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Abstract: In this paper, we propose a navigation approach for smartphones that enables 

visitors of major events to avoid crowded areas or narrow streets and to navigate out of dense 

crowds quickly. Two types of sensor data are integrated. Real-time optical images acquired 

and transmitted by an airborne camera system are used to compute an estimation of a crowd 

density map. For this purpose, a patch-based approach with a Gabor filter bank for texture 

classification in combination with an interest point detector and a smoothing function is 

applied. Furthermore, the crowd density is estimated based on location and movement speed 

of in situ smartphone measurements. This information allows for the enhancement of the 

overall crowd density layer. The composed density information is input to a least-cost 

routing workflow. Two possible use cases are presented, namely (i) an emergency 

application and (ii) a basic routing application. A prototypical implementation of the system 

is conducted as proof of concept. Our approach is capable of increasing the security level for 

major events. Visitors are able to avoid dense crowds by routing around them, while security 

and rescue forces are able to find the fastest way into the crowd. 

  

OPEN ACCESS



ISPRS Int. J. Geo-Inf. 2015, 4 975 

 

Keywords: geo-information fusion; aerial images; smartphone trajectories; texture 

classification; Gabor filter; texture classification; least-cost routing 

 

1. Introduction 

Major events, like music festivals or football games, attract tens of thousands of people. 

Unfortunately, accidents can happen every time despite high security preparation, and the consequences 

are often crucial due to the high number of visitors. In recent literature, crowd simulations that can be 

used for security issues during major events are typically not based on real-time sensed information but 

rely on empiric or physical heuristics. An overview of current methods and approaches for such crowd 

simulations (e.g., evacuations) is provided by [1]. Compared to that, in situ information has been a crucial 

part of navigation approaches in the field of robotics [2]. A recent study by Hillen et al. is focusing on 

fusing real-time in situ and remote measurements to create a more realistic estimation of people 

movement using agent-based modeling [3]. Except for extracting only position information from optical 

remote sensing data as conducted by Hillen et al. [3], studies in the field of crowd monitoring present 

promising results in estimating crowd density and dynamics [4,5]. The derived information can be 

utilized for a routing approach for major events. 

However, event organizers and security authorities usually have very limited near real-time 

information about the location of visitors at the event site, despite the high penetration rate of 

smartphones in the general public [6]. Terrestrial sensors, like security cameras, are often only available 

at the most important spots and only have a limited field of view. Recent airborne monitoring technology 

is able to provide additional high-resolution imagery in real time [7]. Due to their mobility and large 

field of view, even large event sites can be captured in a couple of minutes. The increasing ground 

resolution of the captured images (e.g., 9 cm; see Figure 1) allows for efficient detection of objects like 

cars and persons [8]. 

In this paper, real-time aerial images are combined with smartphone movement data and integrated 

into a routing tool for major events. It is designed to be used by the official authorities (i.e., police or 

ambulance) as well as the visitors themselves. It can be of great use for open-air music festivals, where 

large groups could gather spontaneously in less monitored locations, or for events in city centers (e.g., 

fairs), as they often take place in multiple locations. In the case of music festivals, for example, the 

motion of the crowd directly in front of a concert stage is hardly predictable during a live performance. 

Although the number of people in the crowd might be below the area’s maximum capacity, the number 

of persons per square meter (crowd density) can quickly reach a critical level and lead to dangerous 

situations. If the crowd density rises above a certain threshold, the situation can become life-threatening 

and the authorities must intervene. But even in less dramatic scenarios, the perception of each person in 

these situations might be different. A person’s physical condition, hydration level, degree of intoxication, 

or even the weather conditions at an event could all be factors that influence a person’s desire to leave a 

crowded area in the fastest way possible. We assume that the fastest way is synonymous with the route 

with the lowest crowd density. 
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For these critical and non-critical situations, we propose a routing concept based on fusing 9-cm 

optical aerial images with movement data from smartphone users in near-real time. The major aim is to 

provide an up-to-date crowd density map with a least-cost routing functionality for the event visitor as 

well as for rescue forces and security authorities. 

