
ISPRS Int. J. Geo-Inf. 2015, 4, 535-550; doi:10.3390/ijgi4020535 
 

ISPRS International Journal of  

Geo-Information 
ISSN 2220-9964 

www.mdpi.com/journal/ijgi/ 

Article 

Characterizing the Heterogeneity of the OpenStreetMap Data 
and Community 

Ding Ma, Mats Sandberg and Bin Jiang * 

Faculty of Engineering and Sustainable Development, University of Gävle, SE-801 76 Gävle, Sweden; 
E-Mails: ding.ma@hig.se (D.M.); mats.sandberg@hig.se (M.S.) 

* Author to whom correspondence should be addressed; E-Mail: bin.jiang@hig.se;  

Tel.: +46-26-648901. 

Academic Editor: Wolfgang Kainz 

Received: 6 January 2015 / Accepted: 27 March 2015 / Published: 8 April 2015 

 

Abstract: OpenStreetMap (OSM) constitutes an unprecedented, free, geographical 

information source contributed by millions of individuals, resulting in a database of great 

volume and heterogeneity. In this study, we characterize the heterogeneity of the entire OSM 

database and historical archive in the context of big data. We consider all users, geographic 

elements and user contributions from an eight-year data archive, at a size of 692 GB.  

We rely on some nonlinear methods such as power law statistics and head/tail breaks to 

uncover and illustrate the underlying scaling properties. All three aspects (users, elements, and 

contributions) demonstrate striking power laws or heavy-tailed distributions. The heavy-tailed 

distributions imply that there are far more small elements than large ones, far more inactive 

users than active ones, and far more lightly edited elements than heavy-edited ones. 

Furthermore, about 500 users in the core group of the OSM are highly networked in terms 

of collaboration. 
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1. Introduction 

Twenty-first century society benefits considerably from, and is increasingly driven by, two forces 

characterized by the head and the tail of a long-tail distribution [1]. For example, while the telephone 

industry was dominated by national telecoms such as AT&T, we now have services such as Skype. The 
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Encyclopedia Britannica was very popular, but we now have a free and more popular counterpart in 

Wikipedia. Information was controlled by governments and giant mass media such as CNN, but 

WikiLeaks or OpenLeaks recently made history by freely sharing information. In the same vein, 

volunteered geographic informaton (VGI) [2] emerged as a counterpart to geographic information, 

which is conventionally collected and maintained by national mapping agencies. As part of  

user-generated content in the era of Web 2.0, VGI uniquely provides geo-referenced location information. 

OpenStreetMap is the most successful and well-known project of VGI, which has attractedd significant 

and sustained interest in academy, industry, and governmental agencies. 

In this article, we study all OSM data collected over the past decade, submitted by about 1 million 

registered users up to February 2013. Previous studies showed that both the data and the user community 

are very heterogeneous. For example, only a small percentage of users make almost all the contributions, 

including creation and edits [3–5]. In terms of data concentration and accuracy, the OSM data varies 

dramatically from urban to rural areas, or from country to country [6,7]. However, these previous studies 

were conducted mostly at country and city levels. They lack quantitative indicators about heterogeneity 

or variation. In contrast, we examined all the OSM data and its history to present a holistic picture of 

OSM based on power-law statistics and the head/tail breaks-induced ht-index. More specifically, we 

illustrate and quantify the underlying heterogeneity of the OSM elements, the users, and their 

contributions through a set of quantitative metrics such as α, p value and ht-index. 

Power-law statistics is based on the robust maximum-likelihood estimation, which differs from the 

conventional least-square estimation [8] (see Section 3 for more details). The maximum-likelihood 

estimation provides two metrics: α (degree of heterogeneity), and p value (goodness of fit). On the other 

hand, the head/tail breaks [9] is a newly developed classification scheme for data with a heavy-tailed 

distribution. It is also an efficient, effective visualization tool for big data [10]. Head/tail breaks partitions 

the whole around an average size into many small things in the tail being a majority, and a few large 

ones in the head being a minority. This partition continues recursively for the head (the large things) 

until the notion of far more small things than large ones is violated. Eventually, the number of times that 

far smaller things recur is defined as the ht-index [11] for characterizing complexity or hierarchical levels 

of the whole. 

