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Abstract: To improve decision making, real-time population density must be known.
However, calculating the point density of a huge dataset in real time is impractical in terms
of processing time. Accordingly, a fast algorithm for estimating the distribution of the
density of moving points is proposed. The algorithm, which is based on variational Bayesian
estimation, takes a parametric approach to speed up the estimation process. Although the
parametric approach has a drawback, that is the processes to be carried out on the server
are very slow, the proposed algorithm overcomes the drawback by using the result of an
estimation of an adjacent past density distribution.
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1. Introduction

Population density, namely the number of people per unit area, is one of the most effective factors
in decision making involved in tasks, like infrastructure management, city development planning and
merchandising [1]. For example, police officers can optimize their patrols in a city on the basis of
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high-population density locations, because accidents often occur at those locations in cities. A dataset
of people’s positions, consisting of “moving points”, as the example in Figure 1a, can be used to
calculate the population density. Figure 1a was drawn by plotting the results of questionnaires about
people’s journeys (namely, data pairs consisting of origination and destination pairs of the travels)
during a whole day on a base map [2]. The drawing thus represents people’s positions at the moment
in the past. In contrast, the people’s positions measured in real time through mobile phones with
GPS-like positioning functions [3,4] reflect people’s movements. In that case, the people’s positions
are thus recorded in real time as moving points. Such massive data about people’s positions should
be commonly used, because they should be taken into account for many decisions, such as devising
patrol plans for police officers. The OGC (Open Geospatial Consortium [5]), which is an international
standard organization concerned with geospatial information systems, publishes standard specifications
applicable to such data. A standard for encoding such massive moving-point data is defined as “OGC
Moving Features encoding” [6], which is defined for exchanging massive amounts of moving-point
data easily.

People’s location

10,0000

[people/km2]

5,000

(a) (b)

Figure 1. Two types of population visualization. (a) Moving points; (b) density distribution.
Background map: [2].

As mentioned above, real-time moving-point data are useful for many applications; especially, the
distribution function of the density of moving points (hereafter “point density”), expressed as a function
of position (x, y) and time t, is the most effective feature for describing the tendency of the moving
points. However, handling a massive point dataset itself is not so easy, even if it is exchangeable.
Therefore, a conversion from massive moving-point data to easily handleable data is needed.

“Coverage data,” which describes the point density, are one of the most easily handleable kinds of
data. The coverage can be encoded by various encoding standards, like OGC NetCDF [7] and GML [8].
Figure 1b shows a population density distribution visualized from the points shown in (a). Such an
intelligible image colored according to density, often called a “heatmap,” can be generated automatically
(Figure 1b is generated by a quadratic kernel density estimator shown in Section 2.) After visualization,
the heatmaps can be encoded by general image formats, like PNG and JPG. For distributing such images,
an OGC WMS (Web Map Service) [9] interface is commonly used. Accordingly, a conversion from point
data to a coverage would contribute to system interoperability.
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Counting the number of the points is the most naive technique for estimating the density of stationary
points. Namely, a space in which points exist is separated into small cells, and the number of points in
each cell is counted. Such a method is called a histogram method [10]. However, the histogram method
has several problems. One of the problems is the trade-off between the size of the cell (“cell size”)
and the number of data. Cell size can be adjusted in the case that the hierarchical cell structure, like a
“quadtree” [11], is adapted. It should be smaller if the point density is required to be finer; however,
statistical dispersion of the estimation results becomes higher if the cells are small, because smaller cells
have fewer points. To estimate a finer point density, a huge dataset is therefore required. For that reason,
several conventional algorithms for accurately estimating the point density, even with small cells, have
been proposed. The reciprocal of the cell size is called “resolution”; that is, the resolution of a point
density using small cells is “high.”

Another problem with histograms arises in practical data-providing systems. An example of a
client-server system using point density is shown in Figure 2. The data source periodically provides
a real-time point dataset to the analysis server. The server estimates the point density and sends it
to user-client systems A and B. The user clients use the point density by associating it with other
information, such as temperature distribution and map illustrations. In this case, the server is basically
a “high-spec” computer; in contrast, the user clients are generally “low-spec” computers. For such
systems, OGC standards are available. Namely, OGC WMS [9] is a service interface for distributing
map images, and OGC WCS (Web Coverage Service) [12] is a service interface for distributing coverage
data. They provide web APIs to send the point density data. WMS-request data sent from user-client
systems include the area boundary of the required map and the map-image size, which determine the
image resolution. The resolution required by user-client A might be different from that required by
user-client B; besides, the required resolution dynamically changes according to the user requirements.
The point density must thus be dynamically calculated.

Server

(analysis)
Point

dataset

User client A

User client B

Data

source

Other distribution

Map for visualization

Density distribution

(encoded by images, NetCDF etc.)

High spec computer Low spec computers

Real-time insert
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Figure 2. A system using point density.

