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Abstract: Sustainable urban planning and management require reliable land change models, 

which can be used to improve decision making. The objective of this study was to test a 

random forest-cellular automata (RF-CA) model, which combines random forest (RF) and 

cellular automata (CA) models. The Kappa simulation (KSimulation), figure of merit, and 

components of agreement and disagreement statistics were used to validate the RF-CA 

model. Furthermore, the RF-CA model was compared with support vector machine cellular 

automata (SVM-CA) and logistic regression cellular automata (LR-CA) models. Results 

show that the RF-CA model outperformed the SVM-CA and LR-CA models. The RF-CA 

model had a Kappa simulation (KSimulation) accuracy of 0.51 (with a figure of merit 

statistic of 47%), while SVM-CA and LR-CA models had a KSimulation accuracy of 0.39 

and −0.22 (with figure of merit statistics of 39% and 6%), respectively. Generally, the  

RF-CA model was relatively accurate at allocating “non-built-up to built-up” changes as 

reflected by the correct “non-built-up to built-up” components of agreement of 15%. The 

performance of the RF-CA model was attributed to the relatively accurate RF transition 

potential maps. Therefore, this study highlights the potential of the RF-CA model for 

simulating urban growth.  

Keywords: urban growth; land change models; random forest; cellular automata;  

kappa simulation 
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1. Introduction 

Urban land change models are important for analysing the driving forces of land use/cover changes, 

and simulating “what if” urban growth scenarios [1–3]. This is particularly important in developing 

countries experiencing rapid urban growth [4–6]. It is estimated that more than three billion people 

will be living in urban areas by 2050, of which 80% will be inhabitants of cities in developing 

countries [7,8]. According to the United Nations [7], the urban population in Asia is expected to 

increase from 1.8 billion in 2010 to 3.4 billion in 2050, while the urban population in Africa is 

projected to rise from 0.8 billion in 2010 to 1.2 billion in 2050. Rapid urbanisation is expected to 

increase informal settlements, epidemics and environmental degradation [9,10]. Therefore, urban 

planners and policy makers require reliable land change models, which can be used to simulate 

different urban growth or development scenarios [3,11].  

The past decades have witnessed the development and application of many urban land change 

models based on cellular automata (CA) [12–20]. Cellular automata (CA) are bottom-up and discrete 

dynamic models that were originally conceptualised by Ulam and Von Neumann in the 1940s in order to 

understand the behaviour of complex systems [21]. The CA model consists of cell space, cell states, 

neighbourhoods, time steps and transition rules [22]. Space can be represented as a grid of cells, while 

a neighbourhood is defined as a collection of cells based on adjacency [21,22]. Each cell can assume one 

of i discrete states at any one time [23,24]. Time progresses in discrete steps and all cells change their 

state simultaneously as a function of their own state, together with the state of the adjacent cells according 

to specified transition rules [25]. The transition rules are key components of CA since they represent the 

processes of the system being modelled [26]. Distance functions are applied within a neighbourhood to 

take into account the spatial dependent attractiveness or repulsiveness of one cell state over another [27]. 

The CA model simulates future land use/cover changes based on the extrapolation of past land 

use/cover.  

Cellular automata (CA) models have significantly contributed to urban growth  

modelling [2,12,22,24,28,29]. However, previous studies have highlighted limitations regarding the 

definition of transition rules or transition potential [1,30–32]. In a comparative analysis of twelve 

empirical transition potential models, Eastman et al. [1] revealed that eleven models, including the 

commonly used multicriteria evaluation (MCE), logistic regression (LR) and weights of evidence 

(WoE), performed poorly. This is because most of the transition potential models are defined in linear 

form [33]. As a result, the transition potential models fail to capture the underlying land use/cover change 

patterns and processes that are often characterised by nonlinearity, complexity, emergence and self-

organisation [31,34]. In order to overcome the limitations of linear models, Li and Yeh [35] developed 

a neural-network CA model to handle complex relationships in urban systems. Although neural 

networks have been reported to improve land change modelling, they are difficult to calibrate and tend to 

overfit [35]. Furthermore, Yang et al. [33] applied a support vector machine-cellular automata  

(SVM-CA) model in Shenzhen city. The authors reported that the SVM-CA model achieved higher 

accuracy and overcame the limitations of neural networks. However, SVMs are sensitive to outliers [36] 

and generally require more training time, especially if the dataset has many features.  