The contribution of this paper is three-fold. We situated the study in the context of big data and 

extracted the related historical and attribute information from the entire OSM databases and the users’ 

historic archive. Based on the extraction, we characterized the heterogeneity of OSM databases and 

discovered very striking scaling patterns for both users and data. We built up the co-contribution 

networks over the eight-year timespan of data and found the underlying nonlinear characteristics of OSM 

user collaboration networks. 

The remainder of the paper is organized as follows. Section 2 presents the OSM history data and the 

working procedure of processing the huge dataset. Section 3 briefly introduces the methodology for 

conducting the scaling analysis, including power law statistics and detection and the head/tail breaks. 

Section 4 shows the statistical results of the scaling patterns and other results. Section 5 further discusses 

the implications of this study. Finally, Section 6 draws conclusions, and points to future work. 
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2. Data and Data Processing 

Started in July 2004, and motivated by the great success of Wikipedia, OSM aimed to provide free 

editable maps for the entire world [12]. A large number of volunteers relied on GPS receivers to collect 

GPS trajectory data and transformed it into map data using online editing tools. The mapping processes 

are time-consuming and tedious. In 2006, Yahoo! donated digital images freely to the OSM community, 

so that mapping could be done directly from the images. Later on, OSM obtained free data sets freely 

from companies and countries, such as a complete road data set of Netherlands donated by Automotive 

Navigation Data, and the transformation of a US Census TIGER road data set. Over the past decade, 

OSM has become one of the largest geodata sources and most famous VGI platform with around 1.8 

million users and billions of geographic elements. 

The OSM data is freely accessed on the Internet and with a number of supported formats such as 

XML and shape files. This study uses the complete OSM data history dump, which can be downloaded 

via [13]. The dump is huge, at 692 GB collected from 9 April 2005 to 5 February 2013 in XML format. 

It mainly includes and is structured sequentially by three basic types of geographical elements of OSM 

data: node, way and relation. Nodes as point features that store the location information of longitude and 

latitude coordinates. Ways are polylines and polygons that contain a set of ordered nodes. Relations 

denote the geographic relationships among the three types of elements. Each element contains a variety 

of information such as id, timestamp of creation or edits, contribution user and user id, version number, 

and different kinds of tags. The historical information is organized by version numbers with the attribute 

name version, which increases by 1 each time there is a new version of this element. 

It is difficult to work with on such a big file, since simply running it through takes several hours on a 

state-of-the-art desktop computer. We therefore developed a working procedure (Figure 1) to extract 

both historical and attribute information for each element of the entire database for further analysis. For 

the historical information, we collected element ID, timestamp, contributing user ID and version number 

at each version. Attribute information of each element was with respect to the latest version. For each 

node element, we extracted its coordinate pair (latitude and longitude), and for each way and relation 

element, we collected their member IDs. The whole process took three days on an eight-core 3.4GHz 

CPU and 32GB memory desktop. The extraction was organized as a big table and formatted as a txt file 

with a size of about 150 GB, including approximate 2.1 billion elements consisting of 1.9 billion nodes, 

0.2 billion ways and 2 million relations. For further analysis, we calculated the number of users, edits, 

and sizes for each element and their spatial distribution at the country level (see detailed description in 

Section 4). The extraction as a shrunk version of data greatly improves efficiency, as it only takes half 

an hour to traverse the file and less than one second to return query results by using a binary search based 

on sorted element ID. 
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Figure 1. Flow chart for the data processing to extract essential information for further 

analysis. Note that (a) is data processing and (b) is results 

3. Methodology 

This study illustrates a set of adopted nonlinear methods, including power-law detection based on 

maximum-likelihood estimation [8] and the head/tail breaks as a classification scheme for data with a 

heavy-tailed distribution [9]. We rely on these two methods for scaling analysis because (1) the power 

law detection is probably the most robust and reliable method for power law estimation; and (2) the 

head/tail breaks can act as both a classification scheme and visualization tool [10]. These two methods 

greatly complement each other to uncover and visualize the underlying scaling properties of OSM data. 