The computational power of the user client system is generally weaker than that of the server.
Furthermore, the point dataset itself may not be distributed, because the amount of data provided by the
server should be small enough to be sent via a network with low throughput. Many calculations of point
density with various resolutions should therefore be carried out on the server in real time. Accordingly,
a fast on-line algorithm for calculating point densities is needed.

To satisfy the requirements mentioned above, in this work, a “point-density-estimation algorithm” for
handling a moving-point dataset (described with OGC Moving Features) is proposed. The proposed
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algorithm, which is based on Bayesian estimation, can estimate point density (distributed with
OGC WMS or WCS) by using only a partial dataset; consequently, it works faster than
conventional algorithms.

2. Related Works and Contributions

2.1. Trajectory Analysis and Density Estimators

An analysis of tracks of moving points is called “trajectory analysis”, namely trajectory
smoothing [13] (for reducing errors in positioning), trajectory clustering [14–17] (for retrieving
similar trajectories from a database), prediction of movement [18,19], representative path
extraction [15,17,20–22] and an algorithm for labeling positioning data [23].

These trajectory analyses have been developed for extracting information from stored trajectories, not
points. Basically, the density of moving points does not depend on the movement of points; that is, the
density can be calculated by using only a “snapshot” of the moving points. With the proposed algorithm,
however, the density estimation is accelerated by using the “adjacent past density distribution”, which is
based on the similarity between the current point density and the most recent one.

Kernel-density estimators [24,25] are popular methods for estimating a point density. The density
calculated by a kernel-density estimator is the summation of distributions around the points.
The Gaussian kernel-density estimator, which is the most general type, estimates the point densities
as a summation of Gaussians. The density P (x) is given as:

P (x) =
1

N

N∑
n

1

2πh2
exp

(
−|x− xn|2

2h2

)
(1)

where N points are denoted as {xn} and h corresponds to the radius of each Gaussian. A quadratic
kernel-density estimator, which estimates points densities as a summation of quadratic functions as:

P (x) =
1

Nh2

N∑
n

Q

(
|x− xn|

h

)
, Q(r) ≡

 6
π

(1− r)2 r < 1

0 r ≥ 1
(2)

is often used. A quadratic kernel estimator works faster than a Gaussian kernel estimator. On the
other hand, the accuracy of a quadratic kernel estimator is generally less than that of a Gaussian kernel
estimator. Accordingly, a quadratic kernel estimator is often applied to visualize density in the form of
a heatmap. Several kernel-density estimators for summarizing the tendency of moving points have been
proposed; as examples, the dual kernel-density estimator [26] is designed to show differences between
two different point densities; and the directional kernel-density estimator [27] visualizes the tendency
of the movement itself. These kernel-density estimators use all points to estimate the point density.
Thus, the calculation of P (x) in the density estimation becomes more complex in proportion to the
number of points. Consequently, it is difficult to carry out the calculation in real time. This kind of
estimator is called “nonparametric”, because the parameters used in the model are not determined by the
estimation process.

Another approach, called “parametric”, is based on a specific functional formula. The parameters of
the functional formula are optimized to make them consistent with the dataset. The calculation time taken
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by the parametric approach is proportional to the complexity of the function. Thus, even if the number of
points is large, the density estimation does not take a long time. However, optimization of the parameters
takes a very long time. For example, a standard variational Bayesian estimation, which is based on
a Gaussian mixture model (GMM), is often applied as a probability distribution of the point dataset.
In the case of a variational Bayesian estimation, the distribution modeling is a convergence that makes
parameters consistent with all point data; that is, the calculations are iterated. Although the distribution
modeling can be carried out by the server, the processing time is too long for real-time calculation.

2.2. Contributions

Even though the proposed algorithm takes a parametric approach, its parameter optimization is very
fast, because the point density is generated by updating the adjacent past point density. Measurement
by GPS-like positioning functions is generally periodic, so the proposed algorithm handles discrete time
(a period of which equals a time discretization unit). Indices of the discrete times are denoted by integers
· · · t, t+1, · · · . Under the assumption that the point density at time t is expressed as the sum of Gaussian
components, the point density at t + 1 is considered as the sum of the Gaussian components similar to
the Gaussian components at time t. The difference between the point density at t and that at t + 1 is
predictable even if the point dataset is partially used.

The proposed algorithm is based on the update of the Gaussian components by using a partial point
dataset. As the mechanism for updating the Gaussian components, Bayesian estimation is applied. In the
case of Bayesian estimation, a probability-distribution function is assumed a priori and revised by using
the point dataset. Bayesian estimation thus seems applicable for updating the probability-distribution
function; however, to apply Bayesian estimation, a trick to determine parameters used by the assumed
probability-distribution function is needed. In the following section, the trick named “responsibility
reduction” is described.