Reliable urban land change models are a key requirement for sustainable urban growth 

planning [11,37]. While other researchers have recently improved land change models using  
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auto-logistic regression and multivariate adaptive regression splines models [38–40], there is still need 

to test other nonlinear models. Random forest (RF) is an ensemble (collection) model [41], which uses 

bagging (bootstrap aggregated sampling) to build many individual decision trees for a final prediction or 

classification [42]. The algorithm uses a random subset of predictor variables to split observation data 

into homogenous subsets [42]. In addition, the RF model uses out-of-bag (OOB) sample data, which 

are derived from the data that are not in the bootstrap sample to evaluate performance [42]. The 

advantages of RF models are: (i) they can handle a large database (e.g., thousands of input numerical 

and categorical variables); (ii) they require less training time compared to other machine learning 

classifiers (e.g., artificial neural network, SVM, boosting); (iii) they are free of normal distribution 

assumptions; (iv) they are robust in dealing with outliers and noise; and (v) they quantify each input 

variable into an importance measure [43]. While, the RF model has been used successfully for remote 

sensing image classification, to our knowledge the RF model has not been tested for modelling 

transition potential and simulating urban growth. 

The objective of the study is to test the random forest-cellular automata (RF-CA) urban land change 

model in Harare Metropolitan Province, Zimbabwe. The RF-CA model applied in this study integrates 

the RF and CA models in order to test the effectiveness of the RF-CA model for simulating urban 

growth. First, we calculated multiple-step transition rates from land use/cover maps (1984, 2002 and 

2008). Second, the RF model was used to compute transition potential maps. Third, we simulated land 

use/cover up to 2013 using multiple-step transition rates and a transition potential map based on the CA 

model. Fourth, the Kappa simulation (KSimulation), figure of merit, and components of agreement and 

disagreement statistics were used to validate the RF-CA model. In addition, we applied SVM-CA and 

logistic regression-cellular automata (LR-CA) models in order to compare performance with the RF-CA 

model. This is because LR-CA and SVM-CA models are some of the commonly used land change models.  

2. Implementation of the RF-CA Model 

2.1. Study Area and Data 

Harare Metropolitan Province extends between 17°40ʹ and 18°00ʹ south, and between 30°55ʹ and 

31°15ʹ east, encompassing an area of about 942 km2 (Figure 1). The metropolitan province consists of 

the Harare Urban, Harare Rural, Chitungwiza and Epworth districts. The Harare Urban district 

incorporates the City of Harare, which is the capital city of Zimbabwe. The spatial structure of the City 

of Harare is characterised by a radial road network with the central business district (CBD) at its core, 

and the industrial areas to the east and south [44]. To the north and northeast are low density 

residential areas on plot sizes of about 1000 m2 or more, while to the extreme east, south, southwest 

and west are the high density residential areas on plot sizes of about 300 m2 [44]. In addition, some 

medium density residential areas measuring between 800 m2 and 1000 m2 are found in the southern 

part of the City of Harare. Chitungwiza city (in Chitungwiza district) is located approximately 25 km 

south of the City of Harare. The city was developed by the colonial government in order to allocate 

residential areas for Africans far from the City of Harare [45]. Although Chitungwiza city has 

commercial and industrial enterprises, most of its residents work in the City of Harare. Epworth 
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district, which is located to the south-east of the City of Harare, is an unplanned and informal urban 

settlement that was formed by war refugees during the liberation struggle in the 1970s [9].  

 

Figure 1. Location of Harare Metropolitan Province, Zimbabwe. 

According to Colquhoun [46] and Mutizwa-Mangiza [47], the population of Harare Metropolitan 

Province increased significantly after independence in 1980, when migration controls where removed. 

The population in Harare Urban district increased from approximately 642,191 in 1982 to 1,435,784  

in 2012, while the population in Harare Rural district increased from 16,173 to 23,023 over the same 

period [10,48]. However, the population of Chitungwiza City expanded exponentially from 

approximately 15,000 in 1969 to 354,472 in 2012 [45,48]. The population expansion was mainly 

driven by people who migrated from rural areas during the liberation struggle in the 1970s [9]. The 

population of Epworth district also increased rapidly after independence as war refugees were joined 

by people who could not get accommodation in the City of Harare [45]. Currently, the population of 

Epworth district is estimated to be 161,840 [48]. Given this rapid population growth and the ensuing 

urbanisation [49], we selected Harare Metropolitan Province to test the RF-CA model. In addition, 

Harare Metropolitan Province is characterised by urban growth patterns such as extension, infill and 

leapfrog developments, which are also observed in other cities in sub-Saharan Africa [17]. 

