steps are easy to reproduce using standard GIS functionality, which certainly
helped to make this method popular with many researchers. The model, which is shown in Figure 8§,
implements this method by combining multiple QGIS tools from the Processing Toolbox into one
automatic workflow. The model can thus be applied to different areas of interest while ensuring that the
process is always performed in the exact same way. Both the model diagram, as well as the model source
code are published together with the paper (https://github.com/anitagraser/QGIS-Processing-tools/tree/
master/1.1/models).

So far, sharing code has not yet become standard among researchers in the field of geographic
information sciences and related disciplines using GIS. While some researcher publish at least diagrams
of the Processing models they developed, many publications do not contain information at this level of
detail. With the increasing trend towards reproducible research, we expect to see more Processing tools
being published in the future.

5. Conclusions and Outlook

In this paper, we presented the Processing framework, which provides an efficient seamless
integration of geoprocessing tools from a variety of sources into the QGIS geographic information
system. This new framework was designed to overcome issues with previous implementations of
geoprocessing tools in QGIS, such as the lack of user interface and behavior consistency, extensive
code duplication and lack of automation capabilities. The Processing architecture avoids the need for
duplication of development effort by directly integrating multiple libraries, such as QGIS, GDAL/OGR,
SAGA, GRASS GIS, R and ORFEO Toolbox. Furthermore, Processing aims at facilitating both the
development as well as the usage of geoprocessing tools.

For users, Processing makes it possible to automate geoprocessing tasks without the need for
programming knowledge. It facilitates the usage of geoprocessing algorithms by automating input data

http://plugins.qgis.org/plugins/concavehull/
http://plugins.qgis.org/plugins/concavehull/
https://github.com/anitagraser/QGIS-Processing-tools/tree/master/1.1/models
https://github.com/anitagraser/QGIS-Processing-tools/tree/master/1.1/models

ISPRS Int. J. Geo-Inf. 2015, 4 2243

format conversions where necessary and, thus, reduces potential error sources by reducing the number
of manual steps the user has to perform.

For algorithm developers, Processing facilitates the development of new algorithms through
automatic GUI generation for scripts and models. Furthermore, the Processing graphical modeler
supports modular development of geoprocessing workflows, allowing each tool to focus on one
clearly-defined functionality while complex workflows can be built by chaining specialized tools.
Developers are encouraged to inspect all underlying code and to evaluate, benchmark, customize and
enhance all algorithms and methods.

In research settings, Processing can facilitate reproducible research by enabling researchers to publish
tools and models with their papers, which can be picked up directly by interested users to validate results
or to apply the tools to their own data. The array of published applications demonstrates the wide
applicability of the Processing framework.

In order to offer more flexibility for advanced modeling purposes, future development should
add support for advanced features, such as conditional flows or loops in the graphical modeler.
Another open issue is the implementation of alternatives to storing intermediate results or temporary
files in shapefiles in order to avoid the drawbacks of this format, particularly the truncation of attribute
names. Current enhancement plans include a Google Summer of Code project to add multi-threading
support to Processing [32], as well as the integration of the spatial analysis library PySAL [33], as
mentioned in [34].

Acknowledgments

The authors would like to thank the QGIS project for their continued effort to provide and improve
this open source GIS. Furthermore, the authors want to thank Markus Neteler and Jakob Puchinger for
their invaluable input and support during writing this paper, as well as the anonymous reviewers for their
invaluable feedback for improving the initial manuscript.

Author Contributions

Anita Graser wrote the paper and did research on the background and applications. Victor Olaya is

the main developer of Processing and, as such, provided the development background and methodology.
Conflicts of Interest

The authors declare no conflict of interest.
References

1. Star, J. Geographic Information Systems: An Introduction; Prentice Hall: Englewood Cliffs, NJ,
USA, 1990.

2. Goodchild, M.E.; Longley, P.A.; Maguire, D.J.; Rhind, D.W. Geographic Information Systems and
Science, 2nd ed.; John Wiley and Sons: Chichester, UK, 2005.

ISPRS Int. J. Geo-Inf. 2015, 4 2244

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Sherman, G. Desktop GIS: Mapping the Planet with Open Source Tools; Pragmatic Bookshelf:
Raleigh, US, 2008.

Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. GRASS GIS: A multi-purpose open source
GIS. Environ. Model. Softw. 2012, 31, 124—-130.