3. Proposed Algorithm

3.1. Variational Bayesian Estimation

Variational Bayesian estimation is often applied to estimate a multivariate probability-distribution
function. An argument of the multivariate probability-distribution function is replaced by a pair of
coordinate values of a point as (x, y). The N -points density, which is obtained from point probability
distribution P (x, y), is calculated as NP (x, y).

A probability distribution of parameters used in the probability-distribution function is defined
in the variational Bayesian estimation. The probability-distribution function of the parameter set is
called the “prior probability-distribution function” (“prior”). The prior and additional observed points
(“observation”) derive the estimated “posterior probability distribution” (“posterior”) in the variational
Bayesian estimation. The probability-distribution function of the GMM is denoted by:

P (x|{πk}, {µk}, {Λk}) =
∑
k

πkN (x|Λk,µk) (3)
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where x is a vector consisting of an observation’s coordinate values (i.e., (x, y)), N (x|Λ,µ) is a
two-dimensional Gaussian function with a correlation matrix denoted by Λk and an average denoted
by µk, and πk is the mixing ratio of the k-th component to the sum of all components. The prior for
{πk}, {µk} and {Λk} is then defined as:

P ({πk}, {µk}, {Λk} |W0, ν0,β0) = Dir({πk}|α0)
∏
k

N (µk|(β0Λk)
−1,m0)W(Λk|W0, ν0)

Here, α0,W0, ν0 and β0 are parameters, called “hyperparameters,” of the prior. W(·|W, ν) is the Wishart
distribution with deviation W and degrees of freedom ν, and Dir(·|α) is the Dirichlet distribution with
parameter α. The prior is conjugate to the Gaussian mixture; that is, the posterior formula updated by
observations is the same as that of the prior. Estimation of the posterior is therefore implemented as the
update of hyperparameters α0,β0,m0 and W0 by using observations {xn} as:

αk = α0 +Nk (4)

βk = β0 +Nk (5)

mk =
1

βk
(β0m0 +Nkx̄k) (6)

W−1
k = W−1

0 + SkNk +
Nkβ0

Nk + β0

(m0 − x̄k)(m0 − x̄k)
T (7)

νk = ν0 +Nk (8)

Nk, xk and Sk are respectively calculated as:

Nk =
∑
n

rn,k, x̄k =
1

Nk

∑
n

rn,kxn, Sk =
∑
n

rn,k(xn − x̄k)(xn − x̄k)
T (9)

rn,k, “responsibility”, is calculated as:

rn,k =
ρn,k∑
n ρn,k

, ρn,k ≡ π̃k|Λ̃k|
1
2 e

[
−βk

2
− 1

2
(xn−mk)

TWk(xn−mk)
]

(10)

ln π̃k ≡ lnψ(αk)− lnψ(
∑
k

αk), ln |Λ̃k| ≡ lnψ(
νk
2

) + lnψ(
νk − 1

2
) + ln 4|Wk| (11)

where ψ(·) is a digamma function. According to Equation (9), rn,k is interpreted as the contribution
coming from the n-th observation to each component labeled with k.

The calculation of the responsibility requires the hyperparameters; however, the estimation of the
hyperparameters also requires the responsibility. Accordingly, to optimize the hyperparameters, the
above-described processes are iterated; first, the hyperparameters are randomly initialized; second,
the responsibilities are calculated with the initial hyperparameters; third, the hyperparameters are
updated with the calculated responsibility. After iterating the calculation, the optimized hyperparameters
are obtained.

3.2. KL Divergence as a Criterion for Convergence

In the variational Bayesian estimation, the initial hyperparameters α0, β0, m0 and W0 are given a
priori. In other words, the initial hyperparameters, which specify the prior, can be determined to make
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the convergence of the estimation results earlier. If the prior is set to a similar function as the posterior,
most of the processes of the point density estimation are unnecessary. Accordingly, most of the point
dataset has little effect on the point density; that is, most of the point dataset can be ignored. Moreover,
the prior is accurately predictable as the adjacent past posterior, which was estimated at the previous
iteration, because the point density of moving points does not change so much in a short period. The
prior should therefore be set to the same function as the adjacent past posterior in order to stop the point
density estimation early.

Kullback–Leibler (KL) divergence, which behaves like the distance between distribution functions, is
applicable as a criterion for judging whether the calculation can be stopped or not.

Figure 3 illustrates such a judgment process. The point dataset is separated into small blocks in
advance, where the block size is a constant parameter during the process. Note that the block size should
be large enough to detect statistical significance. In Step 1, the prior is generated from the adjacent past
posterior. In Step 2, to estimate the posterior, one of the small blocks (labeled “1”) is input into the prior.
In Step 3, the next prior, which is generated by the estimated posterior in Step 2, is updated with the
block labeled “2”. In this step, KL divergence from the posterior generated in Step 2 to the posterior
generated in Step 3 is calculated. If the KL divergence is small enough, additional blocks are judged
unnecessary. If not, the posterior is similarly calculated, and so on. In the evaluation of KL-divergence,
the number of the input data is controlled; that is, few data are used when the point density changes a
little, but many data are used when the point density changes drastically.
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Figure 3. Serial intromission.