We used land use/cover maps and driving factors to develop the RF-CA model (Table 1) for Harare 

metropolitan province (Table 1 and Figure 2). Land use/cover maps were classified from Landsat 

imagery for 1984, 2002, 2008, 2013 and validated using anniversary and near-anniversary reference 

data [49]. Overall accuracy levels for the four dates range from 86% to 93% [49]. Table 2 provides a 

description of the land use/cover classes. Major roads for the “1984–2002” and “2002–2008” periods were 

digitised from the 1:30,000 scale Harare Street maps published by the Department of the Surveyor-General 
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(Zimbabwe) in 1989 and 2005, respectively. In addition, major industrial centers and the city center 

were also digitised from the 1:30,000 scale Harare Street maps. Elevation was derived from 

ASTERGDEM, while population density data were acquired from the Zimbabwe Statistical Office [48]. 

We used built-up areas (extracted from the 1984 and 2002 land cover maps), major roads, major 

industrial centers, and city center data to compute “distance to built-up areas”, “distance to major 

roads”, “distance to major industrial areas”, and “distance to city center” using the euclidean distance 

procedures available in ArcGIS 10.2 (Table 1 and Figure 3). We computed “distance to built-up areas” 

for 1984 and 2002, and “distance to major roads” for the “1984–2002” and “2002–2008” periods 

because built-up areas and roads are dynamic driving factors that change over time. Furthermore, we 

used “distance to built-up areas” as the driving factor because previous urban form influences future 

urban patterns [26]. Finally, all driving factors were resampled to 30 m × 30 m spatial resolution in 

order to match the spatial resolution of the Landsat-derived land use/cover maps (Figure 2).  

Table 1. Input data for calibrating and simulating land use/cover change. 

Variable Source 

Land use/cover maps (1984, 2002, 2008 and 2013) 
Distance to built-up areas (1984, 2002) 
Distance to major roads (1984–2002, 2002–2008) 
Distance to major industrial centers 
Distance to city center 
Elevation 
Population density (2002) 

Classified from Landsat data 
Derived from land use/cover maps 
Digitised from 1:30,000 scale Harare Street maps 
Digitised from 1:30,000 scale Harare Street maps 
Digitised from 1:30,000 scale Harare Street maps 
Derived from ASTERGDEM 
Derived from Zimbabwe Statistical Office 

 

Figure 2. Land use/cover for (a) 1984, (b) 2002, (c) 2008 and (d) 2013. 
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Table 2. Land use/cover classes. 

Land Use/Cover Class Description 

Built-up 
Residential, commercial and services, industrial, transportation, 
communication and utilities, construction sites, and landfills. 

Non-built-up 
All wooded areas, riverine vegetation, shrubs and bushes, grass cover, golf 
courses, parks, cultivated land, fallow land, land under irrigation, bare 
exposed areas, transitional areas and water. 

 

Figure 3. Selected driving factors used to compute transition potential maps: (a) distance  

to built-up areas (2002); (b) distance to major roads (2002); (c) distance to major industrial 

centers; (d) distance to city center; (e) elevation; and (f) population density (2002). 
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2.2. Model Calibration and Simulation 

We used the following procedures to implement the RF-CA model: (1) computing of transition  

rates; (2) transition potential modelling; and (3) CA simulation, as well as model validation (Figure 4). 

Machine learning and statistical algorithms available in R were used to model transition potential, while 

functions available in Dinamica EGO were used to compute transition rates and simulate land use/cover 

changes. R is a free and open-source statistical and computer graphic software [50], while Dinamica EGO 

(Environment for Geoprocessing Objects) is freeware that was developed by Soares-Filho et al. [51]. 

Dinamica EGO consists of a sophisticated platform for developing dynamic spatial models, which 

involve nested iterations, multiple-step transitions, dynamic feedbacks and multi-scale approaches [51].  

 

Figure 4. Random forest-cellular automata (RF-CA) model. Note LUC refers to land use/cover. 