More specifically, power-law detection is concerned with how a data set fits better than any other 

alternatives such as lognormal, exponents and their variants, while the head/tail breaks aims to reveal 

the inherent hierarchical levels or the head/tail breaks induced ht-index [11]. More importantly, the 

head/tail breaks can efficiently and effectively filter out redundant data as a powerful visualization tool 

for big data. 

3.1. Power Law Detection 

Data bearing the scaling property follows a power law distribution, which means that the frequency 

of each value is inversely proportional to the power of its rank. In other words, the data contains far more 

small values yet very few large values. The most famous example of power law is found in word 

occurrences, city sizes, and wealth distributions [14]. Generally, the power law is denoted as: y = ఈ (1)ିݔ݇

in which k is a constant, and α is the power law exponent. 

The simplest way to detect the power law is to take logarithm scale on both axes to see if the 

distribution curve is a straight line, based on: 
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ln(ݕ) = ߙ− ln(ݔ) + ln(݇) (2)

However, this method suffers from the messy tail at the very end of the distribution. Hence,  

Clauset et al. [8] have introduced a rigorous statistical test based on maximum likelihood and the 

Kolmogorov-Smirnov (KS) test for power law detection. There are two parameters: an estimated 

exponent α and the index of a goodness-of-fit p. They are used as indices for power-law fit and the 

goodness of the fit. This method has been widely used and proved to be robust for detecting the  

power-law distributions with a wide range of complex systems [15–17]. 

Simply put, the estimated exponent α is used to shape the power-law distribution and the acceptance 

range is from 1 to 3, given by:  

α = 1 + n ൥෍ln ௠௜௡ݔଵݔ
௡
௜ୀ଴ ൩ିଵ  (3)

in which α denotes the estimated exponent, and ݔ௠௜௡ is the smallest value above which the power law 

fit is held. 

We adopted a modified KS test to assess how data fits a power-law distribution (goodness-of-fit). It 

is based on the idea that the maximum distance (D) between the cumulative density functions (CDF) of 

the data and the fitted model: ܦ = (ݔ)݂| − ݔ௫ஹ௫೘೔೙݉ܽ|(ݔ)݃  (4)

in which ݂(ݔ) is the CDF of the data for the observations with a value at least ݔ௠௜௡, and ݃(ݔ) is the 

CDF for the power-law model that best fits the data where ݔ ≥  .௠௜௡ݔ

Usually, 1000 synthetic data sets are then generated with the fitted model ݃(ݔ), which contain data 

whose values above ݔ௠௜௡ perfectly follow a power law distribution. Conversely, values below ݔ௠௜௡ are 

not power-law distributed. The maximum difference D is re-calculated between the fitted model and 

each synthetic dataset. The goodness-of-fit index p is denoted as a fraction of the number of Di whose 

values greater than D to 1000. The higher the p value, the better fit the power law. The closer the  

p-value reaches to 1, the more the data is accepted for a power law distribution. The acceptable threshold 

as a goodness of fit is considered to be 0.05. 

Power-law detection is probably the toughest statistical estimation to differentiate power laws from 

other alternatives such as lognormal, exponential and other variants. In contrast to the rigorous power 

law detection, the head/tail breaks provides a simple solution to reveal the underlying scaling, and it 

applies all kinds of heavy-tailed distributions, as long as the scaling pattern of far more small things than 

large one recurs multiple times.  

3.2. Head/Tail Breaks 

The head/tail breaks is basically originated from the main characteristic of heavy-tailed distributions. 