The KL divergence from p(x) to q(x) KL(p(x)||q(x)) is defined as:

KL(p(x)||q(x)) =

∫
p(x) ln

q(x)

p(x)
dx (12)

The proposed algorithm requires the KL-divergence from the prior to the posterior. That is,

K ≡ KL(p({θi}|{xn}m+1)||p({θi}|{xn}m)) (13)

where {θi} = {{πk}, {Λk}, {µk}}, and {xn}m is the m-th data block. If K is small enough, the
estimation result is considered to be converged. p({θi}|{xn}m) can be replaced by q({θi}|{xn}m) =
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q({πk,Λk,µk}|{αk,βk,mk, νk,Wk}), because it is the result of the variational Bayesian estimation.
K is thus transformed to:

K =

∫
q({θi}|{αk,βk,mk, νk,Wk}) ln q({θi}|{α′k,β′k,m′k, νk,W ′

k})
∏
i

dθi

= lnα0 +
∑

(α0 − 1) ln π̃k − lnβ′k −
β′k
2

(
2

βk
+ νk(mk −m′k)

TWk(mk −m′k)

)
+ lnB(W ′

k, ν
′
k) +

1

2
(ν ′k − 1) ln |Λ̃k| −

∑
i,j

W ′−1
i,j

W−1
i,j

(14)

where {αk,βk,mk, νk,Wk} is the set of hyperparameters updated by {xn}m and {α′k,β′k,m′k, νk,W ′
k}

is the set of hyperparameters updated by {x′n}m+1. Here, B(·) is defined as:

B(W, ν) ≡ |W |−
1
2

(
2νπ

1
2 Γ(

ν

2
)Γ(

ν − 1

2
)

)−1
(15)

3.3. Responsibility Reduction

With the proposed method, a trick named “responsibility reduction” is applied to determine the
hyperparameters. For example, as shown in Equation (5), βt,k = β0 + Nt,k, where Nt,k is the sum
of the responsibilities, which are contributed by the k-th component of the GMMat time t. Thus,
Nt,k corresponds to the number of points belonging to the k-th component, because responsibility rn,k
indicates the i-th point’s “belongingness” to the k-th component. Then, βt,k is updated with Nt+1,k as
βt+1,k = β0 +Nt,k +Nt+1,k, where βt+1,k is a hyperparameter of a posterior at t+ 1. Similarly,

βt+n,k = β0 +Nt,k +Nt+1,k + · · ·+Nt+n,k (16)

The hyperparameter at time t + n thus gets larger if n gets larger. Consequently, the contribution of the
newest point dataset, Nt+n,k, is relatively smaller than the contribution of the prior, β0, because the prior
includes the sum of the all past responsibilities. However, the contribution of the newest point dataset
should be greater than the others.

The problem described in the preceding paragraph comes from confusion between point datasets.
The new point density is different from the past point density; therefore, the past points and new points
should not be equally used. Accordingly, the prior should be generated from the past posterior, but the
prior should not be equal to the posterior. The effects of past points on the hyperparameters should thus
be removed. If the effects from the hyperparameters are equal to the effects produced by the new points,
the effects of points in the hyperparameters are kept constant. The dataset at time t is separated into M
blocks containing enough points for inputting sequentially, where the number of points in the blocks are
denoted by n(1)

t , n
(2)
t , · · · , n(i)

t , · · · , n
(M)
t . These blocks are input sequentially to update the posterior.

When the j-th block is input, the ratio of the number of input points to the total number of points is

calculated as
∑j

i n
(i)
t∑M

i n
(i)
t

. The reduction rate of responsibilities γ(j)(t) is then defined as:

γ
(j)
t = 1−

∑j
i n

(i)
t∑M

i n
(i)
t

(17)
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The sum of the past responsibility Nt,k is multiplied by the reduction rate. By this process, the total
number of points contributing to the hyperparameters is adjusted and kept constant.

The updating mechanism is figuratively drawn as an “evaporating pot” in Figure 4. In Step (a), the
pot is filled by a liquid, labeled t. The content of the pot is then evaporated so that half of its capacity
remains. Next, a new liquid, labeled t+ 1, is poured into the pot. The volume of the poured liquid is half
of the pot capacity. In step (b), the contents of the pot are again evaporated to half its capacity. The liquid
labeled t and the liquid labeled t + 1 are reduced equally to half of their initial volumes. That is, the
volumes of the liquids labeled t and t+ 1 become 1/4 of the pot capacity. Then, repeatedly, a new liquid,
labeled by t + 2, is poured into the pot, which is half full of the liquid. After repeating the process,
as shown in Steps (c) and (d), the ingredients in the pot are a mixture of liquids labeled t, t + 1, · · · .
The volume of liquid labeled t′ is therefore

(
1
2

)t′−t+1
V , where V is the pot capacity. Thus, the volume

of liquid will be decreased exponentially.

t t

t+1

t

t+1

t

t+1

t+2

t

t+1

t+2

t

t+1

t+2

t+3

t+2

t+4

t

t+1

t+2

t+3

t+1

t

t+3

(a) (b) (c) (d)

Figure 4. Evaporating pot model. (a) First pouring at t; (b) pouring at t + 1; (c) pouring at
t+ 2; (d) pouring at t+ 3.