What is Free Software? The Free Software Definition. Available online: https://www.gnu.org/
philosophy/free-sw.html (accessed on 17 October 2015).

Rocchini, D.; Neteler, M. Let the four freedoms paradigm apply to ecology. Trends Ecol. Evol.
2012, 27, 310-311.

QGIS Development Team. QGIS Geographic Information System. Available online: http://qgis.
osgeo.org (accessed on 17 October 2015).

Van Hoesen, J.; Menke, K.; Smith, R.; Davis, P. Introduction to Geospatial
Technology Using QGIS. Available online: https://www.canvas.net/browse/delmarcollege/courses/
introduction-to-geospatial-technology-1 (accessed on 17 October 2015).

Berman, M.L. Open Source GIS with QGIS 2.0 Available online: http://maps.cga.harvard.edu/qgis/
(accessed on 17 October 2015).

Graser, A. Learning QGIS, 2nd ed.; Packt Publishing: Birmingham, UK, 2014.

Zambelli, P.; Gebbert, S.; Ciolli, M. Pygrass: An object oriented Python application programming
interface (API) for geographic resources analysis support system (GRASS) geographic information
system (GIS). ISPRS Int. J. Geo-Inf. 2013, 2, 201-219.

Neteler, M.; Mitasova, H. Open Source GIS: A GRASS GIS Approach, 3rd ed.; Springer: New
York, NY, USA, 2008; Volume 773, p. 406.

SAGA Development Team. System for Automated Geoscientific Analyses (SAGA). Available
online: http://saga-gis.org (accessed on 17 October 2015).

Olaya, V. SEXTANTE, a free platform for geospatial analysis. OSGeo J. 2009, 6, 32-39.
Cosentino, G.; Coltella, M.; Cavuoto, G.; Ciotoli, G.; Cavinato, G.P.; Salaam, G. I.; Castorani, A.;
Di Santo, A.R.; Trulli, I.; Caggiano, T. New map features in project on the first level seismic
microzonation of 61 municipalities in the Foggia province (Apulia region, Italy); In Proceedings
of 7th EUropean Congress on REgional GEOscientific Cartography and Information Systems,
Bologna, Italy, 12—-15 June 2012.

Cosentino, G.; Pennica, F. QGIS Geoprocessing Model to Simplify First Level Seismic
Microzonation Analysis—QGIS Case Studies. Available online: http://qgis.org/en/site/about/case_
studies/italy_rome.html (accessed on 17 October 2015).

Graser, A.; Straub, M.; Dragaschnig, M. Towards an open source analysis toolbox for street network
comparison: Indicators, tools and results of a comparison of OSM and the official austrian reference
graph. Trans. GIS 2014, 18, 510-526.

Minn, M. MMQGIS—QGIS Python Plugins Repository. Available online: http://plugins.qgis.org/
plugins/mmqgis/ (accessed on 17 October 2015).

GDAL Development Team. GDAL—Geospatial Data Abstraction Library. Available online:
http://www.gdal.org (accessed on 17 October 2015).

Olaya, V. A Gentle Introduction to SAGA GIS. Available online: http://prdownloads.sourceforge.
net/saga-gis/SagaManual.pdf?download (accessed on 17 October 2015).

https://www.gnu.org/philosophy/free-sw.html
https://www.gnu.org/philosophy/free-sw.html
http://qgis.osgeo.org
http://qgis.osgeo.org
https://www.canvas.net/browse/delmarcollege/courses/introduction-to-geospatial-technology-1
https://www.canvas.net/browse/delmarcollege/courses/introduction-to-geospatial-technology-1
http://maps.cga.harvard.edu/qgis/
http://saga-gis.org
http://qgis.org/en/site/about/case_studies/italy_rome.html
http://qgis.org/en/site/about/case_studies/italy_rome.html
http://plugins.qgis.org/plugins/mmqgis/
http://plugins.qgis.org/plugins/mmqgis/
http://www.gdal.org
http://prdownloads.sourceforge.net/saga-gis/SagaManual.pdf?download
http://prdownloads.sourceforge.net/saga-gis/SagaManual.pdf?download

ISPRS Int. J. Geo-Inf. 2015, 4 2245

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

GRASS Development Team. Geographic Resources Analysis Support System (GRASS GIS)
Software. Available online: http://grass.osgeo.org (accessed on 17 October 2015).