2. Methods 

In this section, the automatic patch-based crowd density estimation and the extraction of movement 

trajectories from mobile smartphone sensor data are described. Furthermore, it is shown how these two 

types of sensor data are combined to derive a cost layer for least-cost routing purposes. 

2.1. Crowd Density from Aerial Images 

In the following, the process to automatically compute a density map of a crowd from aerial images 

(“crowd detector”) is described. This map is then input to a location-based individual routing application 

using a raster-based least-cost path calculation. 

Before focusing on the computation of the crowd density map, we describe the necessary features of 

the aerial camera system. The routing system should work at large festivals with an event area of several 

square kilometers. Despite this large area, the density map must cover all crowded places and must be 

updated regularly. One major requirement for the generation of an up-to-date routing recommendation 

is the timely delivery of the density map to the server. To achieve this, a processing system with aerial 

cameras and an integrated data link must transmit the images to the receiving station on the ground. The 

processing includes a georeferencing and orthorectification step, which is not mandatory for the crowd 

detection itself, but for the fusion of image and trajectory data (Section 2.3). The authors of [9] describe 

a system with an on-board orthophoto generation and a bidirectional air-to-ground data transmission. 

Their system works well with the routing system presented in this paper, although the installation of the 

processing system could be located on the ground as well. 

The aforementioned requirements of large coverage and short update intervals of the density map 

lead to a trade-off between the field of view of the cameras and the spatial resolution. Hence, in this 

study, we use the method described by Kurz et al. [10], which is able to detect crowds in aerial images 

with a resolution of approximately 9 cm. At this resolution, a single person appears as a small blob of 

roughly 5 × 5 pixels. In very crowded scenes these blobs are hardly discernible due to occlusion and 

changing lighting conditions. In this case, they instead form a heterogeneous texture without any 

orientation or regular pattern structure (Figure 1a). Moreover, the appearance of these textures distinctly 

changes depending on background pixels and lighting conditions (Figure 1b). 

To overcome these problems we use the crowd detection tool chain proposed by Meynberg et al. [10]. 

The approach convolves image patches of a constant size with a Gabor filter bank and uses a 

concatenation of filter responses as the input feature vector for a support vector machine (SVM). Readers 

are referred to [10] for development details. In the context of this paper, we use the term “crowd texture” 

to describe an image region where persons stand very close to each other and form one coherent structure. 

The term “crowd patch” is defined as a patch containing this crowd texture. We now summarize the 

main processing steps of their method, which estimates the person density in aerial images for which no 

further a priori knowledge is required. 
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(a) (b) 

Figure 1. Example of two 100 × 100 pixel image patches containing human crowds (9-cm 

resolution). The major challenges are varying lighting conditions, varying backgrounds, and 

mutual occlusions. (a) High crowd density, many occlusions; (b) low contrast. 

2.1.1. Detecting Interest Points 

The purpose of this step is two-fold. First, it detects corners and saves the coordinates as possible 

locations of a person, which are the basis for the density estimation described in Section 2.1.4, and 

second, it significantly reduces the search space for the filtering in Section 2.1.2. The search space 

reduction is motivated by the fact that during a flight campaign a large number of images are being taken, 

each image having a resolution of around 18 megapixels. With the original images as the input, the 

outputs of this step are possible pixel locations where a high number of people are located. Because of 

the computationally expensive feature extraction and classification steps, the search space should be 

limited to image regions where a high number of people is likely to occur. In 9-cm resolution aerial 

images, one person appears like a small blob or corner with a size of roughly 5 × 5 pixels. Therefore, a 

corner detector by Rosten and Drummond [11] is first applied to the whole image, which reduces the 

locations of possible crowd textures from theoretically all pixel positions to only those positions that are 

detected as a corner, and hence have the necessary condition to be considered for further processing. In 

this way, the number of filter operations that are performed according to Section 2.1.2 can be reduced 

by a factor of 1000 (depending on image content) to allow for usage in time-critical scenarios. 