The liquid in Figure 4 corresponds to the sum of responsibilities; in other words, evaporation
corresponds to multiplication to the sum of responsibilities by the reduction rate. Accordingly, the
contribution from the old dataset is decreased exponentially by multiplying it by the reduction rate,
while the sum of all responsibilities is kept constant. By the multiplication, the hyperparameters in the
prior at time t+ 1 given by the posterior at time t are derived as follows.

α
(0)
0,t+1 = α0 + γ

(0)
t Nt,k (18)

β
(0)
0,t+1 = β0 + γ

(0)
t Nt,k (19)

m
(0)
0,t+1 =

1

β0,t+1

(
β0m0 + γ

(0)
t Nt,kx̄t,k

)
(20)

W
−1(0)
0,t+1 = W−1

0 + γ
(0)
t St,kNt,k +

γ
(0)
t Nt,kβ0

γ
(0)
t Nt,k + β0

(m0 − x̄t,k)(m0 − x̄t,k)
T (21)

ν
(0)
0,t+1 = ν0 + γ

(0)
t Nt,k (22)
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Here, Nt,k, x̄t,k and St,k at time t are given by Equation (9). The hyperparameters in the posterior at time
t+ 1 are given by:

α
(0)
t+1,k = α0 + γ

(0)
t Nt,k + n

(0)
t,k (23)

β
(0)
t+1,k = β0 + γ

(0)
t Nt,k + n

(0)
t,k (24)

m
(0)
t+1,k =

1

β
(0)
t+1,k

(
β0m0 + γ

(0)
t Nt,kx̄t,k + n

(0)
t,k x̄

(0)
t,k

)
(25)

W
−1(0)
t+1,k = W−1

0 + γ
(0)
t St,kNt,k + s

(0)
t,kn

(0)
t,k +

γ
(0)
t Nt,kβ0

γ
(0)
t Nt,k + β0

(m0 − x̄t,k)(m0 − x̄t,k)
T

+
n
(0)
t,kβ

(0)
0

n
(0)
t,k + β

(0)
0

(m
(0)
0,t − x̄

(0)
t,k )(m

(0)
0,t − x̄

(0)
t,k )T (26)

ν
(0)
t+1,k = ν0 + γ

(0)
t Nt,k + n

(0)
t,k (27)

where:

n
(0)
t,k =

∑
n

r
(0)
t,n,k, x̄

(0)
t,k =

1

n
(0)
t,k

∑
n

rt,n,kx
(0)
t,n, s

(0)
t,k =

∑
n

r
(0)
t,n,k(x

(0)
t,n − x̄

(0)
t,k )(x

(0)
t,n − x̄

(0)
t,k )T (28)

x
(0)
t,n and r(0)t,n,k are points in the n-th block and their responsibilities, respectively.

Another block of the new point dataset is input if the KL-divergence between the posteriors is large.
The prior is updated with the i-th block by the following formulas:

α
(i)
0,t+1 = α0 + γ

(i)
t Nt,k +

i−1∑
j

n
(j)
t,k (29)

β
(i)
0,t+1 = β0 + γ

(i)
t Nt,k +

i−1∑
j

n
(j)
t,k (30)

m
(i)
0,t+1 =

1

β
(i)
0,t+1

(
β0m0 + γ

(i)
t Nt,kx̄t,k +

i−1∑
j

n
(j)
t,k x̄

(j)
t+1,k

)
(31)

W
−1(i)
0,t+1 = W−1

0 + γ
(i)
t SkNk +

i−1∑
j

s
(j)
t+1,kn

(j)
t+1,k +

γ
(i)
t Nt,kβ0

γ
(i)
t Nt,k + β0

(m0 − x̄t,k)(m0 − x̄t,k)
T

+
i−1∑
j

nt+1,kβ
(j)
0,t+1

nt+1,k + β
(j)
0,t+1

(m
(j)
0,t+1 − x̄t+1,k)(m

(j)
0,t+1 − x̄t+1,k)

T (32)

ν
(i)
0,t+1 = ν0 + γ

(i)
t Nt,k +

i−1∑
j

n
(j)
t,k (33)

To obtain the recursive formula, each side of the i + 1-th formula is subtracted by each side of the i-th
formula as follows.

