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Abstract: Vehicle routing optimization (VRO) designs the best routes to reduce travel cost, 

energy consumption, and carbon emission. Due to non-deterministic polynomial-time hard 

(NP-hard) complexity, many VROs involved in real-world applications require too much 

computing effort. Shortening computing time for VRO is a great challenge for state-of-the-art 

spatial optimization algorithms. From a spatial-temporal perspective, this paper presents a 

spatial-temporal Voronoi diagram-based heuristic approach for large-scale vehicle routing 

problems with time windows (VRPTW). Considering time constraints, a spatial-temporal 

Voronoi distance is derived from the spatial-temporal Voronoi diagram to find near 

neighbors in the space-time searching context. A Voronoi distance decay strategy that integrates 

a time warp operation is proposed to accelerate local search procedures. A spatial-temporal 

feature-guided search is developed to improve unpromising micro route structures. 

Experiments on VRPTW benchmarks and real-world instances are conducted to verify 

performance. The results demonstrate that the proposed approach is competitive with  

state-of-the-art heuristics and achieves high-quality solutions for large-scale instances of 
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VRPTWs in a short time. This novel approach will contribute to spatial decision support 

community by developing an effective vehicle routing optimization method for large 

transportation applications in both public and private sectors. 

Keywords: spatial decision support system; vehicle routing problem; Voronoi diagram; 

heuristics; local search; distance decay 

 

1. Introduction 

Flexible transportation service not only reduces travel cost, but also alleviates related energy and 

environmental concerns, such as traffic congestion, energy consumption, and carbon emission [1,2]. With 

the advancement of geographic information science (GIS), space-related problem decision-making has been 

embedded in spatial decision support systems (SDSSs) to provide flexible transportation service in both 

public and private sectors [3], such as the design of school bus routes [4], collection of solid waste [5,6], 

distribution of goods in chain business [7], design of police patrol routes [8], and planning express 

deliveries [9]. Spatial function tools are used for intelligent transportation operation in many services 

including management of geo-referenced transport network data, geocoding massive human demands, 

positioning moving vehicles, and navigating routes for drivers [5–9]. 

Vehicle routing optimization (VRO) aims to design least cost routes to satisfy geographically-distributed 

human demand through spatial intelligence of SDSSs in the field of transportation [10], including the shortest 

path problem (SPP) [11–13], traveling salesman problem (TSP) [14], and the vehicle routing  

problem (VRP) [5–7]. One type of VRO is modeled as the vehicle routing problem with time window 

(VRPTW), which imposes time constraints on customers, vehicles, and depots to accept or distribute high 

quality service [4,6,14]. It specifies that a customer only accepts certain transportation-related service in a 

given time interval [15–17]. The VRPTW is computationally intractable in many real-life applications [18]. 

The heuristic algorithm is the only justified approach as it can find good solutions in a reasonable  

time [16,17]. There are two types of heuristic algorithms for the VRPTW, which include local search 

and evolutionary optimization. Local search iteratively modifies local route structures to improve 

solution quality and follows a single trajectory to explore the solution space [3,6,7]. Evolutionary 

optimization simultaneously searches multiple parts of the whole solution space to converge on the best 

solution [5,19,20]. Recently, state-of-the-art heuristic algorithms have been reported to yield a high 

quality solution of the VRPTW with hundreds of customers [5,9,18]. More efficient heuristics are needed 

for even larger VRPTW applications. 

Spatial principle has exhibited good performance in space-related problem decision-making [21–23] in 

problems such as bus stop location [3], hazmat route planning [20], and path covering [24]. To efficiently 

solve VRO, from a spatial perspective, a few speed-up strategies have been developed to handle spatial issues 

and extend solvable VRO instances up to thousands of customers, which include the granular  

neighborhood [25], the kth nearest neighbors [26], and the k-ring-shaped Voronoi neighbors [27]. The 

common denominator of these effective strategies is to search only a limited number of spatial neighbors 

to save computing efforts [28]. However, such useful strategies become ineffective for the VRPTW since 

time constraint imposes an exceptional influence on the proximity of consecutively served customers in 
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a route. A long wait will occur if two spatially-close customers with quite different time windows (for 

example, one is 8:00–9:00 a.m. and the other is 3:00–4:00 p.m.) are visited consecutively in a route, 

which challenges the motivation of spatial proximity-based heuristics approaches. Hence, spatial 

proximity measures must be extended to address the additional temporal constraints [18]. Moreover, 

how to accelerate the VRO with the help of spatial-temporal thinking should be investigated. 

Voronoi diagrams describe both spatial proximity and topological proximity between spatial  

objects [29–32]. By extending it to the space-time context, a spatial-temporal Voronoi diagram (STVD) 

is well suited for measuring the proximity of customers with time constraints. Therefore, this article 

proposes a spatial-temporal Voronoi diagram-based heuristic approach to solve very large-scale VRPTWs. 

A derived spatial-temporal Voronoi neighbors from the Voronoi diagram is used to select promising 

candidates for a local search. Furthermore, motivated by the truth that nearer neighbors have a higher 

possibility to be consecutively served in a route [28], a Voronoi distance decay strategy is proposed to 

assign reasonable search efforts on neighbors with different Voronoi distances. A spatial-temporal feature 

guided search is used to reconstruct unpromising micro route structures. Intensive experiments on 

benchmark datasets (25–1000 customers) and real-world large scale VRPTWs and its multi-depot variants 

(2000–10,000 customers) have been implemented to assess the performance of the proposed approach. 

This efficient and effective approach enables current local search heuristics to solve super large-scale 

VRPTWs and will contribute to improving spatial intelligence for transportation-oriented SDSSs. 

The remainder of this paper is organized as follows. Section 2 reviews related literature. Section 3 

introduces the VRPTW, the STVD, the derived spatial-temporal Voronoi distance and neighbors. The 

proposed spatial-temporal Voronoi diagram-based heuristic for the VRPTW and its multi-depot variants 

are described in Section 4, and details of the experiments, results, and comparisons are reported in 

Section 5. Section 6 discusses the impact of the STVD and spatial-temporal proximity behind the best 

found solutions. The last section draws the conclusions. 

2. Literature Review 

This section reviews heuristic algorithms for the VRPTW and the integration of vehicle routing 

optimization and GIS. 

2.1. Heuristic Algorithms for the VRPTW 

Heuristic algorithms for VRPTWs are divided into two categories: local search and evolutionary 

optimization. Starting from an initial solution, local search shifts from a current solution to a better 

neighborhood solution with a simple change of local routes [33]. The change is made iteratively by 

moving nodes or exchanging arcs within a route or between routes such as 1–0 exchange, 1–1 exchange, 

2-Opt, and λ-opt. Usually, the change process becomes trapped in a local optimum. To overcome 

unpromising results, many intelligent strategies that accept some worse solutions have been developed 

to further improve the solution quality, such as simulated annealing [34], iterated local search [35], large 

neighborhood search [36], variable neighborhood search [37], and tabu search [38]. Numerous tests on 

small- and medium-size VRPTWs with 25–100 customers have demonstrated good performance of local 

search heuristics [34,36,37]. 
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Evolutionary optimization concurrently improves many solutions and results in high quality solutions. 

Four major steps are involved: representation, selection, combination, and mutation. Some of the most 

successful evolutionary optimization algorithms for the VRPTW are provided by Repoussis et al. [39] 

and Vidal et al. [40]. Mester and Bräysy [41] used the standard evolutionary optimization framework to 

guide exploration in the VRPTW solution space with solution initialization and evolution. Gehring and 

Homberger [42] parallelized the genetic algorithm and first solved VRPTW instances up to 1000 customers. 