2.1.2. Finding a Feature Vector Representation for Crowd Image Patches 

The input of this step is an array of all possible pixel locations of crowd textures and the output is a 

set of feature vectors that discriminate well between image patches with crowds and image patches 

without crowds. In the following, we describe how such a feature vector is created. Every image patch 

 is convolved with a bank of Gabor filters. These filters are particularly appropriate for texture 

representation, first introduced by Manjunath and Ma [12], as they encode both orientation and scale of 

edges in a low-dimensional feature vector. Image patches with regular building structures (Figure 2a) 

result in a strong response at certain orientation angles (Figure 2c). On the contrary, a crowd patch 

(Figure 2b) gives a high response in every direction (Figure 2d), because the persons do not form any 

regular pattern. In this way, it is possible to construct effective, discriminating feature vectors for the 

binary classification task that follows. 
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(a) (b) (c) (d) 

Figure 2. Two original images (a) and (b) with their respective response images (c) and (d) 

after convolving both with a Gabor filter. Subfigure (c) shows the response of the regular 

structure in the original image (a), while (d) shows the response of the unstructured crowd 

in the original image (b). 

Let ∈  be an image patch at a candidate pixel position (x,y). Its Gabor wavelet transform is thus 

defined as  

, , 	 , ∗ , 2
,

2 , ,  (1)

where ,  is one Gabor filter function where s and k determine the scale and the orientation angle of the 

filter, respectively. Next, for each combination , ,  the mean ,  and variance ,  are computed 

and stacked into the final feature vector ∈ 	 : 

	 , , , , , , ⋯ , , ,  (2)

with  being the number of orientations and  being the number of scales of the filter bank. 

2.1.3. Classification with Non-Linear Support Vector Machine 

The set of all feature vectors  is then passed as a matrix to an SVM with a radial basis function 

kernel. Its return value is a vector of scores that determines if an image patch has been classified as a 

crowd patch or not. 

2.1.4. Crowd Detection: From Binary Classification to Continuous Density Estimation 

Now the list of possible person locations (Section 2.1.1) and the classification result (Section 2.1.3) 

are combined. From now on, only those possible person locations that lie within a positively classified 

image patch are considered and are used to compute a probability density function with a Gaussian kernel 

over the image domain. In this way, the crowd density estimation can be expressed as an intensity value. 

This value can be assigned to every pixel of the original image and not only to a finite and very sparse 

set of detected corners. To this end, the assigned value is not calibrated with a verified crowd density 

that can hardly be measured in a real-world scenario; however, it is still sufficient to serve as a  

two-dimensional cost function in this context. 
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2.2. Movement Trajectories from Smartphone Data 

The preliminary step for working with smartphone sensor data is the implementation of an app to 

record specific internal sensor data via the Android API [13]. For this work, the current geographic 

location of the smartphone user and the corresponding movement direction along with the estimated 

movement speed are derived from different smartphone sensors like the acceleration sensor, compass, 

and GPS/GNSS (Global Navigation Satellite System). Based on previous investigations, we claim that 

the position accuracy of GPS/GNSS is sufficient especially for events in rural areas but also for events 

in small and medium-sized cities [3]. In Figure 3 an exemplary dataset of recorded smartphone 

movement data (geographic location plus corresponding moving direction) of three different smartphone 

users is visualized. 

 

Figure 3. Visualization of movement data from three different smartphone users (green, 

blue, and red) derived from the internal sensor data via the Android API. The dots symbolize 

the GPS/GNSS location of the smartphone user. The lines point towards the corresponding 

movement direction of the user. 

The movement speed of the user at the specific geographic location is used to re-evaluate the  

image-based crowd density estimation. We assume that high movement speed is an indicator for a low 

crowd density whereas a slow movement speed suggests a high crowd density. Rastogi et al. conducted 

a comprehensive comparison of pedestrian walking speeds based on literature from 1967 to 2007 [14]. 