β
(i+1)
0,t+1 =(γ

(i+1)
t − γ(i)t )Nt,k + β

(i)
0,t+1 + n

(i)
t,k (34)
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Additionally, β(i)
k = β

(i)
0 + n

(i)
k , so:

β
(i+1)
0 =β

(i)
t,k + (γ

(i+1)
t − γ(i)t )Nt,k (35)

Similarly, the following formulas are derived.

α
(i)
0,t+1 = α

(i)
t,k + (γ

(i+1)
t − γ(i)t )Nt,k (36)

m
(i)
0,t+1 =

1

β
(i)
0,t+1

(
β
(i)
t+1,km

(i)
t+1,k + (γ

(i+1)
t − γ(i)t )Nt,kx̄t,k

)
(37)

W
−1(i)
0,t+1 = W

−1(i)
t,k + (γ

(i+1)
t − γ(i)t )Nt,kSt,k

+

(
γ
(i+1)
t Nt,kβ0

γ
(i+1)
t Nt,k + β0

− γ
(i)
t Nt,kβ0

γ
(i)
t Nt,k + β0

)
(m0 − x̄t,k)(m0 − x̄t,k)

T (38)

ν
(i)
0,t+1 = ν

(i)
t,k + (γ

(i+1)
t − γ(i)t )Nt,k (39)

The i + 1-th prior can therefore be calculated from α
(i)
t,k, β(i)

0,t+1, m(i)
t+1,k, W−1(i)

t,k , ν
(i)
t,k , γ(i+1)

t and γ(i)t .
After iterating this update computation until KL divergence becomes small enough, the estimated
hyperparameters at time t + 1 is obtained. When KL divergence is converged at i = l, the
hyperparameters of the next prior are written as:

α0,t+1,k = α0 +Nt+1,k (40)

β0,t+1,k = β0 +Nt+1,k (41)

m0,t+1,k =
1

β0,t+1,k

(β0m0 +Nt+1,kx̄t+1,k) (42)

W−1
0,t+1,k = W−1

0 + St+1,kNt+1,k,+
Nt+1,kβ0

Nt+1,k + β0

(m0 − x̄t+1,k)(m0 − x̄t+1,k)
T (43)

ν0,t+1,k = ν0 +Nt+1,k (44)

by Nt+1,k, x̄t+1,k and St+1,k, which are defined as:

Nt+1,k = α
(l)
t,k − α0 = β

(l)
t,k − β0 (45)

x̄t+1,k =
1

Nt+1,k

(
β
(l)
t+1,km

(l)
t+1,k − β0m0

)
(46)

St+1,k =
1

Nt+1,k

(
W
−1(l)
t,k −W−1

0 −
Nt+1,kβ0

Nt+1,k + β0

(m0 − x̄t+1,k)(m0 − x̄t+1,k)
T

)
(47)

The updated formula at t+ 2 is similarly derived. Note that Nt+1,k, x̄t+1,k, St+1,k can be converted to the
following formulas.

Nt+1,k = γ
(l)
t Nt,k +

l∑
j

n
(j)
t+1,k (48)

x̄t+1,k = γ
(l)
t Nt,kx̄t,k +

l∑
j

n
(j)
t+1,kx̄

(j)
t+1,k (49)

St+1,k = γ
(l)
t St,kNt,k +

l∑
j

s
(j)
t+1,kn

(j)
t+1,k + δW (50)
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δW is defined as:

δW =
γ
(i)
t Nt,kβ0

γ
(i)
t Nt,k + β0

(m0 − x̄t,k)(m0 − x̄t,k)
T − Nt+1,kβ0

Nt+1,k + β0

(m0 − x̄t+1,k)(m0 − x̄t+1,k)
T

+
l∑
j

nt+1,kβ
(j)
0,t+1

nt+1,k + β
(j)
0,t+1

(m
(j)
0,t+1 − x̄t+1,k)(m

(j)
0,t+1 − x̄t+1,k)

T (51)

In comparison to Equation (9), the formulas forN and x̄ are natural; that is, the stack of the contributions
from the past data is reduced and added to the current contribution. However, S seems similar to the
other hyperparameters, except δW . δW represents the error caused by sequential estimation, so the
effect of δW on estimation accuracy is quite small if N and n are large enough. Accordingly, in the case
of the proposed algorithm, δW is ignored.

The proposed algorithm is shown in Figure 5. A normal variational Bayesian estimation is carried out
first. The estimated posterior at time t is used to generate the prior at the next time t + 1. Each dataset
is separated into many blocks, and the blocks are sequentially input to update the prior generated by the
last estimated posterior. The block intromission is stopped when the KL divergence between the prior
and the posterior is small enough. When that condition is met, the estimation of the point density at time
t is finished. After the estimation, time t is incremented into t+1, and the estimation of the point density
at time t+ 1 is started. These processes are carried out iteratively to estimate the point density.

Start

Estimate the posterior with Variationial Baysian estimation

at origin time t

Separate dataset into blocks labeled by {di(t)}, initialize i := 0

Generate the prior from the last posterior

Calculate KL-divergence between the prior and the posterior

Is KL-divergence 

small?