Usually, local search is used as a component in the evolutionary optimization approach. Fast 

and simplified node or arc exchange-based local search have been used for offspring education in the 

genetic algorithm [41]. Therefore, more efficient local search heuristics also help to improve 

evolutionary optimization. 

For larger VRPTW instances, recent advances have proposed several accelerating techniques to save 

computing efforts while still achieving high quality solutions. Following the local search principle, 

taking spatial distance into account, Cordeau [38] limited the local search candidates with kth nearest 

neighbors to shorten computing time. Toth and Vigo [25] selected the local search evaluated nodes with 

a fixed distance threshold. Considering time constraints, Ibaraki [43] proposed a time-oriented neighbor 

list-based strategy to reduce the local search evaluation. Some unpromising search candidates had been 

excluded with the unmatched time windows. But the spatial proximity has been ignored. Nagata [44] 

developed a time warp operation for customers with a late service to avoid complex time window 

analysis. An additional penalty function was added to the original objectives to justify the local search 

heuristics. However, the spatial dimension and the temporal dimension are still separated in these local 

search heuristics. 

Another effective accelerating approach is to decompose large-scale VRPTW instances into many 

smaller subproblems. Using spatial clustering, Dondo and Cerdá [45] divided the large scale VRPTW 

into a set of small-sized problems. Routes were generated for each small problem to provide a high 

quality initial solution. Qi et al. [18] developed an effective spatial-temporal distance measure to deal 

with both space and time issues. A large-scale VRPTW was partitioned with a k-medoid clustering 

method to generate a good initial solution. A standard genetic algorithm was used to improve the initial 

solution. Good performance of these effective approaches has been verified by VRPTW instances with 

no more than 1000 customers. 

With regard to the Voronoi diagram, the only work has been provided by Milthers [46] who used 

two-dimensional Voronoi diagrams to split the VRPTW into many subproblems and then solve them 

with large neighborhood search heuristics. It showed the effectiveness of Voronoi diagrams in guiding 

the search process. However, this study dealt only with decomposition of the VRPTW in the solution 

construction stage. Use of the spatial-temporal Voronoi diagram in speeding up the local search for the 

VRPTW should still be further considered.  

2.2. Integration of Vehicle Routing Optimization and GIS 

Effective approaches to find high quality solutions for VRPTWs have been embedded in a  

GIS-based SDSS to deal with many real world applications. Generally, the integration between GIS and 

vehicle routing optimization is tightly coupled. Spatial data management, processing, and visualization 

tools are used to collect customer orders, georeference related data, activate the solving process, and 
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display routes for VROs, as in GIS software such as ArcGIS and TransCAD. In line with local search, 

Weigel and Cao [7] first reported their efforts in the implementation of a tabu heuristics approach in a 

GIS environment to deal with VRO for a major American retailer. Following the evolutionary 

optimization line, Mendoza et al. [5] integrated a customized routing module, which improved solution 

quality with commercial solutions such as SAP/R3 and ArcGIS to cope with VROs in public utilities. 

Experiments on a real-world case in Bogotá, Colombia with 323–601 customers verified the 

effectiveness of evolutionary optimization and GIS software. 

Recently, progress of GIS related to cloud computing transfers the integration of GIS and VRO to a 

loose coupling way. Using Google maps, Santos et al. [47] developed user-friendly web-based SDSSs 

that embed VRO to deal with urban trash collection in Coimbra, Portugal. TU et al. [48] presented a 

cloud GIS-based spatial decision support framework with variable neighborhood search heuristics for 

dynamic vehicle routing using historical traffic information. These practices have proven the dominance 

of VROs in real-life transportation applications. However, they also indicate that current spatial 

intelligence should be improved to enhance the ability of SDSSs in transportation departments to cope 

with increasing numbers of customers. 

In summary, state-of-the-art heuristics, including local search and evolutionary optimization, solve 

small- and medium-size VRPTWs in a reasonable time. They have been verified to be effective in a GIS 

environment for real-life transportation cases with no more than 1000 customers. For larger-size  

real-life applications, more efficient heuristic algorithms are needed to reduce computing time. Using 

the spatial-temporal Voronoi diagram, this paper proposes an efficient local search-based approach to 

address VRPTWs up to 10,000 customers in a reasonable time. Differing from the neighborhood in the 

spatial context [25–27,48,49], the spatial-temporal Voronoi neighborhood considering both spatial 

distance and time windows is proposed to limit the search space. A Voronoi distance decay strategy is 

developed to assign more searching efforts to nearer neighbors. The spatial-temporal feature guided 

search is used to escape from local minima. Details of the STVD, Voronoi distance, Voronoi neighbors, 

and the proposed approach for the VRPTW are described in the next sections. 

3. The VRPTW and the Spatial-Temporal Voronoi Diagram 

This section introduces the VRPTW, the STVD, and the spatial-temporal Voronoi distance.  

3.1. The VRPTW 

The VRPTW has five components: customers, depot, vehicle, routes, and the solution. 

Customers: a set of customers 𝑉𝑐 = {𝑣1, 𝑣2, … , 𝑣𝑛} expects to be served. A customer vi (I > 0) located 

at (xi, yi) has a unique demand, qi, a service duration, si, and a service time window <ei, li>. The service 

is required to arrive after start time, ei, and before end time, li. Such a time window is termed “soft” when 

it could be violated with a penalty cost, and termed “hard” when no violation is permitted. 

Depot: The depot 𝑣0located at (x0, y0) provides service in a time window <e0, l0>. 

Vehicles: A fleet of K identical vehicles with the capacity Q is located at the depot. Each vehicle 

departs from the depot, serves multiple customers, and returns to the depot. Travel distance and time 

between nodes (includes customers and the depot) i, j are denoted as dij and tij, respectively, where 𝑖 ≠ 𝑗. 
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Routes: A route 𝑟 =< 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑅, 𝑣𝑅+1 > is formed by a sequence of visited customers, which 

represents the service process of a vehicle, where R denotes the number of visited customers.  

𝑣𝑅+1 = 𝑣0, so that the vehicle must return to the depot. The earliest departure time at the depot 𝑣0 is 𝑎𝑟, 

the earliest service time at a customer 𝑣𝑖 is 𝑎𝑣𝑖
, and the earliest return time at the depot is 𝑎𝑣𝑅+1

, which 

are defined recursively as follows: 

{
𝑎𝑣0

= 𝑎𝑟 

𝑎𝑣𝑖
= max{𝑎𝑣𝑖−1

+ 𝑠𝑣𝑖−1
+ 𝑡𝑖−1,𝑖 , 𝑒𝑣𝑖

} , (𝑖 = 1, … , 𝑅 + 1)
 (1) 

A route is specified following two restrictions: (1) The route duration time 𝑎𝑣𝑅+1
− 𝑎𝑟 should be no 

more than the maximum duration Tmax; (2) The total served demand ∑ 𝑞𝑖
𝑅
𝑖=1  should be no more than the 

vehicle capacity Q. The total travel distance of the route is defined as ∑ 𝑑𝑣𝑖𝑣𝑖+1

𝑅
𝑖=0 . A route is defined as 

feasible if the customer’s service time window, the route duration time, and the vehicle capacity  

are satisfied. 