R Core Team. R: A Language and Environment for Statistical Computing. Available online:
http://www.R-project.org (accessed on 17 October 2015).

Bivand, R.S.; Pebesma, E.J.; Gémez-Rubio, V. Applied Spatial Data Analysis with R; Springer:
New York, NY, USA, 2008; p. 405.

OTB Development Team. The ORFEO Tool Box Software Guide. Available online: http://www.
orfeo-toolbox.org (accessed on 17 October 2015).

Tarboton, D.G. Terrain Analysis Using Digital Elevation Models (TauDEM). Available online:
http://hydrology.usu.edu/taudem/taudem5/ (accessed on 17 October 2015).

Olaya, V. Github: qgis/QGIS-Processing. Available online: https://github.com/qgis/
QGIS-Processing (accessed on 17 October 2015).

Dias, E.S.; Bugalho, M.N.; Rodriguez-Gonzdlez, P.M.; Albuquerque, A.; Cerdeira, J.O. Effects of
forest certification on the ecological condition of Mediterranean streams. J. Appl. Ecol. 2014, 52,
190-198.

Dias, F. Using QGIS to Map Hotspot Areas for Biodiversity and Ecosystem Services
(HABEaS)—QGIS Case Studies. Available online: http://qgis.org/en/site/about/case_studies/
portugal_lisbon.html (accessed on 17 October 2015).

Venancio, P. QGIS and Forest Fire Risk Mapping in Portugal —QGIS Case Studies.
Available online: http://qgis.org/en/site/about/case_studies/portugal_pinhel.html (accessed on 17
October 2015).

Graser, A.; Asamer, J.; Ponweiser, W. The elevation factor: Digital elevation model quality
and sampling impacts on electric vehicle energy estimation errors. In Proceedings of IEEE
International Conference on Models and Technologies for Intelligent Transportation Systems
(MT-ITS), Budapest, Hungary, 3—5 June 2015.

Goodchild, M.E.; Hunter, G.J. A simple positional accuracy measure for linear features. Int. J.
Geogr. Inf. Sci. 1997, 11, 299-306.

Google Summer of Code. QGIS—Multithread Support on QGIS Processing Toolbox.
Available online: http://www.google-melange.com/gsoc/project/details/google/gsoc2015/mvcs/
5741031244955648 (accessed on 17 October 2015).

Graser, A. Github: anitagraser/QGIS-Processing-tools—PySAL Integration. Available
online: https://github.com/anitagraser/QGIS-Processing-tools/wiki/PySAL-Integration (accessed
on 17 October 2015).

Rey, S.J.; Anselin, L.; Li, X.; Pahle, R.; Laura, J.; Li, W.; Koschinsky, J. Open geospatial analytics
with PySAL. ISPRS Int. J. Geo-Inf. 2015, 4, 815-836.

(© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

http://grass.osgeo.org
http://www.R-project.org
http://www.orfeo-toolbox.org
http://www.orfeo-toolbox.org
http://hydrology.usu.edu/taudem/taudem5/
https://github.com/qgis/QGIS-Processing
https://github.com/qgis/QGIS-Processing
http://qgis.org/en/site/about/case_studies/portugal_lisbon.html
http://qgis.org/en/site/about/case_studies/portugal_lisbon.html
http://qgis.org/en/site/about/case_studies/portugal_pinhel.html
http://www.google-melange.com/gsoc/project/details/google/gsoc2015/mvcs/5741031244955648
http://www.google-melange.com/gsoc/project/details/google/gsoc2015/mvcs/5741031244955648
https://github.com/anitagraser/QGIS-Processing-tools/wiki/PySAL-Integration

	Introduction
	Background
	Processing Goals and Motivation
	Development History
	Existing Similar Technology

	Framework Architecture
	Graphical User Interface
	QGIS Ftools and MMQGIS Integration
	GDAL/OGR Integration
	SAGA and GRASS GIS Integration
	R Integration
	ORFEO Toolbox Integration
	Integration with Other Backends
	Development of New Algorithms
	Limitations

	Use Cases and Application Examples
	Workflow Automation and Documentation
	Integration of New Algorithms
	Sharing and Reproducible Research

	Conclusions and Outlook