The values of average speed for adults vary from 1.32 m/s to 1.51 m/s. Furthermore, every study revealed 

significantly lower walking speeds for elderly people (generally over an age of 65 [15]) with 0.97 m/s 

to 1.34 m/s. In addition, [16] found that pedestrians in groups tend to be slower (1.54 m/s alone compared 

to 1.41 m/s in groups for younger pedestrians). Thus, varying circumstances have to be considered 

regarding the analysis of movement speed. It is especially important for major events that it is determined 
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whether the user is only moving slowly because of a specific reason (e.g., to look for shirts at the 

merchandising booth or to buy something to drink), or if the user actually has to move slowly because 

of high crowd density. This might result in the misinterpretation of high crowd density for less 

crowded regions. 

The smartphone app transfers the raw movement data into a spatial PostgreSQL/PostGIS database on 

a web server using a mobile Internet connection. Afterwards, the dataset is integrated in a GeoServer in 

order to be accessible via Web Map Service (WMS) and Web Feature Service (WFS) interfaces by the 

Open Geospatial Consortium (OGC). Thus, the data can be integrated in any processing chain or 

application over the Web. Above that, the data can be directly processed in the database or can be 

integrated in OGC Web Processing Service (WPS) processes, which is of high importance regarding the 

following conversion from movement speed to crowd density information. 

2.3. Information Fusion 

The image-based crowd density estimation and the density information derived from smartphone 

movement data are afterwards combined to create a cost layer for the least-cost navigation. For this 

purpose, the geographic information system GRASS GIS [17] is used. GRASS GIS is highly suitable 

for this work as it is a) raster-based and b) supported by the Python implementation of the OGC WPS 

standard named pyWPS [18]. This allows for future Web-based real-time processing of the aerial image 

and smartphone data. 

The density layer derived from the aerial image data serves as a base layer for the raster-based  

least-cost routing process. For this purpose, the layer is reclassified to a range between 0.43 (no density) 

and 7.1 (high density). Fruin identified these values of (a) 0.43 people per m2 (p/m2) and (b) 7.1 p/m2 as 

the crowd densities with (a) a normal walking speed and (b) no movement at all [19]. Above that, Fruin 

investigated a reduced walking speed at 2.0 p/m2, involuntary contact between people at 3.57 p/m2, and 

potential dangerous crowd forces starting at 5.55 p/m2, which are important thresholds for further 

evaluation of the crowd density information [19]. Weidmann investigated the relation between the local 

speed and the local density of people as well and formalized it as:  

	 , 1
∙

 (3)

where  is the speed at a certain density, ,  is the maximum speed at full freedom (1.34 m/s),  is an 

empirically derived fit parameter (1.913 p/m2),  is the crowd density in p/m², and  is the crowd 

density at which no movement is possible anymore (5.4 p/m2) [20]. Wirz et al. conducted an empirical 

study based on smartphone measurements to verify this relation [21]. Based on Equation (3), the crowd 

density can be estimated from the smartphone data using 

	
1.913

ln 1.34 0.646929
 (4)

for each local speed  recorded with the smartphone. This smartphone-based density information is 

imported into GRASS GIS as well and is converted from vector to raster format in order to be combinable 

with the information derived from the image data. For this, the point (now the respective pixel) of the 

smartphone measurement is expanded so that it delivers information for the area surrounding the 
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smartphone user as well. Thus, the people density calculated with Equation (4) is adopted for the local 

neighborhood of the test person as well. This is more realistic instead of using only the point 

measurement for the density enhancement. Otherwise, the density at the pixels next to the measurement 

would be totally different. 