Given data with a heavy-tailed distribution, the arithmetic mean, or average, can split all the data values 

into two unbalanced parts: A minority of big values above the mean, called the head; and a majority of 

small values below the mean, called the tail. This process recursively continues for the head until the 

notion of far more small values than large ones is violated; see the following recursive function namely 

head/tail breaks. The percentage of splitting up data into the head and tail is set at 40 percent. This 
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implies that the tail percentage is 60 percent. The number of times the data can be split plus 1 is the  

ht-index [11]. It captures how many times the scaling pattern of far more small things than large ones 

recurs in the data. It quantifies the scaling characteristic of the data. The higher the ht-index, the more 

hierarchical levels in the data. 

Recursive function Head/tail Breaks: 

Break the input data (around mean or average) into the head and  

the tail;  
// the head for data values above the mean 
// the tail for data values below the mean 
While (head <= 40%): 

Head/tail Breaks(head); 
End Function 

Some data in this study, such as 2 billion elements, were too big to detect the power laws. In this 

regard, head/tail breaks provide a nice solution. Instead of taking all the elements, we took the head part 

for power-law detection. If the head part was still too big, we took the next head part, until the head part 

was small enough for power-law detection. The reason why we recursively take the head is simply 

because the head is self-similar to the whole data set. This is also the fundamental argument for the 

head/tail breaks as an efficient, effective visualization tool for big data [10]. Therefore, power-law detection 

and head/tail breaks complement each other and provide powerful tools for revealing the underlying 

scaling or heterogeneity of the OSM data. 

4. Scaling Properties of the OSM Data 

This section presents the results of the scaling analysis on a variety of features based on three aspects 

in the context of big data including 1 million users, 2.1 billion elements and 2.7 billion contributions 

(Figure 2). These three parts constitute an interconnected picture of the OSM data and community. The 

users contribute to the elements, leading to a great increase in both element volume and complexity, and 

the user community. Through the contributions, users formed an interconnected collaboration network. 

The scaling analysis based on power-law detection and head/tail breaks was applied to these three aspects 

to examine to what extent the scaling pattern of far more small things than large ones was true for the 

OSM data. 

 

Figure 2. Three aspects of the study in the context of big data. 
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4.1. On Users and Elements 

We first investigated users based on their number of contributions. The investigation was based on 

how many unique element IDs can one user contribute to. These contributions include both creating and 

editing. A total of 268,227 users made contributions. The number of each user’s contributions exhibited 

a power-law distribution, with an accepted α of 2.24 and p value of 0.26 (Figure 3a). By applying the 

head/tail breaks, we derive the scaling hierarchy of these numbers, indicated by the  

ht-index of 7 and very low percentages for each head (<30%). This means the strikingly scaling pattern 

recurs 6 times of this data (Table 1). This apparent scaling pattern indicates that only a very small number 

of users contributed the majority of OSM elements. In other words, there are far more inactive users than 

active ones. 

Table 1. Head/tail breaks statistics for user contributions (Note: # = number, % = percentage). 

# Sum # Head % Head # Tail % Tail Mean 

268,227 13,241 4% 254,986 96% 10,232 
13,241 1825 13% 11,416 87% 199,020 
1825 307 16% 1518 84% 1,164,797 
307 48 15% 259 85% 4,751,085 
48 8 16% 40 84% 18,843,785 
8 2 25% 6 75% 69,899,060 

Secondly, we looked at different attributes of elements. Each element is characterized by the number 

of users, edits and size respectively. Specifically, the number of users for each element indicates that 

how many users contribute to it, given by the number of unique user ids of this element. Note that the 

contribution includes both creation and edit; the number of edits can be directly obtained by the 

maximum version number of this element, since it equals to maximum version number minus one. The 

number of size refers to how many unique node ids it contains. The size of each node element is always 

1; the size of each way element equals to the number of its unique comprising points; the size of each 

relation element is determined by the number of unique points its member contains: node, way or relation 

(these three members do not always exist simultaneously in one relation). Because some relation 

elements can have other relation element(s) as its member(s), it is difficult to calculate those relation 

elements’ sizes when they mutually contain each other as their member(s). There were 4356 relation 

elements excluded because of such complicated structures. Considering the elements of 2.1 billion 

studied, we believe that the 4356 excluded would not affect much on our results. 