The VRPTW solution: A solution for a VRPTW instance is a set of feasible routes 𝑟1, 𝑟2, 𝑟3, . . . , 𝑟𝐾 

such that a single vehicle visits each customer once. A hierarchy of objectives of the VRPTW is followed 

in this paper. The number of used vehicles is first minimized and then the total travel distance is reduced. 

3.2. The Spatial-Temporal Voronoi Diagram for VRPTWs 

Components of the VRPTW, such as customers, depot, vehicles, and routes, have both spatial and 

temporal attributes. Spatial attributes refer to customers’ locations, the depot location, and the vehicle 

trajectories. Temporal attributes refer to the time window, service time, travel time, and route duration 

time. To represent them simultaneously, a spatial-temporal coordinate system is built by taking the 

temporal dimension to be perpendicular to the planar XY plane. Therefore, time windows of the 

customers and the depot are modeled as vertical lines rooted in their locations.  

Figure 1 illustrates a small-size VRPTW with five customers (v1 to v5), one depot (v0), and two routes 

(R1, R2). Customers (v1–v5) and the depot (v0) are modeled as vertical lines from its start time point to 

end time point, as line segments L1–L5 and L0. Projections on the XY plane denote their spatial locations, 

whereas projections on the time dimension denote their time windows and actual service time. The 

transportation between customers denotes the service process in the routes (R1 or R2). 

Distance in this coordinate system is defined as Equation (2), where (xi, yi) and (xj, yj) denote the 

spatial location of i and j, and ti and tj denote the time at i and j, 𝑣̅ is the mean travel speed: 

𝑑(𝑣𝑖 , 𝑣𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 + (𝑣̅(𝑡𝑖 − 𝑡𝑗))2 (2) 

Voronoi diagrams partition space into adjacent Voronoi cells with given points [30]. Following this 

principle, a spatial-temporal Voronoi diagram divides the spatial-temporal space into many cells. To 

generate a Voronoi diagram for the VRPTW, the spatial-temporal central point of a customer’s spatial 

temporal line, (xi, yi, (ei + li)/2.0), which is the red point in Figure 1, is used as the seed point. The STVD 

for VRPTWs is built by the fast quickhull algorithm [50]. 

In the STVD, a pair of points whose cells share a boundary (Voronoi face or Voronoi edge) are 

Voronoi neighbors [30]. The spatial-temporal Voronoi distance from a given point i to the point j,  

vd(i, j), is defined as the minimum number of crossings of the spatial-temporal Voronoi boundary in any 
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route from i to j [27,31]. Figure 2 provides an example that illustrates the Voronoi distance. The Voronoi 

distance from P1 to P3 is 2 for the two crossings of Voronoi boundaries (C1–C2). The Voronoi distance 

from P1 to P13 is also 2 for the crossings C3–C4. The Voronoi distance from P1 to P12 is 3 for the 

crossing C5–C7. Thus, Voronoi neighbors with different spatial-temporal proximity can be measured. 

As both spatial distance and time windows are considered, it is well suited for accelerating local search 

for the solving of VRPTW. Using these useful definitions, this paper proposes an efficient local search 

heuristic to address large-scale VRPTWs. 

 

Figure 1. Spatial-temporal representation of VRPTW. 

 

Figure 2. The spatial-temporal Voronoi diagram and the spatial-temporal Voronoi distance. 
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4. The Spatial-Temporal Voronoi Diagram-Based Heuristic 

This section introduces the spatial-temporal Voronoi diagram-based heuristic (STVDH) for  

large-scale VRPTWs. The principle of the STVDH is to speed up the local search procedure by using 

useful spatial thinking, including the spatial-temporal Voronoi neighbors, distance decay search strategy, 

and local route features. The overall framework of the proposed heuristic is summarized in Figure 3. 

After the construction of an initial solution (step 1-1), a local search heuristic based on spatial-temporal 

Voronoi neighborhood is followed to improve solution quality (step 1-1 to step 1-4). A spatial-temporal 

Voronoi distance decay strategy is developed to assign reasonable searching efforts on neighbors with 

different distances (step 1-2). Spatial-temporal route features are identified and guides the searching 

process escape from local minima (step 1-3). The stopping condition is a limitation on the number of 

iterations (step 1-4). Finally, the best found solution is reported (step 1-5). 

 

Figure 3. The framework of the spatial-temporal Voronoi diagram-based heuristic algorithm. 

4.1. The Construction Algorithm 

The construction algorithm iteratively inserts an unrouted node into a proper position until all 

customers are routed. During the insertion, instead of evaluating all unrouted nodes, neighbor customers 

within a given Voronoi distance are selected as candidates of the next inserted nodes. The details of the 

construction algorithm are described in Figure 4. First, customers are sorted by the start time window 

and stored in a queue L (step 2-0). Then, L’s front unrouted node is popped out as the operated node 

𝜇 (step 2-1). An empty route r is initialized with u (step 2-2). Another unrouted customer v is randomly 

selected from 𝜇’ Voronoi neighbors. Node v will be inserted before or after a routed node i in the route 
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r (step 2-3). If the insertion is performed, u is updated with v. The best insertion place is defined as the 

one that minimizes the added total travel length and the total value of the end time window violation as 

Equation (3), where j denotes the next visited node of i. 𝜆 is a random value in [0.5, 2]. It should be noted 

that the arrival time at v, j should not be before the start time, as Equations (4) and (5): 

Δ𝐹 = (𝑑𝑖𝑣 + 𝑑𝑣𝑗 − λ𝑑𝑖𝑗) + 𝑣̅(𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑣 − 𝑙𝑣) (3) 

𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑣 > 𝑒𝑣 (4) 

𝑎𝑖 + 𝑠𝑖 + 𝑡𝑖𝑣 + 𝑠𝑣 + 𝑡𝑣𝑗 > 𝑒𝑗 (5) 

 

Figure 4. The construction algorithm. 

During the insertion, several constraints including the start time window, route duration time, vehicle 

capacity, and the maximum route length should be satisfied. If no place is found for insertion, we pop L’s 

front node as u, insert it into a new route, and label it as routed (step 2-2 and step 2-3). The insertion will end 

if all customers have been labeled as routed (step 2-5). Finally, obtaining all routes is the initial solution. 

4.2. Local Search 

Local search iteratively explores the solution space to improve solution quality. Usually, the exploration 

removes or adds edges from the current solution by using local search operators. Three typical local search 

operators, including the 1-0 exchange move, 1-1 exchange move, and 2-Opt move [51], are used to explore 

the neighborhood solution in this article. 

 1-0 exchange move injects a node from the original place and inserts it after another. As Figure 5a 

shows, node b is removed from its current position and inserted before node i.  

 1-1 exchange move swaps positions of a pair of nodes. As Figure 5b shows, the places of nodes b 

and i are swapped.  
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 2-Opt move swaps the ends of two routes after the positions of a pair of nodes. As Figure 5c 

illustrates, the partial routes after b and i are swapped. 

 

Figure 5. Local search operators (a) 1-0 exchange; (b) 1-1 exchange; and (c) 2-Opt. 

The computing complexity of these three operators depends on two aspects: operated nodes and local 

search evaluation. Two operated nodes, named b and i, are involved as shown in Figure 5. Therefore, 

the number of operated candidates is n(n − 1), where n is the number of customers. The time complexity 

is 𝑂(𝑛2). For each candidate pair, local search evaluation checks the time window for each customer 

involved, total duration time, and vehicle capacity for each route. Due to the cascade effect of the arrival 

time, it will, on average, take 𝑂(𝑛/2𝑅) time, where R is the number of routes. To utilize limited 

computing effort more efficiently, we propose a spatial-temporal Voronoi distance-decay strategy to 

assign searching efforts on selected candidates. A time warp operation is also used to shorten computing 

time for each candidate. 