Based on the complemented density information, a least-cost layer can be calculated using the 

GRASS GIS function r.cost. The initial point for this calculation is the current geographic location of 

the user. The cumulative cost of moving from this point to each cell is calculated and stored in the 

resulting cost layer. Finally, the least-cost path between an arbitrary point and the current location of the 

user can be calculated using the function r.drain. 

3. Application Scenarios 

In the following, two test scenarios are outlined in which our real-time routing approach is beneficial. 

The first scenario describes a tool to escape from emergency situations, whereas the second scenario 

presents a generic decision support application that can be used in multiple situations. The “give and 

take” principle is essential for all applications, meaning that both the event attendee and the organizer 

have to deliver information to receive a result. This concretely means for our scenarios that the event 

attendee has to send information about their current location and speed via smartphone and the organizer 

has to provide an aerial imaging system covering the event area. Only if information from both sides is 

available can the results be provided as desired. This means that on the one hand the user can fetch an 

overview map of the current crowd distribution and use the least-cost routing, and on the other hand the 

organizer can guarantee a high security standard and use the routing app for the event’s security and 

rescue forces. 

3.1. The Fastest Way Out of a Crowd 

One application in which the real-time navigation can be used is during music festivals. The crowd 

in front of the music stages is often very dense. Combined with extreme weather conditions (e.g., high 

temperatures) and physical fatigue, this might result in dangerous situations. In such crowds there is no 

chance to get a full overview of the situation and to find the best way out, especially for persons with a 

low body height. Due to the lack of orientation, the person might go towards an even denser region 

within the crowd, not knowing that a free space might be very close by. 

Our routing approach can be integrated in an emergency app provided by the event organizer. The 

guests have to provide their current location and speed measured with their smartphone. In exchange for 

that, they are able to view an overview map with the current crowd distribution in the event area and are 

able to use the described emergency navigation (Figure 4). Additionally, the security and rescue forces 

of the event could directly receive the location of the visitor when the app is used. Thus, help can be  

on-site much earlier. The overview map has to be provided by the organizer by recording aerial imagery 

during the event (e.g., with helicopters, drones, or similar). It may even be possible for typical SLR 

cameras to be installed in high positions to cover special regions, like the space in front of the music 

stages, for example. 



ISPRS Int. J. Geo-Inf. 2015, 4 982 

 

 

Figure 4. Schematic representation of an emergency smartphone app. The crowd density is 

visualized in the background. The fastest escape route is emphasized with a red arrow. 

3.2. The Fastest Way towards a Point-of-Interest (POI) 

The real-time routing approach can be adapted to any event that has appropriate image data available 

for the event site. In the following, this assumption is stressed for the example of football games. In this 

particular use case, dense crowds are gathering in short time frames (i.e., before or after the game as well 

as during the half-time break). A concrete example for this is reported by officials of the Borussia Park 

in Mönchengladbach (Germany). After the football games, the main way towards the parking spaces is 

commonly blocked by the police to escort the fans of the opposing team to their buses. In the meantime, 

many people have to wait while more and more people are streaming out of the stadium towards the 

parking spaces. The organizers try to avoid complications by opening gates that allow people to go the 

longer way around the stadium on the other side. In this situation, this way would be much faster 

compared to waiting in the dense crowd. However, the people that are streaming out of the stadium are 

often not aware of (i) the blockade by the police and (ii) the option to use an alternative way. 

Our routing approach could help to ease this situation by informing and navigating some visitors to 

the alternative route. Figure 5 illustrates the generic workflow in which the user has to provide their 

current location along with the target of routing. This information is sent to a web server where the actual 

calculation for the least-cost route is executed. The resulting route is afterwards visualized on the 

smartphone of the user, who constantly reports (automatically in the background of the app) his location 

and speed. For this example, it is essential to integrate the smartphone data of as many users as possible 

to avoid potential jams caused by the system itself. As soon as the alternative route is crowded as well, 

the system carefully has to decide which direction to choose. If the main way is open again and the crowd 

dissolves, the navigation system routes people along the typical way. Thus, potential mass panics or at 

least a tremendous gathering of people can be avoided. 