Output the posterior as the result at time t

Not small

Small

Variationial Baysian estimation with di(t)

Update the posterior

Fetch dataset at time t

t := t+dt

i:=i+1

Figure 5. Proposed algorithm.

The parameters used for this algorithm are hyperparameters used by the variational Bayesian
estimation and the number of blocks. They are determined manually in the same manner as a general
variational Bayesian estimation. Note that the number of the blocks should be much smaller than the
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size of the entire dataset in order to obtain blocks large enough for detecting statistical significance.
Satisfying this condition is generally easy because the entire data size is extremely large.

4. Experiments

4.1. Experimental Settings and Criteria

The proposed algorithm was evaluated experimentally. The features of the point dataset used for this
evaluation are listed in Table 1. The point datasets, named “people flow data” [28], describe the positions
of people during a day. The point datasets were generated from the result of questionnaires about people’s
travels during a day, namely data pairs of the origination and destination of the journeys. Interpolations
between the origination and the destination were carried out in order to generate point datasets every
minute. Therefore, the interpolation points at the same time were collected as one dataset. The point
density from 0:00 a.m. to 12:00 a.m. was estimated by the proposed algorithm and by two conventional
kernel density estimators. The points, which are expressed as longitude and latitude coordinates, were
converted to an orthogonal coordinate system of which the origin is the centroid of points at 0:00 a.m..
Moreover, the coordinate values of the points in the orthogonal coordinate system were scaled to adjust
their maximal values to 10.0.

Table 1. PFLOWdataset summary.

Title Value

Date 0:00 a.m.–12:00 a.m. in a day
Sampling rate 1 point per minute
Used dataset 600,000 trajectories

The dataset was separated into two blocks. One block was used to estimate the point density; the
other was used for evaluating the accuracy criteria. This is generally called “holdout validation”. Five
thousand points included in the second block were actually used, because it would take too much time
to carry out the evaluation if all of the points in the evaluation block were used.

Two criteria were evaluated: accuracy and processing time. As the accuracy criterion, Ev based on
logarithmic likelihood, defined as:

Ev =
1

N
ln

N∏
n=0

P (xn) (52)

was applied. Here, N is the number of points denoted by xn. Ev indicates the reproducibility of
the point density of the entire dataset. As the processing-time criterion, the time for generating a
150-pixel × 100-pixel heat-map image was used; that is, the calculation was carried out 15,000 times.
To evaluate the criteria accurately, the measurement of Ev and the processing time was carried out three
times, and the average of the results was used as the criterion.

As the parameters used by the proposed algorithm, the number of mixed Gaussian distributions
was set to 200; the block size for sequential intromission was 1,500; the initial hyperparameters were
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α0 = 2.1 and β0 = 1.0; diagonal components of W0 were set to 1.5; and non-diagonal components were
set to 0.0 and ν0 = 2.2. In addition, 200 points were randomly selected from the initial point dataset as
the m0. These parameters were determined manually to obtain the highest Ev.

As conventional methods, the Gaussian kernel method and the quadratic kernel method were similarly
evaluated. Standard deviation h was set to 0.2 for the Gaussian kernel method; radius h was set to 3.0
for the quadratic kernel method in order to avoid the P (xn) = 0 (which gives Ev = −∞).

Incidentally, the program used for the evaluations was implemented with Java on a computer with
an Intel Core i7-3980K 3.2 GHz and 32.0 GB RAM.

4.2. Results

The processing times for each method are plotted in Figure 6a. The people’s positions at the time
indicated by “dataset time” on the horizontal axis are included in the dataset used for the evaluation.
Hereafter, “dataset” time is used in the same meaning. The processing time for the proposed algorithm
was less than 1.0 s, that for the Gaussian kernel method around 250 s and that for the quadratic kernel
method 80 s. The proposed algorithm is thus the fastest of the three methods. The accuracy criterion for
each method is plotted in Figure 6b. The accuracy criterion for the proposed algorithm is close to that
for the Gaussian-kernel density estimator, and that of the quadratic-kernel density estimator is lowest.
These results indicate that the proposed algorithm is the fastest and accurate enough.
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Figure 6. Results of evaluations. (a) Processing-time comparison; (b) accuracy comparison.

Distributions obtained by the three methods are compared in Figure 7. The red regions in the images
indicate high-density areas, the yellow regions medium density and the green regions sparse areas.
Image (a), which represents the density distribution given by the proposed algorithm, is similar to that
given by the Gaussian-kernel estimator, namely Image (b), but it is diffused a bit. Image (c), which
shows the result of the quadratic kernel estimation, is diffused too much to describe the point density.
This diffuseness is caused by large h; therefore, the image generated with the result of the quadratic
kernel with h = 1.0 is similar to Images (a) and (b), as shown in Image (d). However, the accuracy
criteria for the quadratic-kernel method with h = 1.0 is −∞; that is, the distribution is not accurate
at all. Accordingly, the proposed algorithm generates the most unblurred accurate heatmap in these
three algorithms.
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Figure 7. Visualized distributions (7:00 a.m.). (a) Proposed algorithm; (b) Gaussian-kernel
estimator; (c) quadratic-kernel estimator (h = 3.0); (d) quadratic-kernel estimator (h = 1.0).