4.2.1. The Spatial-Temporal Distance Decay Strategy 

Differing from the equal searching intensity of the k nearest neighbors [26] and the k-ring Voronoi 

neighbors [27,48], the spatial-temporal Voronoi distance decay strategy searches more on nearer neighbors 

than further neighbors to balance the solution quality and computing time. For spatial-temporal Voronoi 

neighbors with Voronoi distance k, the searching probability Pk is defined as Equation (6). As the 

distance k increases, searching probability Pk will decrease. Therefore, most computing effort will focus 

on near neighbors, but some necessary efforts are left for further neighbors. 

𝑃𝑘 =
𝛼−𝑘

∑ 𝛼−𝑘𝑘𝑚𝑎𝑥
𝑘=1

 (6) 

where k = 1, …, kmax, and kmax is the maximum searchable Voronoi distance, 𝛼 ∈ [1, ∞) is a value that 

controls the spatial-temporal distance decay speed. As the value of 𝛼  increases, the decay speed  

becomes faster. 

The probability range [TPk−1, TPk] (k = 1, 2, …, kmax) for neighbors no farther than Voronoi distance 

k is calculated as Equation (7), where TP0 = 0. 

𝑇𝑃𝑘 = ∑ 𝑃𝑖

𝑘

𝑖=1

 (7) 
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To implement the Voronoi distance decay strategy, local search randomly generates a value of 

δ between (0, 1), finds the probability range in which δ is located, and then selects Voronoi neighbors 

with the corresponding distance k as candidates to evaluate. As it avoids evaluating all neighbors, this 

useful strategy puts more searching efforts on closer nodes and therefore significantly accelerates the 

local search. As the number of Voronoi neighbors is fixed, the computing complexity reduces from 

𝑂(𝑛2) to 𝑂(𝑛). 

4.2.2. Time Warp Operation 

The local search evaluates distance and time constraints for customers and routes, which cost the most 

computing effort [43]. Nagata [45] proposed a new penalty function in which change can be computed 

in O(1) time for the VRPTW. When a later service happens for a customer, a time warp operation is 

performed such that the arrival time is adjusted to the end of the time window, and a penalty is added to 

the original objective. Figure 6 shows an example of the time warp. The additional penalized cost is 

defined as the time warp used in Equations (8) and (9), where twi is the cost value at customer i, and  

(ai  − ei)+ is a non-negative value of the service late time at i. Therefore, the objective is changed to 

minimize the total route number, total route length, and total penalized cost TW(s). For O(1) time 

consumed, the time warp operation is very fast. 

𝑇𝑊(𝑠) = ∑ 𝑡𝑤𝑖

𝑛

𝑖=1

 (8) 

𝑡𝑤𝑖 = (𝑎𝑖 − 𝑒𝑖)+ (9) 

 

Figure 6. Wait time and time warp at a customer. 

4.2.3. Acceptance Criterion 

Local search will naturally drop into local minima. A threshold acceptance criterion is used to escape. 

If the found solution is not 0.5% worse than the current solution, it will be accepted as the new solution. 
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Otherwise, it will be rejected. If the best solution does not improve in Zmax iterations, the spatial-temporal 

features-guided search will be started. 

4.3. Spatial-Temporal Features-Guided Search 

Due to the used spatial-temporal Voronoi neighbors, local search explores a relatively small proportion 

of the neighborhood solutions. Some potential neighborhood solutions will be rejected due to spatial and 

temporal constraints, such as route duration, time window, and vehicle capacity. Different from traditional 

random perturbations [37], spatial-temporal features guided search destroys unpromising structures 

defined by spatial-temporal rules and rebuilds a part of the current solution to escape local minima. It also 

increases the searchable probability for farther neighborhood solutions. Three components are the  

spatial-temporal features, the removal algorithm, and the reinsertion algorithm. 

4.3.1. Spatial-Temporal Features  

Three types of spatial-temporal features are defined in this paper including time window violation 

nodes𝜑𝑡, longest distance nodes 𝜑𝑙, and smallest route’s nodes 𝜑𝑠. Their definitions are described below.  

 Time-window violation nodes 

The time warp operation will introduce time window lateness in which the arrival time at a customer 

may be later than the end time of its time window. However, this route feature should not belong to the 

best solution. We remove such unpromising nodes from the current solution and reinsert them later. 

Formally, time window violation nodes 𝜑𝑡 are defined as Equation (10): 

𝜑𝑡 = {𝑣𝑖|𝑡𝑖 > 𝑙𝑖 , 𝑣𝑖 ∈ 𝑉𝑐} (10) 

 Longest-distance nodes 

To cooperate with the time window, some long segments may be kept in routes and difficult to replace 

in local search, which leads to the increase of total route length [27]. Longest-distance nodes 𝜑𝑙 are end 

points of the long segment, defined as Equation (11), where S denotes the current solution, eij or eji 

denotes a segment in S. 𝑒̅ denotes the mean spatial distance of the Voronoi neighbors with Voronoi 

distance 1. The length of the long segment is more than three times 𝑒̅. 

𝜑𝑙 = {𝑣𝑖|𝑑𝑖𝑗 > 3𝑒̅, 𝑒𝑖𝑗 ∈ 𝑆||𝑒𝑗𝑖 ∈ 𝑆, 𝑣𝑖 ∈ 𝑉𝑐} (11) 

 The smallest route’s nodes 

In some solutions, small routes serve only one, two, or three customers near the depot, which requires 

more vehicles [48]. Usually, this feature is kept for the suboptimal property. The small route’s nodes are 

defined as 𝜑𝑠, as Equation (12), where |r| denotes the number of visited customers in the route r: 

𝜑𝑙 = {𝑣𝑖|𝑣𝑖 ∈ 𝑟, |𝑟| ≤ 3, 𝑣𝑖 ∈ 𝑉𝑐} (12) 

4.3.2. Removal Algorithm 

To increase diversification of the guided search, more nodes are removed from the current solution 

in this study. Additional nodes 𝜑𝑎 are Voronoi neighbors of defined features, just as:  
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𝜑𝑎 = {𝑣𝑖|𝑣𝑑(𝑣𝑖 , 𝑣𝑗) = 1, 𝑣𝑗 ∈ (𝜑𝑡 ∪ 𝜑𝑙 ∪ 𝜑𝑠), 𝑣𝑖 ∉ (𝜑𝑡 ∪ 𝜑𝑙 ∪ 𝜑𝑠), 𝑣𝑖 ∈ 𝑉𝑐} (13) 

Therefore, removed nodes 𝜑 are spatial-temporal features nodes and their Voronoi neighbors 𝜑𝑎, as 

in Equation (14). The removal algorithm sequentially ejects all nodes belonging to 𝜑 and leaves a partial 

solution for the insertion. 