In general, real-time navigation based on our routing approach could be used during any major event; 

for example to reach the nearest refreshment shop during a musical festival or city event. Even navigation 

through the city streets to a specific parking garage with an emphasis on avoiding large crowds (e.g., in 

front of stages or booths) can be useful. In any case, the advantages are on both sides, for the event 

organizers and the guests. The guests utilize the tool to avoid stress, overexcitement, and anger on the 
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one hand, while on the other hand the organizers can ensure security during the event and are able to 

increase the event’s attraction by providing a modern smartphone navigation app. In addition, security 

and rescue forces are able to utilize the app for their efforts and could reach the location of an 

emergency earlier. 

 

Figure 5. Conceptual design of a smartphone app for least-cost routing during or after a 

major event (in this case a football game). 

4. Prototype Implementation 

A prototype implementation based on non-real time data is conducted as a generic proof of concept 

for the integration of the two data sources: remote sensing and smartphone data. The test data for the 

prototype are recorded during the music festival Wacken in 2013 (Figure 6a). One can clearly see the 

dense crowd standing in front of the stages. First, the crowd density is estimated using a fast multi-core 

C++ implementation. Consecutively, the smartphone data has to be recorded and transferred to the web 

server for analysis. This allows for a future real-time implementation of the concept. Finally, the 

calculation of the least-cost path is performed, combining both data sources in GRASS GIS. 

4.1. Crowd Density Estimation in Aerial Images—Implementation Details 

The density estimation step requires panchromatic aerial images with a spatial resolution of ca. 9–20 

cm. Because the fusion with location data requires georeferenced and orthorectified images, a real-time 

orthorectification module processes every aerial image before the crowd density estimation starts. In this 

time-critical scenario we choose a fast GPU-supported orthorectification and georeferencing 

implementation [9], which processes a typical 18-Mpix image in under 200 ms. It uses an interior 

parameter set determined prior to a flight campaign by a self-calibrating bundle adjustment. The system 

is equipped with an IGI AEROcontrol GPS/IMU unit [22], which records the external orientation 

parameters for every image with a sufficient angular accuracy. In this way, no ground control points are 

needed, which is an important fact in this real-time scenario. Moreover, the projection step uses a digital 

elevation model of the Shuttle Radar Topographic Mission (SRTM) to derive the 3D world coordinates 

from the image coordinates. It has a resolution of 25 m and a 16-bit quantization. 

The actual crowd-density estimation, consisting of the four steps described in Section 2.1, takes the 

orthorectified image as an input (Figure 6a), computes filter responses of patches at promising locations, 

and classifies the filter responses into the two classes “crowd” and “no-crowd.” Based on supervised 

learning, the classification step with an SVM needs initial training. To this end, the SVM is trained with 

roughly 10,000 image patches; each has a size of 64 by 64 pixels. Concretely, for training, one patch is 
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convolved with 24 Gabor filters, consisting of S = 4 scales and K = 6 orientations (see Section 2.1.2 for 

details). Each filter has a width of 48 pixels. The resulting 24 mean values and 24 variances of each filter 

response are then used as the final 48-dimensional feature vector, representing one image patch and 

being the input for the training of the SVM. Of course the computationally intense training can be 

done offline. 

 
(a) (b) (c) 

Figure 6. Image (a) shows a subset of an unprocessed aerial image from a music festival 

with a dense crowd standing in front of a stage. Image (b) is the computed crowd density 

layer as a gray value image (black = low density, white = high density). For illustration 

purposes we created a composite image (c), where the density is laid onto the original image 

(blue = low density, red = high density). 