4.3. Discussion

Sub-sampling is one of the most popular methods for speeding up density estimation processes.
Accordingly, a sub-sampled dataset was also evaluated. Figure 8a plots a series of processing times
after the point dataset was randomly sub-sampled to 2300 points for the Gaussian-kernel estimator
(h = 3.0) and 17,000 points for the quadratic-kernel estimator. Both the Gaussian-kernel estimator
and the quadratic-kernel estimator took 0.6 s under this condition. These times are comparable with that
taken by the proposed algorithm; however, the accuracies of the two former estimators is lower, as shown
in Figure 8b. It is thus concluded that the proposed algorithm maintains high accuracy even when the
processing time was reduced.
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Figure 8. Comparison with sub-sampling. (a) Processing-time comparison;
(b) accuracy comparison.

Heatmaps generated from sub-sampled datasets are shown in Figure 9a,b. The heatmap given by the
quadratic-kernel estimator (Figure 9a) is very similar to the heatmap obtained without sub-sampling,
which is shown in Figure 7c, because the sub-sampled dataset is large enough. However, the heatmap
given by the Gaussian-kernel estimator (Figure 9b) is quite different from Figure 7b. This implies that the
sub-sampled dataset used by the Gaussian-kernel estimator is too small to generate a heatmap. As shown
in Figure 10, to compare heatmaps at 7:01 a.m., 7:02 a.m., 7:03 a.m. and 7:04 a.m., a generated
heatmap depends on points chosen at random, that is the heatmap is changed randomly. Because
the Gaussian-kernel estimator is slower than the quadratic-kernel estimator, fewer points were used.
That means the quadratic-kernel estimator is more feasible for generating heatmaps quickly than the
Gaussian-kernel estimator. However, as shown in Figure 8, the proposed algorithm can generate more
accurate heatmaps than that generated by the quadratic kernel estimator.
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(a) (b)

Figure 9. Visualized distributions after sub-sampling (7:00 a.m.). (a) Quadratic-kernel
estimator (h = 1.0); (b) Gaussian-kernel estimator.
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Figure 10. Visualized distributions by the Gaussian-kernel estimator after subsampling.

For ensuring these results, Ev’s of the Gaussian-kernel estimator and the quadratic-kernel estimator
under various h’s are calculated with 10,000 points at 0:00 a.m.. In the case of the Gaussian-kernel
estimator, Ev = −∞ at h = 0.05, Ev = −4.00 at h = 0.1, Ev = −4.11 at h = 0.2, Ev = −4.28 at
h = 0.5 and Ev = −4.41 at h = 1.0. Similarly, in the case of the quadratic-kernel, Ev = −∞ at h = 1.0,
Ev = −∞ at h = 2.0, Ev = −4.40 at h = 3.0, Ev = −4.47 at h = 4.0 and Ev = −4.53 at h = 5.0. The
Ev shown in the Figure 9b are comparable with these Ev. In addition, the proposed algorithm achieved
Ev = −3.79, which is also comparable with Ev shown in Figure 9b. That implies that the evaluation
setting like h and the number of point data are not significant for the accuracy evaluation.

According to the results of the experiment described above, the proposed algorithm achieved
faster performance than two existing algorithms, namely a quadratic-kernel density estimator and a
Gaussian-kernel density estimator. Moreover, by subsampling, the kernel density estimators can be
accelerated to speeds comparable with that of the proposed algorithm; however, they show lower
accuracy. Therefore, it is confirmed that the proposed algorithm has advantages over the existing
kernel-density estimators.

5. Concluding Remarks

A method for estimating the density of moving points, based on a variational Bayesian estimation, was
proposed. The prior in the estimation is generated from the posterior given by the previous estimation.
Responsibilities used in the posterior formula should be reduced in order to generate the prior; therefore,
a trick named “responsibility reduction” was introduced. Moreover, the processing time and the
estimation accuracy of the proposed algorithm were experimentally evaluated. The proposed algorithm
was faster than two conventional methods; moreover, the estimation accuracy of the proposed algorithm
is comparable with those of the conventional methods. These results demonstrate that the proposed
algorithm is fast without loss of accuracy. Therefore, it is concluded that a massive moving-point dataset,
which can be encoded with OGC Moving Features, can be converted to a heatmap, which is distributable
with OGC WMS and WCS, in real time.

As future work, the proposed algorithm will be extended to handle the non-GMM distributions. The
responsibility reduction is applicable to other distributions. The the extended algorithm will thus be
further developed to speed up the point density estimation.
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