𝜑𝑎 = {𝑣𝑖|𝑣𝑖 ∈ (𝜑𝑡 ∪ 𝜑𝑙 ∪ 𝜑𝑠 ∪ 𝜑𝑎), 𝑣𝑖 ∈ 𝑉𝑐} (14) 

4.3.3. Insertion Algorithm 

This algorithm inserts all removed nodes into new places in the partial solution. First, all removed 

nodes are randomly pushed into a queue L. Then, the front node of L is popped out and inserted at the 

best place before or after its Voronoi neighbors to keep spatial-temporal proximity, which minimizes 

insertion cost as Equation (3), under the limitation of total duration time, time window, and vehicle 

capacity. It is of note that the end time windows should not be violated. If there is no proper place, a new 

route is created, and the front node of L is popped out and initialized as the first-served customer. The 

insertion operation is repeated until all removed nodes are located in proper places. Due to the best 

choice at each insertion, the final solution is up to the node sequence in the queue. In this article, the 

sequence is randomly arranged 50 times to obtain different rebuild solutions. Finally, the obtained result 

of the permutation that minimizes the total objective is accepted as the final solution. 

4.4. An Extension of the Solving Algorithm for MDVRPTW 

MDVRPTW is a variant of VRPTW, which has more than one depot to serve geographically scattered 

customers. Compared with the VRPTW, MDVRPTW has an additional problem of how to allocate 

customers to the right depot. Voronoi partition that divides a study area into many regions with given 

objects is another typical function of the Voronoi diagram. For the effectiveness, it has been widely used 

in service area analysis [32]. By using Voronoi partition characteristics of the depots’ spatial-temporal 

Voronoi diagram, we assign customers to be served by the depot of its located Voronoi regions. By that, 

the presented STVDH is easy to be extended to deal with a large-scale MDVRPTW by decomposing it 

to many smaller VRPTWs.  

Figure 7 illustrates the workflow of the STVDH’s adaption for the MDVRPTW. The depots’  

spatial-temporal Voronoi diagram is built to allocate customers to the located depot so that the MDVRPTW 

is divided into several VRPTWs, each of which has a depot and many assigned customers. Routes for each 

VRPTW are first initialized using the construction algorithm in Section 4.1 and then separately improved 

by the spatial-temporal Voronoi diagram-based local search heuristic in Sections 4.2 and 4.3. To overcome 

the border effect of Voronoi diagram, an additional improvement between depots is used to move or 

exchange nodes between routes served by different depots. This is done by using 1-0 and 1-1 exchanges 

to move nodes between routes served by different depots after the spatial-temporal features guided 

search. Details of this process are referred to TU et al. [49]. The stopping condition is the same as the 

STDVH. Finally, the best found solution is reported. 
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Figure 7. The adaption of the STVDH for the MDVRPTW. 

5. Experiment and Comparison 

To assess the performance of the STVDH, experiments with benchmark problems and large-scale  

real-world VRPTW and MDVRPTW problems in Shanghai, China were conducted. The STDVH 

algorithm was implemented with C++, running on a Windows 7 64-bit system with an Intel Core i7-3.4G 

processor and 16 GB memory. This section reports test datasets, parameter tuning, computing results, 

and comparisons with other heuristic algorithms. Computing times of compared algorithms are 

transformed to the computing platform of STVDH with Dongarra factor [52]. 

5.1. Test VRPTW and MDVRPTW Problem Dataset 

Two types of VRPTW and MDVRPTW problem datasets are tested. The first dataset includes the 

VRPTW benchmarks of Solomon [15] and Gehring and Homberger [53]. The benchmarks of Solomon 

have 56 problems with 100 customers. They are divided into six groups with eight to twelve problems, 

named R1, R2, C1, C2, RC1, and RC2. In the Euclidean plane, customers are randomly distributed  

(R1 and R2), cluster distributed (C1 and C2) or semi-cluster distributed (RC1 and RC2). Every instance 

has a single depot within the spatial domain of the customers. The travel time between nodes is equal to 

the corresponding Euclidean distance. R1, C1, and RC1 have a short time scheduling horizon, whereas 

R2, C2 and RC2 have a long time scheduling horizon. Similar to Solomon’s VRPTW problems, the 

VRPTW benchmarks of Gehring and Homberger [53] have 300 VRPTW instances with 200, 400, 600, 

800 or 1000 customers [54]. Customers have the same distributions. 

The second dataset is a large-scale VRPTW and MDVRPTW problem dataset in Shanghai, 

China [55]. Five VRPTW instances (Sh1a–Sh5a) and 5 MDVRPTW instances (Sh1b–Sh5b) with 2000 to 

10,000 customers and one to six depots are generated to simulate the daily parcel delivery service of a 

logistics company in Shanghai, China. Customers are randomly selected from the commercial points of 

interest (POI) using a professional digital navigation map to obtain real-world spatial locations. The time 

window of each customer is a random value in min bounded by 30 and 60, and the service duration is a 

random value from 1 to 4 min. Demand is a random value in the interval [1, 100]. Depots are located in 

professional logistic districts in the city. All vehicles have the same capacity, 2000, and maximum route 

duration, 480 min. The mean travel speed is set to be 45 km/h.  
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5.2. Parameter Tuning 

There are four parameters to be tuned in the presented STVDH algorithm as shown in Figure 3. 

Following Coy’s calibration approach [56], a preliminary experiment is conducted on an instance in the 

problem dataset to find the best parameter settings. The tuning process initially identifies the first two 

parameters related to the stopping condition and then the last two parameters related to the Voronoi 

distance decay strategy. The first two parameters, the maximum number of iterations, Nmax, and the 

maximum number of iterations to start the spatial-temporal features guided local search, Zmax, control 

the exit of the STVDH. After intensive experiments with different stopping conditions, Nmax should be 

set to 5000N to converge on a stable high-quality solution, where N is the number of customers. Zmax is 

set to 100N to start the spatial-temporal feature guided search. 

The last two parameters control the Voronoi diagram-based speedup strategy. The third parameter, 

𝑘𝑚𝑎𝑥 , indicates the maximum searchable Voronoi neighbors. As the value of 𝑘𝑚𝑎𝑥  increases, local 

search will evaluate more neighbors, which requires more computing efforts. According to the 

distribution of the Voronoi neighbors, 𝑘𝑚𝑎𝑥  should be no more than 5 [49]. The last parameter, 𝛼, 

determines the distance decaying speed. A high value indicates a tendency for fast decay. The proper 

value of 𝛼 is within the bound [1,4]. The value space of parameters are summarized in Table 1. 

Table 1. Parameter settings of the STDVH algorithm. 

Notation Parameter Setting 

Nmax the maximum number of iterations 5000N 

Zmax the maximum number of iterations to start the spatial-temporal features guided search 100N 

𝒌𝒎𝒂𝒙 the maximum searching Voronoi neighbors 1, 2, 3, 4, 5 

𝜶 Voronoi distance decaying speed (0, 4) 

N is the number of customers. 

Experiments on some selected VRPTW instances are conducted to set parameter values for one type 

of VRPTW dataset. Taking the second VRPTW dataset as an example, we solved Sh2a with all 

combinations of the last two parameters. Finally, we set 𝑘𝑚𝑎𝑥 = 3 and = 2 for the best performance in 

the experiment. Without loss of generality, identical parameter values were set for each instance. The 

impact of the Voronoi diagram will be discussed in Section 6. A summary of parameter settings is listed 

in Table 1. Taking Sh2a as an example, Figure 8 displays the convergence of the number of routes and 

the total length of routes with the parameter settings used in solving Sh2a. 