Next, we applied head/tail breaks to the above three aspects. All three derived ht-indices were very 

high (>10), and most of the head percentages were small (<30 percent; see detailed results in the 

Appendix). It indicates that there are far more small elements than large ones. Power-law detection was 

further applied on the data of the top hierarchical levels of each category (Table 2). The “filtered” data 

was the proxy of the whole since the scaling pattern remains at each level. Only the number of element 

size passed the power law test (Figure 3d). The number of element users and edits can still be considered 

as heavy-tailed distributed as observed from the Figure 3b and 3c that each plot is close to a straight line 

at logarithm scales, therefore we think that the entire dataset of three aspects possess a strong scaling 

property. We also examined the evolution of data on a yearly basis and found that heterogeneity was no 
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different from the data as a whole. In other words, the data for the previous years are all heavy-tail 

distributed, but vary with different ht-indices. 

Table 2. Summarized statistics on OpenStreetMap (OSM) elements on top hierarchies in 

three categories. 

 # Elements Max Min α p 

User 745,943 197 7 4.95 0 
Edit 548,914 3084 31 3.39 0.006 
Size 479,004 5,118,276 564 2.37 0.13 

 

Figure 3. Power-law distributions of user contributions: (a) number of users; (b) number of 

edits; and (c) number of sizes (d) of each element. The data for (b), (c), and (d) are selected 

from the top hierarchies of all elements. (b) and (c) are not power-law distributed because 

both α values are larger than 3, but they are heavy-tailed, illustrated by the high  

ht-index shown in the Appendix. 

We further inspected the spatial distribution of the elements, i.e., how many the elements are located 

in each country. We computed and assigned to each country the number of elements and the aggregated 

attribute values of each aspect. As results, the data of all the three aspects are very power-law distributed 

(Table 3), which indicate that there are far more small countries than large ones all over the world in 

terms of the elements, users and contributions and it further implies that the high variation of quality and 
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completeness of OSM database from country to country through different elements concentrations. The 

cartogram shows the resulting country sizes (Figure 4), of which the top 5 countries are US, France, 

Canada, Germany and Russia. These countries are also the top 5 ones in terms of aggregated numbers 

of users, edits and size, but with a slightly different ranking (Canada and Germany switch positions). 

Table 3. Summarized statistics of elements at country level. 

 max min α p 

#Element 401,137,304 836 1.74 0.87
#User 598,175,441 951 1.74 0.82
#Edit 636,597,363 969 1.73 0.71
#Size 898,145,600 1408 1.69 0.67

 

Figure 4. The cartogram showing the spatial distribution of global OSM elements at  

country level. 

4.2. On Co-Contribution Network 

Having examined the users and elements, we subsequently studied the scaling pattern in the 

collaboration network of the OSM users. The social relationship utilized in this research is  

co-contribution relationship since friend relationship like other social platforms (e.g., Facebook) is 

undocumented in OSM history. The collaboration or co-contribution relationship is established in the 

OSM data archive when more than one user contributes to the same element. In other words, we 

considered that user has such relationship with others if they either create or edit the same element. This 

approach is different from the one defined by Mooney and Corcoran [4,18] who consider only the edit 

interaction and also the sequence of edits. In this regard, we construct a “co-contribution network” rather 

than co-edit network. As Figure 5a shows, assuming that user 1, 3 and 4 make contributions to element 

b, there are co-contribution relationships between every two of them, so that the resulting network 

(Figure 5b) can be obtained. Note that this paper considers only the binary network, which consists of 

undirected and unweighted edges. 
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(a) (b) 

Figure 5. Illustration of co-contribution relationship. Users’ contributions to elements are 

represented as a bi-partite graph (a), which is transformed into a co-contribution network (b). 