During the event, under real-time conditions, the filtering is performed in parallel on several patches 

using C++ with OpenMP. The efficient libSVM library is then able to produce the results almost 

immediately. Finally, the succeeding Gaussian filtering (Section 2.1.4) produces a grey-value 8-bit 

image of the same size as the original input image, where an intensity value of zero corresponds to a 

very low crowd density and a value of 255 corresponds to the highest measured crowd density 

(Figure 6b). Figure 6c illustrates the calculated density information from low (blue) to high (red) with 

the orthorectified image in the background. This image serves as the interface with the GRASS GIS 

system and provides the basis for the least-cost routing. 

4.2. Calculating the Least-Cost Path using GRASS GIS 

The density layer and the smartphone information are imported into GRASS GIS to perform the  

least-cost calculation. In a first step, a cumulative cost layer is created based on the current location of 

the user using r.cost. For testing purposes, a position in front of the stages in a highly crowded area is 

assumed. The cumulative costs can then be used to navigate to a defined point or to navigate towards a 
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less dense area out of the crowd. For the latter case, a point within a less dense area has to be identified 

using, for example, a nearest point functionality. If the destination of the routing is known, the least-cost 

path can be calculated using r.drain. An exemplary result can be seen in the left image of Figure 7. 

 

Figure 7. Resulting least-cost paths (red line) based on the original cost layer derived from 

the aerial image only (left) and with the additional cost information (circles) derived from 

smartphone sensor data (right). The background consists of the two cost layers over the 

corresponding aerial image scene. One main stage of the music festival is located in the 

lower right of both images. 

Afterwards, the costs derived from the smartphone data are fused with the cost layer derived from the 

aerial images. As the aerial information might be obsolete, the smartphone data indicate a high crowd 

density where the original path (left image in Figure 7) is located. Thus, an updated least-cost path is 

calculated based on the new cost information (see right image in Figure 7). It can be seen that the route 

for the user has changed significantly compared to the result shown in the left image because of the 

added cost information derived from smartphone movement data. Instead of moving away from the 

dense crowd, which is the typical behavior (e.g., in a stress situation), the new calculation suggests that 

the user move sideways straight through a medium-density crowd to reach a free space much faster. 

5. Conclusions and Outlook 

In this paper, we proposed a least-cost navigation based on the fusion of real-time aerial image data 

and smartphone sensor data. The image data are used to estimate an extensive crowd density map. For 

this purpose, a patch-based approach with a Gabor filter bank for texture classification in combination 

with an interest point detector and a smoothing function is applied. The GPS/GNSS location information 

and the current movement speed of a user are gathered with a smartphone app. Thereafter, the in situ 
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crowd density is estimated based on the smartphone information and allows for enhancement of the 

overall density information. Finally, a least-cost routing is performed based on the composed density 

information using GRASS GIS. 

Two possible applications for the integration of our navigation approach are presented. The 

emergency application can support people who want to quickly escape from a dense crowd (e.g., during 

a music festival). Above that, the routing approach in general can help in various situations, for example 

after a football game where certain routes are blocked by the police. 

To exploit the real benefit of the least-cost approach, it is necessary that it can be conducted in real 

time. This means that as a first step, the information from both data sources (image and smartphone) has 

to be accessible in real time. This can be achieved via existing standards of the OGC like the WMS, the 

WFS, or the Web Coverage Service (WCS). Furthermore, the processing of the data and the calculation 

of the cost layer as well as the least-cost path estimation have to be available in real time. Using GRASS 

GIS, all processing steps presented in this paper can be integrated in a web-based infrastructure to enable 

the actual real-time usage as a navigation application. 

Overall, it can be stated that the advantages of our approach are twofold, both for the event organizers 

and the event attendee. The guests can use the tool to avoid stress, overexcitement, or anger, whereas 

the organizers can raise the security level of the event and increase its attraction at the same time by 

providing a modern smartphone navigation app. In addition, security and rescue forces are able to utilize 

the app for their efforts and could reach the location of an emergency faster. 

Future work will be the real-time implementation of our routing approach by bringing together aerial 

imagery and smartphone movement data in real time during a major event. In addition, the transition 

from routing to navigation according to the presented application scenarios has to be the subject of 

future research. 
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