5.3. The Results of the Solomon [15] and Gehring and Homberger [53] VRPTW Benchmarks 

The parameter setting for these VRPTW benchmarks is as: Nmax = 5000N, Zmax = 100N, 𝑘𝑚𝑎𝑥 = 2 and 

𝛼 = 1.5. For each problem, the STDVH was run 10 times. The total objective, total routes length, and 

computing time were recorded. Results of three state-of-the-art methods, including the arc-guided 

evolutionary algorithm (AGEA) [39], the hybrid genetic algorithm with adaptive diversity management 

(HGASDC) [40], and the local search based heuristics VRPEJ [57], which limits the searching space 

with the kth nearest neighbor strategy, are compared with the STVDH.  
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Figure 8. The convergence of the total number of routes and the total routes length (Sh2a). 

Tables 2 and 3 present the comparison of the results on the Solomom and Gehring and Homberger 

VRPTW benchmarks respectively. Each entry reports the average of computing results of a group 

(average computing time | the average total routes length). They indicate that the presented STVDH is 

able to achieve high quality solutions of the VRPTWs with no more than 1000 customers in a relatively 

short computing time. In terms of the number of routes, the STVDH achieves the fewest routes in both 

the Solomon (total of 405 routes) and Gehring and Homberger (total of 10296 routes) VRPTW 

benchmarks. In terms of the total route length, the STVDH performs better than the VRPEJ for all size 

VRPTW instances, only inferiorly to AGEA on Solomon benchmarks, but superiorly to AGEA on the 

Gehring and Homberger benchmarks. However, the STVDH’s results are still worse than that of the 

HGSADC. For the computing efficiency, the STVDH consumes the least computing time in all six size 

VRPTW instances (100~1000). Therefore, the proposed STDVH exhibits a good performance on the 

VRPTW benchmarks of Solomon and Gehring and Homberger. 

Table 2. Comparison of results on the Solomon VRPTW benchmarks [15]. 

Instance N 
AGEA HGSDAC VRPEJ STVDH STVDH 

1 run Best 5 run Best 10 run AVG 10 run Best 10 run 

R1 100 11.92|1211.43 11.92|1210.69 11.92|1214.67 11.92|1213.85 11.92|1212.65 

R2 100 2.73|954.05 2.73|951.51 2.73|954.10 2.73|954.01 2.73|953.20 

C1 100 10.0|828.38 10.0|828.38 10.0|828.38 10.0|828.38 10.0|828.38 

C2 100 3.0|589.86 3.0|589.36 3.0|589.86 3.0|589.86 3.0|589.86 

RC1 100 11.50|1384.83 11.5|1384.17 11.5|1387.81 11.5|1386.93 11.5|1386.01 

RC2 100 3.25|1121.26 3.25|1119.24 3.25|1127.38 3.25|1126.49 3.25|1125.72 

CNV  405 405 405 405 405 

CTD  57,254.73 57,195 57,366.96 57,341.97 57,305.10 

T(/min)  180 2.68 3.62 0.91 0.9 

T2(/min)  52.3 1.56 3.62 0.91 0.9 

Instance: group name. N: number of customers. CNV: cumulative number of vehicles. CND: cumulative travel 

distance. T: time reported by metaheuristics. T2: time on the computing platform of the STVDH. 

  



ISPRS Int. J. Geo-Inf. 2015, 4 2035 

 

 

Table 3. Comparison of results on the Gehring and Homberger VRPTW benchmarks [53]. 

Instance N 
AGEA HGSDAC VRPEJ STVDH STVDH 

1 run Best 5 run Best 10 run AVG 10 run Best 10 run 

R1 200 18.2|3640.11 18.2|3613.16 18.2|3664.28 18.2|3653.24 18.2|3617.54 

R2 200 4.0|2941.99 4.0|2929.41 4.0|2938.53 4.0|2967.87 4.0|2938.53 

C1 200 18.9|2721.90 18.9|2718.41 18.9|2749.18 18.9|2758.67 18.9|2721.47 

C2 200 6.0|1833.36 6.0|1831.59 6.0|1880.47 6.0|1858.34 6.0|1835.52 

RC1 200 18.0|3224.63 18.0|3180.48 18.0|3205.81 18.0|3218.83 18.0|3179.89 

RC2 200 4.3|2554.33 4.3|2536.20 4.3|2574.92 4.3|2584.37 4.3|2544.44 

CNV  694 694 694 694 694 

CTD  169,163 168,092 176,440.8 170,415.5 168,373.7 

T(/min)  90 8.40 5.4 1.22 1.2 

T2(/min)  26.7 4.9 5.4 1.22 1.2 

R1 400 36.4|8514.11 36.4|8402.57 36.4|8615.29 36.4|8598.39 36.4|8446.36 

R2 400 8.0|6258.82 8.0|6152.92 8.0|6274.20 8.0|6279.13 8.0|6160.84 

C1 400 37.6|7273.90 37.6|7170.47 37.6|7339.88 37.6|7514.01 37.6|7186.10 

C2 400 11.7|3941.70 11.6|3950.95 11.7|4024.82 11.7|3995.21 11.7|3951.71 

RC1 400 36.0|8088.46 36.0|7907.14 36.0|8107.86 36.0|8098.32 36.0|7952.00 

RC2 400 8.40|5516.59 8.5|5215.21 8.4|5394.54 8.4|5393.49 8.4|5292.92 

CNV  1381 1381 1381 1381 1381 

CTD  395,936 388,013 397,565.9 398,785.5 389,385.5 

T(/min)  180 34.1 9.8 2.30 2.3 

T2(/min)  53.3 19.8 9.8 2.30 2.3 

R1 600 54.5|18,781.79 54.5|18,023.18 54.5|18,620.73 54.5|18,587.90 54.5|18,237.74 

R2 600 11.0|12,804.60 11.0|12,352.38 11.0|12,615.07 11.0|12,612.60 11.0|12,343.51 

C1 600 57.3|14,236.86 57.4|14,058.46 57.3|14,605.53 57.3|14,585.55 57.3|14,271.58 

C2 600 17.4|7729.80 17.4|7594.41 17.4|7748.47 17.4|7728.74 17.4|7589.10 

RC1 600 55.0|16,767.72 55.0|16,097.05 55.0|16,529.63 55.0|16,524.77 55.0|16,203.93 

RC2 600 11.4|11,311.81 11.5|10,511.86 11.4|10,879.26 11.4|10,824.00 11.4|10,626.35 

CNV  2066 2068 2068 2066 2066 

CTD  816,326 786,793 809,986.9 808,635.65 792,722.1 

T(/min)  270 99.4 16.2 3.91 3.9 

T2(/min)  80.0 57.8 16.2 3.91 3.9 

R1 800 72.8|32,734.57 72.8|31,311.38 72.8|32,281.48 72.8|32,108.01 72.8|31,540.28 

R2 800 15.0|20,618.21 15.0|19,933.39 15.0|20,448.88 15.0|20,339.05 15.0|19,969.61 

C1 800 75.2|25,911.44 75.4|24,876.93 75.2|26,097.53 75.1|25,972.63 75.1|25,490.85 

C2 800 23.4|11,835.72 23.3|11,475.05 23.4|11,897.31 23.3|11,826.41 23.3|11,621.87 

RC1 800 72.0|33,975.61 72.0|29,404.32 72.0|31,071.16 72.0|30,904.01 72.0|30,390.41 

RC2 800 15.5|17,536.54 15.4|16,495.82 15.5|16,878.69 15.4|16,733.78 15.4|16,467.01 

CNV  2739 2739 2739 2736 2736 

CTD  1,424,321 1,334,963 1,386,750.4 1,378,838.8 1,354,800 

T(/min)  360 215 24.8 5.82 5.8 

T2(/min)  106.6 125.1 24.8 5.82 5.8 
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Table 3. Cont. 