Following the rule of co-contribution relationship, we built up the network based on the entire history 

of all the elements to better illustrate engagement in the OSM community [19]. The resulting social 

graph consists of 248,070 nodes and 6,446,086 edges. The node degree of this network is power-law 

distributed and has an ht-index of 10 (Table 4), indicating that the network is extremely scale-free. Figure 

6 shows the “filtered” network comprising 477 nodes of the top 5 hierarchies as the representative of the 

entire network, from which the underlying scaling pattern is clearly uncovered. We further examine the 

networks of previous years from 2005 in order to see if scaling pattern persists all the time during the 

evolution of the OSM community in terms of contributions. As results, except that no existence of such 

network between the years of 2005 and 2006, the evolution of co-contribution networks is with a 

nonlinear growth of both nodes and edges from 2007 onwards and becomes increasingly scaling which is 

indicated by the power-law fitting metrics and overall increasingly large ht-index of each year (Table 5). 

Table 4. Head/tail breaks statistics for node degree of co-contribution network in 2013. 

# nodes # head % head # tail % tail mean 

248,070 33,504 13% 214,566 87% 51.97 
33,504 7267 21% 26,237 79% 322.08 
7267 1820 25% 5447 75% 1037.53 
1820 477 26% 1343 74% 2486.16 
477 137 28% 340 72% 5181.7 
137 40 29% 97 71% 9474.48 
40 11 27% 29 73% 16,102.82 
11 3 27% 8 73% 26,460.73 
3 1 33% 2 67% 47,980.33 
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Figure 6. The co-contribution network for the top five hierarchical levels involving  

477 nodes and 80,957 edges. The scaling hierarchy of far more small nodes than larger ones 

is indicated by the size of red dots. 

Table 5. Scaling analysis results of co-contribution networks from 2007 to 2013. 

 2007 2008 2009 2010 2011 2012 2013 

# of nodes 3856 25,133 60,231 101,364 159,747 240,119 248,070 
# of edges 29,701 418,077 1,306,154 2,415,319 3,954,826 6,192,510 6,446,086

max-degree 802 5449 15,052 30,816 51,501 65,190 65,876 
ht-index 8 7 9 9 9 10 10 

α 2.8 2.68 2.57 2.59 2.64 2.53 2.91 
p 0.46 0.65 0.18 0.14 0.06 0 0.2 

We also developed some insights into OSM community in term of user collaboration from the derived 

co-contribution network. Comparing to the collaboration network of English Wikipedia [20–22], it has 

the same scaling pattern of far more inactive users than active ones. In addition, the network also has 

some high density concentrations, especially among those highly active users. Specifically, each user 

averagely collaborates with around other 52 users in the whole network and those high degree users even 

have collaboration with almost every other. We further select two global location-based social 

networks (Gowalla and Brightkite) for comparison (data are available at [23]) and find that the  

co-contribution network is much denser than them regarding to both the whole and sampled (nodes of 

top hierarchies) network. 

5. Further Discussions on the Study 

From the results presented in Section 4, we can remark a great heterogeneity of the OSM data and 

community from the elements to user contributions, and further to the annual co-contributions networks. 

All of them can be well characterized by the striking scaling patterns, which are indicated by some 

metrics of power-law statistics and underlying hierarchies and additional statistics of head/tail breaks. 

This section further discusses some implications of the results and the study in general. 

In this study, we have processed and analyzed the entire OSM data and community archive from a 

holistic perspective involving elements, users and their collaboration networks evolving over the past 

decade. Over hundreds of gigabytes of the data are processed and computed to develop new insights into 
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the data and community. The findings of this study are in line with previous research on users and 

elements [3–5,24] that a minority of users/elements accounts for a majority of contributions/edits. The 

major difference between our work and the previous studies is that we conducted an in-depth quantitative 

analysis on all users and elements at the global scale. This enables us to see something that has not been 

illustrated in the previous works. To our best knowledge, the scaling patterns have never been examined 

for OSM dataset at such a massive level. In this connection, we believe that this study can be extended 

to other user-generated content such as Wikipedia [21]. 