2.2.1. Computation of Transition Rates 

We used land use/cover maps for 1984, 2002 and 2008 (Figure 2) to compute single- and multiple-step 

transition rates in Dinamica EGO. Single-step transition rates refer to absolute aggregate rates 

computed for a given period (e.g., 16 years), while multiple-step transition rates refer to transition rates 

that are computed at an annual time step. The single-step transition and multiple-step transition rates are 

computed according to well-known algorithms available in Dinamica EGO [52]. Table 3a shows that 

transition rates for the “1984–2002”, “2002–2008” (calibration) and “2008–2013” (validation) periods are 

different and thus nonstationary. Therefore, we tested the effectiveness of both single and multiple-step 

transition rates during the CA calibration run. Initial calibration results indicated that the “1984–2008” 

multiple-step transition rate and the combined “1984–2002”, “2002–2008”, and “1984–2008” multiple-step 
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transition rates had the best simulation accuracy (Table 3b). However, the combined “1984–2002”, 

“2002–2008”, and “1984–2008” multiple-step transition rates (Table 3b) produced better spatial 

allocation accuracy. This is because the “1984–2002” and “2002–2008” multiple-step transition rates 

allocated the quantity of “non-built-up to built-up” changes, whereas the “1984–2008” multiple-step 

transition rate regulated or modulated the allocation of “non-built-up to built-up” changes. As a result, 

overestimation or underestimation was minimised during simulation. Therefore, three multiple-step 

transition rates from the “1984–2002”, “2002–2008” and “1984–2008” periods were selected for the 

final CA simulation run (Table 3a). It should be noted that the use of three multiple-step transition 

rates from the “1984–2002”, “2002–2008” and “1984–2008” periods needs further research in other 

urban landscapes in order to test its effectiveness. 

Table 3. (a) Single and multiple-step transition rates (%); (b) Simulation accuracy based 

on single and multiple-step transition rates (%). 

(a) 
Period Single-Step Transition Rates Multiple-Step Transition Rates 

1984–2002 14 1 
2002–2008 10 2 
1984–2008 22 1 
2008–2013 11 2 

(b) 
Period Single-Step Simulation Accuracy Multiple-Step Simulation Accuracy 

1984–2008 6 50 
1984–2002; 2002–2008 6 44 
1984–2002; 2002–2008; 

and 1984–2008 
6 50 

2.2.2. Transition Potential Modelling 

We used 3000 training points randomly sampled from “non-built-up to built-up” and “no change” 

(that is, built up and non-built-up persistence) areas between 1984 and 2008 in order to develop the RF 

model based on the randomForest package [53] available in R. All driving factors (Table 1) were used 

for model development after a multicollinearity test revealed that they were below the threshold value 

of 0.7 [54], and therefore not redundant. After checking for multicollinearity, we randomly selected 

70% of the training points for model development, while 30% were used for cross-validation.  

In order to achieve optimum model performance, we adjusted the RF model parameters. The RF 

algorithm split the input variables into independent groupings based on binary decisions to generate 

initial large and complex trees. However, large trees tend to overfit the training data, resulting in poor 

prediction. Therefore, we adjusted the RF model parameters by changing the number of input variables 

selected at each node split and the total number of trees included in the model (25, 50, 100, and 500). After 

calibration, 100 trees were used to construct the final RF model and then compute the “non-built-up to 

built-up” transition potential map.  

We also developed SVM and LR models in order to compare performance with the RF model. 

SVMs are machine-learning techniques based on statistical learning theory [55,56]. The technique was 
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introduced by Boser et al., [55] and Vapnik [56] to solve classification and regression problems by 

constructing hyperplanes in a multidimensional space. In general, SVMs select the decision boundary 

from an infinite number of potential ones, leaving the greatest margin between the closest data points 

to the hyperplane, which are referred to as “support vectors” [57]. SVM employ a kernel function to 

transform the training data into higher dimensional feature space for nonlinear classification problems [57]. 

For the SVM model in this study, we selected a radial basis function as the SVM kernel using the e071 

package available in R [58].  

The LR technique models the relationship between a dependent variable and one or more 

independent variables (which may be categorical or continuous). The LR model can be expressed as:  
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where: P(Y |  X) is the probability of the dependent variable Y given X (that is, the probability of a cell 

being urbanised); X represents independent variables such as distance to roads; βo is a constant to be 

estimated; and β1 is a coefficient to be estimated for each independent variable X. For the LR model in 

this study, we used the generalized linear model (GLM) available in R [50]. 