Instance N 
AGEA HGSDAC VRPEJ STVDH STVDH 

1 run Best 5 run Best 10 run AVG 10 run Best 10 run 

R1  91.9|51,414.26 91.9|47,759.66 91.9|49,741.43 91.9|49,396.91 91.9|48,523.49 

R2  19.0|30,804.79 19.0|29,076.45 19.0|29,871.68 19.0|29,595.30 19.0|29,092.01 

C1  94.2|43,111.60 94.1|41,572.86 94.1|43,089.45 94.1|42,682.27 94.1|41,977.06 

C2  29.3|16,810.22 28.8|16,796.45 29.0|117,340.13 28.9|17,174.73 28.8|16,877.68 

RC1  90.0|46,753.61 90.0|44,333.40 90.0|46,152.97 90.0|45,824.65 90.0|44,974.63 

RC2  18.4|25,588.52 18.2|24,131.12 18.4|24,951.31 18.3|24,655.48 18.2|24,248.11 

CNV  3428 3420 3421 3419 3419 

CTD  2,144,830 2,036,700 2,111,469.7 2,093,293.5 2,056,930 

T(/min)  450 349 34.5 7.75 7.7 

T2(/min)  133.3 203.1 34.5 7.75 7.7 

Instance: group name. N: number of customers. CNV: cumulative number of vehicles. CND: cumulative travel 

distance. T: time reported by metaheuristics. T2: time on the computing platform of the STVDH. 

5.4. The Results of Large Scale VRPTW and MDVRPTW Problem in Shanghai, China 

The parameter setting for this large scale VRPTW and MDVRPTW problem is as follow:  

Nmax = 5000N, Zmax = 100N, 𝑘𝑚𝑎𝑥 =3 and 𝛼 = 2. For each problem, the STVDH algorithm was also run 

10 times. Total travel distance, number of used vehicles, and computing time were recorded. The 

obtained results are summarized in Table 4 (https://github.com/spatialsmart/VRPTW/tree/master/ 

Shanghai/Solution). 

As Table 4 indicates, the STVDH algorithm reports the best found solution for large-scale VRPTWs 

up to 10,000 customers in 139.5 min (about 2.32 hours). As the number of customers increases from 

2000 to 10,000, the computing time of the STVDH increases from 15.7 min to 120.8 min, whereas for 

the MDVRPTW, the time increases from 16.1 min to 139.5 min. Compared with the VRPTW, more 

computing efforts are required for the MDVRPTW due to additional customer allocation between 

depots. In terms of solution quality, the STVDH utilizes an average of 847.1 total routes that travelled 

30,184.725 km to serve all customers in the five VRPTW instances. For the five MDVRPTW instances, 

906.4 routes that travelled 26,353.572 km are required to satisfy customer needs. It should be noted that 

the performance of the STVDH is robust, as indicated by the gap between Savg and Sbest (−1.60% for the 

VRPTW and −1.73% for the MDVRPTW). Therefore, the proposed STVDH provides promising results 

for large-scale VRPTW and VRPTW within reasonable computing times. 

Taking problem Sh1a as an example, Figure 9 displays the best found solution and the spatial-temporal 

vehicle route with ArcScene. It demonstrates the best route compromise between spatial proximity and 

time constraints. The same vehicle may not yet serve spatially-near customers as Figure 9b shows. 

To assess the solution quality of the obtained results, we compare them with solutions reported by 

two heuristic algorithms. One solution is obtained by solving the simulated instances with the network 

analysis module in ArcGISTM 10.2, which uses a tabu heuristics algorithm to solve complex real-world 

VRPTW problems. Another compared solution is calculated using VRPEJ [55]. Other metaheuristics 

such as AGEA and HGSDAC are not compared due to unavailability. Each algorithm was run 10 times 

to find the best result. 
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Table 4. Results from the large-scale VRPTW and MDVRPTW instances in Shanghai, China. 

Instance Type N M D Q 
STVDH    

Savg 10 (/km) Tavg 10 (/min) SBest 10(/km) TBest 10 (/min) 

Sh1a VRPTW 2000 1 200 2000 59.3|3024.870 15.7 58|2996.104 15.9 

Sh2a VRPTW 4000 1 300 2000 119.8|4674.122 28.3 118|4598.592 30.6 

Sh3a VRPTW 6000 1 400 2000 171.0|6145.245 60.0 169|6052.084 65.9 

Sh4a VRPTW 8000 1 500 2000 220.3|7511.361 93.6 218|7372.345 98.9 

Sh5a VRPTW 10,000 1 600 2000 276.8|8829.127 120.8 274|8681.006 128.8 

CNV      847.1  837  

CTD(/km)      30,184.725  29,701.132  

Gap to Savg       −1.60%  

Total Time (/min)      318.4  340.1 

Sh1b MDVRPTW 2000 2 200 2000 70.2|3045.601 16.1 69|2999.616 16.9 

Sh2b MDVRPTW 4000 3 300 2000 127.9|4265.365 29.8 126|4174.144 31.5 

Sh3b MDVRPTW 6000 4 400 2000 172.1|6247.152 62.2 169|5260.810 69.6 

Sh4b MDVRPTW 8000 5 500 2000 237.4|6849.848 98.4 235|6238.438 105.4 

Sh5b MDVRPTW 10,000 6 600 2000 298.8|6845.606 138.9 293|6784.751 139.5 

CNV    906.4  892  

CTD (/km)    26,353.572  26,289.418  

Gap to Savg      −1.73%  

Total Time (/min)       345.4  362.9 

Instance: problem name. Type: VRPTW or MDVRPTW; N: number of customers. M: number of 

depots. D: number of vehicles at a depot. Q: vehicle capacity. Savg 10: average result of 10 runs (number 

of routes| total routes length). Tavg 10: average computing time. SBest 10: best of 10 runs (number of 

routes| total routes length). TBest 10: the computing time of the best solution’s run. CNV: cumulative 

number of vehicles. CND: cumulative travel distance. 

 

(a) (b) 

Figure 9. The result for large scale VRPTW problem Sh1a. (a) the final best solution; and 

(b) a spatial-temporal route. 
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Table 5 compares the obtained results. It indicates that the STVDH presented in this study outperforms 

both ArcGIS and VRPEJ. In terms of efficiency, comparison with ArcGIS (total of 2141.1 min) and 

VRPEJ (total of 2355.3 min) indicates that the STVDH costs the least computing effort (total of 703 min). 

In terms of solution quality, the STVDH requires 1729 routes travelling 55,990.55 km to serve all 

customers in 10 instances. ArcGIS requires more vehicles (1764 routes) that travel a greater distance 

(62,047.809 km) to provide the same service. The VRPEJ, which utilizes a spatially kth nearest 

neighbors strategy, requires the most routes (1893 routes) that travelled 63,659.365 km. Hence, it 

confirms that the spatial-temporal Voronoi neighbor strategy in the presented STVDH is much better 

than the spatial neighbor strategy for local search to solve large scale VRPTWs. 

Table 5. Comparison of the results of the STVDH with other heuristic algorithms. 