This paper applies the scaling analysis to characterize the heterogeneity of global OSM database. 

Apart from examining the power law statistics for detecting scaling patterns, other heavy tailed 

distributions are observed and measured by the ht-index. It is widely known that the data formed from 

real-world phenomena are very likely to be heavy-tailed distributed as the case with the OSM data, since 

the data are naturally evolved and accumulated from individuals from the bottom up instead of imposed 

by authorities from the top down. As results, the data of all aspects follow power laws or heavy tailed 

distributions in general. Therefore, conventional linear methods like Gaussian statistics show some 

inadequacies in characterizing this kind of heterogeneity. Simply there is no typical mean or scale to 

characterize the heterogeneity; instead the scaling across all the scales can be used to characterize the 

diversity or heterogeneity. Our study points to the argument that in the big data era geospatial analysis 

requires a new way of thinking—The Paretian thinking [25] for better understanding geographic forms 

and processes. 

Big data, due to its diversity and heterogeneity, is likely to demonstrate the scaling pattern of far more 

small things than large ones. The large and small things constitute the head and tail, respectively, of a 

long-tail distribution. Interestingly, the scaling pattern recurs multiple times, which implies that the 

things in the head demonstrate the scaling pattern of far more small things than large ones, again and 

again. This recurring scaling pattern is what underlies the new classification scheme called head/tail 

breaks [9]. The head/tail breaks divides things around an average into a few large things in the head and 

many small things in the tail, and continue recursively for the dividing process for the head until the 

notion of far more small things than large ones is violated. The head/tail breaks can efficiently and 

effectively filter out data while data is too big to handle. This filtering function is also what underlies 

the visualization function of head/tail breaks [10]. We believe that the head/tail thinking behind the 

head/tail breaks is very promising for big data and its analytics. 

6. Conclusions 

OSM data are essentially very heterogeneous either at a local or the global scale. This is because 

geographic space or the earth’s surface is very heterogeneous—no average location on the earth surface. 

In this paper, we study the entire OSM data and find that this heterogeneity can be fairly illustrated and 

measured from the element, users, and their collaborations. For the users, both their contributions and 

the degree of the co-contribution networks exhibit a clear power law distribution, which means that there 

are far more inactive users than active users; for elements, there are far more small elements than large 

ones since their attribute values throughout three categories (number of users, edits and size) are heavy 

tail distributed. In addition, the elements assigned to individual countries demonstrate a striking power 

law. Moreover, such pattern also remains at the country level concerning the spatial distribution of all 
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elements. The head/tail breaks can be utilized as an efficient and effective tool to analyze and visualize 

the big data in capturing the underlying scaling hierarchies and complement the mathematical power law 

detection. To summarize, the scaling property is clearly shown with the OSM data and can well-characterize 

this great heterogeneity through power law fitting metrics and underlying the scaling hierarchical levels. 

The study is conducted from the big data perspective, which focuses on the entire dataset and  

data-intensive computing [26]. Therefore, we have created a comprehensive image of the heterogeneity 

of the OSM data and obtained a valuable dataset with respect to the historical and attribute information 

of all elements at the certain time point. Interested researchers are always welcome to contact us for 

further detailed information on the data processing. As for the future work, two things should be done. 

The first is to take the tag information of each element into account and conducting the scaling analysis 

on them. The second is to study the nonlinear dynamics of both spatial and attribute information of each 

element at different temporal granularities (e.g., year, month, week etc.) to find the underlying 

mechanism of the evolution of both OSM community and user mapping activities. 
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Appendix: The Head/Tail Breaks Statistics for Users, Edits, Sizes 

To supplement the description of the results presented in Section 4.1, this appendix contains the 

detailed statistics on the head/tail breaks process for the three aspects: users, edits, and sizes. As we can 

see, all the data have more than 12 hierarchical levels, shown in the level column, and the mean head 

percentages of all three aspects are less than 30%, which is far less than the default threshold of 40%. 