Instance Type N M 
STVDH  ArcGIS  VRPEJ  

SBest 10(/km) TBest 10 (/min) SBest 10(/km) TBest 10 (/min) SBest 10(/km) TBest 10 (/min) 

Sh1a VRPTW 1 2000 58|2996.104 15.9 62|3296.104 60.5 59|3285.404 50.8 

Sh2a VRPTW 1 4000 118|4598.592 30.6 120|4022.248 125.4 126|5234.168 122.2 

Sh3a VRPTW 1 6000 169|6052.084 65.9 173|6738.745 197.2 190|6948.372 242.7 

Sh4a VRPTW 1 8000 218|7372.345 98.9 223|8045.327 254.8 242|8438.982 290.8 

Sh5a VRPTW 1 10,000 274|8681.006 128.8 278|9874.135 407.2 312|9814.247 428.8 

Sh1b MDVRPTW 2 2000 69|2999.616 16.9 72|3308.245 60.5 74|3374.126 58.1 

Sh2b MDVRPTW 3 4000 126|4174.144 31.5 124|4610.283 125.4 132|4878.785 142.3 

Sh3b MDVRPTW 4 6000 169|5260.810 69.6 174|6645.397 197.2 180|7013.522 248.5 

Sh4b MDVRPTW 5 8000 235|6238.438 105.4 239|6982.136 254.8 260|6989.971 280.5 

Sh5b MDVRPTW 6 10,000 293|6784.751 139.5 299|7525.189 568.1 339|7881.788 490.6 

CNV 1729  1764  1893  

CTD (/km) 55,990.550  62,047.809  63,659.365  

Gap to STVDH   10.82%  13.70%  

Total Computing Time (/min)  703.0  2141.1  2355.3 

Instance: problem name. Type: VRPTW or MDVRPTW; N: number of customers. M: number of depots. 

STVDH: best of 10 runs (number of routes| total routes length). ArcGIS: best result of 10 runs (number of 

routes| total routes length). VRPEJ: best of 10 runs (number of routes| total routes length). CNV: cumulative 

number of vehicles. CND: cumulative travel distance. 

6. Discussion 

Taking the large scale VRPTW and MDVRPTW in Shanghai, China as an example, this section 

discusses the impact of the spatial-temporal Voronoi diagram and spatial-temporal proximity behind the 

best found results. 

6.1. Impact of the Spatial-Temporal Voronoi Diagram 

To evaluate the impact of the Voronoi diagram, this study investigated the balance of solution quality 

and computing time with different values for parameters 𝑘𝑚𝑎𝑥  and 𝛼 . As Figure 10 illustrates, 

considering the spatial-temporal Voronoi neighbors, an increase in 𝑘𝑚𝑎𝑥 improves solution quality but 

decreases computing efficiency because more spatial-temporal Voronoi neighbors are involved in local 
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search procedures. With regard to the effect of the Voronoi distance decay strategy, as Figure 10a shows, 

both the slow decaying speed (𝛼  = 1) and the fast decaying speed (𝛼  = 3) generate worse results. 

However, as Figure 10b shows, as a fast decaying speed requires less evaluation on far Voronoi 

neighbors, the STVDH consumes less computing efforts as the parameter 𝛼 increases. 

 

(a) (b) 

Figure 10. The impact of the spatial-temporal Voronoi diagram on the STVDH.  

(a) Deviation to the best solution; and (b) computing time. 

6.2. Spatial-Temporal Proximity Analysis on the Best Found Results 

To understand spatial-temporal proximity behind the obtained results, we conducted an analysis on 

the Voronoi distance between consecutively-visited customers in the route of best found solutions in 

Section 5.2. Figure 11 displays the average percentage of Voronoi distance in the best found solutions. 

Two typical features are indicated below. 

 The number of larger Voronoi distances is only a small proportion of the best found results. As 

Figure 11 displays, the percentages of Voronoi distances greater than three in the VRPTW and 

MDRPTW solutions are only 1.77% and 1.58%, respectively. Such a distribution agrees with the 

setting of parameter𝑘𝑚𝑎𝑥  (𝑘𝑚𝑎𝑥 = 3) in Section 5.2. Therefore, the spatial-temporal Voronoi 

neighborhood is very typical in the found solution. 

 The percentage decreases sharply as the Voronoi distance increases. For the large-scale VRPTW 

dataset (Sh1a–Sh5a), the percentages for Voronoi distances 1, 2, 3, and >= 4 are 59.44%, 30.13%, 

8.66%, and 1.77%, respectively, which is similar to the distribution in the MDVRPTW solution. 

This verifies that there is a spatial-temporal local compact structure in the routes of best found 

solutions. Compared with the theoretical searching intensity (as Equation (7) in Section 4.2.1 where 

𝑘𝑚𝑎𝑥 = 3, 𝛼 = 2) in the Voronoi distance decay strategy, these percentages systematically slightly 

shift to small Voronoi distances. This result demonstrates the effectiveness of the Voronoi  

distance-decay strategy, which searches more on near neighbors in the local search but still spends 

necessary efforts on far neighbors. 



ISPRS Int. J. Geo-Inf. 2015, 4 2040 

 

 

In summary, analysis of best found results demonstrates reasons why the spatial-temporal Voronoi 

diagram is effective in the STVDH algorithm. 

 

Figure 11. Average percentage of the Voronoi distance in the best found solutions. 

7. Conclusions 

Vehicle routing designs the least costly routes to satisfy the geographical distribution of human needs. 

Embedded in the GIS environment, it not only benefits transportation decision-making for both public and 

private sectors, but also enriches the value of geoinformation with the assistance of location-based service. 

Inspired by spatial-temporal proximity, this article presents a novel spatial-temporal Voronoi diagram-based 

heuristic approach to solve large-scale VRPTWs quickly. The derived spatial-temporal Voronoi 

neighborhood measures proximity considering both spatial and temporal issues. The used Voronoi 

neighbors limits searching space in the construction algorithm, local search, and spatial-temporal 

feature-guided search. Moreover, the presented Voronoi distance-decay strategy assigns more searching 

efforts on spatial-temporal near neighbors. 

Experiments on the VRPTW benchmarks and large-scale VRPTW instances in Shanghai, China with 

2000–10,000 customers have demonstrated the good performance on VRPTW and MDVRPTW problems 

of different sizes. The obtained results indicate that the STVDH presented in this study can provide high 

quality solutions for large-scale VRPTWs in a reasonable time with the help of a spatial-temporal 

Voronoi diagram. It also verifies that the spatial-temporal proximity is very typical in best found 

solutions as 98% of segments had a Voronoi distance less than three. 

The main contributions of this article are twofold. First, considering both time windows and spatial 

locations, the spatial-temporal Voronoi diagram is proposed to accelerate the solving process for VROs. 

In contrast to the spatial proximity based speeding up strategies [25–27], it makes use of spatial-temporal 

Voronoi neighbor to further reduce computing effort for local search based heuristics. The idea behind 

the presented approach that makes uses of spatial principles to accelerate complex optimizing processes 
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can be extended to facilitate other space-related decision-making problems such as near real-time 

emergency response and large-scale facility location. Second, a spatial-temporal Voronoi diagram-based 

heuristic was developed to solve large-scale VRPTWs. This novel approach exhibits good performance 

on super large-scale VRPTWs up to 10,000 customers, which can cope with challenges from many 

complex real-world transportation and logistics applications. 

Among future developments that we intend to undertake, we plan to integrate the presented approach 

with outdoor/indoor ubiquitous positioning and friendly navigating technologies for vehicles with cloud 

GIS. The presented effective approach will be used to upgrade the network analyst module in SDSSs to 

provide a more flexible transportation service for daily large-scale logistics and distribution activities. It 

will further enhance the spatial intelligence of modern transportation and logistics applications. 
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