Note that for the results of each element size (Table A3), there are 4356 elements excluded from the 

calculation, therefore the number of elements is 2,138,154,220 − 4356 = 2,138,149,864. 

Table A1. Head/tail breaks statistics for number of users of each element. 

Levels # Elements # in head # in tail head % tail % Mean (user) 
Source 2,138,154,220 460,660,386 1,739,391,359 21% 79% 1 
Level 1 460,660,386 63,754,888 396,905,498 14% 86% 2 
Level 2 63,754,888 13,945,213 49,809,675 22% 78% 3 
Level 3 13,945,213 4,423,467 9,521,746 32% 68% 5 
Level 4 4,423,467 1,694,469 2,728,998 38% 62% 6 
Level 5 1,694,469 745,943 948,526 44% 56% 7 
Level 6 745,943 189,004 556,939 25% 75% 8 
Level 7 189,004 64,169 124,835 34% 66% 11 
Level 8 64,169 18,277 45,892 28% 72% 14 
Level 9 18,277 5230 13,047 29% 71% 19 

Level 10 5230 1486 3744 28% 72% 28 
Level 11 1486 481 1005 32% 68% 43 
Level 12 481 166 315 35% 65% 63 
Level 13 166 56 110 34% 66% 85 
Level 14 56 19 37 34% 66% 112 
Level 15 19 6 13 32% 68% 144 
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Table A2. Head/tail breaks statistics for number of edits of each element. 

Levels # Elements # in head # in tail head % tail % Mean(edit) 
Source 2,138,154,220 649,802,777 1,550,248,968 30% 70% 1 
Level 1 649,802,777 129,015,893 520,786,884 20% 80% 2 
Level 2 129,015,893 29,598,177 99,417,716 23% 77% 4 
Level 3 29,598,177 7,795,319 21,802,858 26% 74% 9 
Level 4 7,795,319 1,999,354 5,795,965 26% 74% 16 
Level 5 1,999,354 548,914 1,450,440 27% 73% 31 
Level 6 548,914 158,071 390,843 29% 71% 56 
Level 7 158,071 42,272 115,799 27% 73% 95 
Level 8 42,272 12,769 29,503 30% 70% 166 
Level 9 12,769 4740 8029 37% 63% 275 

Level 10 4740 1646 3094 35% 65% 391 
Level 11 1646 285 1361 17% 83% 507 
Level 12 285 102 183 36% 64% 850 
Level 13 102 34 68 33% 67% 1225 
Level 14 34 12 22 35% 65% 1669 
Level 15 12 4 8 33% 67% 2113 

Table A3. Head/tail breaks statistics for each element size. 

Levels # Elements # in head # in tail head % tail % Mean(size)
Source 2,138,149,864 166,538,593 2,033,513,152 8% 92% 3 
Level 1 166,538,593 21,021,688 145,516,905 13% 87% 20 
Level 2 21,021,688 280,1262 18,220,426 13% 87% 110 
Level 3 2,801,262 479,004 2,322,258 17% 83% 564 
Level 4 479,004 78,343 400,661 16% 84% 2240 
Level 5 78,343 13,569 64,774 17% 83% 8258 
Level 6 13,569 2215 11,354 16% 84% 29,282 
Level 7 2215 331 1884 15% 85% 107,770 
Level 8 331 60 271 18% 82% 440,378 
Level 9 60 22 38 37% 63% 1,618,479 

Level 10 22 8 14 36% 64% 2,895,564 
Level 11 8 3 5 38% 62% 4,116,527 
Level 12 3 1 2 33% 67% 5,069,421 
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