2.2.3. Simulation based On the CA Model 

Three datasets, (1) the initial land use/cover map (1984); (2) the transition potential maps  

(1984–2008); and (3) the “1984–2002”, “2002–2008” and “1984–2008” multiple-state transition rates, 

were used to simulate land use/cover up to 2013 based on the expander and patcher transition CA 

functions. The expander transition function expands or contracts previous land use/cover class patches, 

while the patcher transition function forms new patches [51]. The expander and patcher transition 

functions are composed of an allocation mechanism responsible for identifying cells with the highest 

transition potential for each transition [51]. For example, the expander transition function performs 

transitions from state i (non-built-up) to state j (built-up) only in the neighbouring cells of state j in order 

to expand or contract land use/cover patches. The patcher function then performs transitions from state i to 

state j only in the neighbouring cells with states other than j [51]. In order to simulate land use/cover 

changes, both transition functions use a stochastic selecting mechanism [51].  

The sizes of new land use/cover patches are set according to a lognormal probability function, 

whose parameters are defined by the mean patch size (MPS), patch size variance (VAR) and isometry 

(ISO) [59]. The parameters can be changed to produce various spatial patterns of land use/cover. For 

this study, we calibrated the CA model by changing the parameters of the expander and patcher 

transition functions using trial and error. The initial simulation year was 1984, while the final year was 

2013 (that is, the observed or reference year). As a result, the CA model had twenty-nine iterations at 

an annual time-step.  
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3. Results and Discussion 

3.1. Evaluating the Goodness-of-Fit of Transition Potential Maps 

Figure 5a–c show “non-built-up to built-up” transition potential maps—computed using RF, SVM 

and LR models—while Figure 5d shows land use/cover changes that occurred between 1984 and 2013. 

Visual analysis revealed that the RF model produced a relatively accurate transition potential map 

compared to the SVM and LR models. In particular, the RF model was adept at predicting new infill 

development and extension built-up areas near previous built-up areas (from 1984 and 2002). Infill 

development refers to growth of newly developed areas in the urbanised areas of the previous time 

period (that is, 1984 and 2002), while extension refers to expansion of built-up areas within the 

urbanised areas [60]. In contrast, the SVM model overestimated the “non-built-up to built-up” changes 

(Figure 5b). As a result, the SVM transition potential map does not match the observed “non-built-up to 

built-up” change patterns (Figure 5b,d). This implies that the prediction of newly built-up areas is 

affected by clumping (that is, correctness bias towards high transition areas) due to overfitting [61]. 

Figure 5c shows that the LR model performed poorly. This is reflected by the occurrence of high 

transition potential areas in dominant persistence “non-built-up” areas (Figure 5). Generally, all 

models fail to predict unplanned leapfrog developments, particularly in the south-western part of the 

study area (Figure 5d). Leapfrog developments are newly built-up areas that are converted from  

non-built-up parcels outside of and unconnected with existing urban built-up areas [60]. Previous 

studies revealed that statistical or machine learning models underpredict the location of new patches that 

are not connected to existing built-up areas [62] due to spatial or temporal nonstationarity [63]. 

We first analysed the area under the curve (AUC) for the relative operating characteristic (ROC) 

statistic to evaluate the goodness-of-fit of transition potential maps [64]. Based on the ROC statistics, a 

measure with perfect predictive power would yield a value of 1.0, while one with no power (random) 

would yield a value of 0.5 [1]. Values less than 0.5 (null model) indicate a measure that is systematically 

incorrect [1]. The AUC ROC statistic—which summarizes the strength of the overall diagnostic 

availability—was 0.77 for the RF model, 0.75 for the SVM model, and 0.7 for the LR model. 

However, Figure 5a–c show that the AUC statistic does not provide sufficient information to evaluate  

model performance in this study. Previous studies revealed that the AUC statistic can be potentially 

misleading [65,66] because it includes persistence areas in model validation [1]. Therefore, Pontius and  

Si [67] recommend interpreting the ROC curve as well as using the total operating characteristic (TOC) 

statistic to evaluate the goodness-of-fit of transition potential maps. The TOC statistic expands on the 

commonly used ROC statistic [67]. Therefore, TOC statistic provides additional information compared 

to the ROC statistic, which is useful for evaluating the goodness-of-fit of transition potential maps. For 

example, the ROC statistic shows only two ratios, hits/(hits plus misses) and false alarms/(false alarms 

plus correct rejections), while the TOC statistic shows all four entries in the matrix: hits, misses, false 

alarms and correct rejections [67]. Furthermore, the TOC statistic is more intuitive since it provides 

results based on the actual units in the contingency table (e.g., square kilometres) instead of a unitless 

statistic such as AUC [67]. More details about the TOC statistic can be found in Pontius and Si [67]. 
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Figure 5. (a) RF transition potential map; (b) SVM transition potential map; (c) LR 

transition potential map; and (d) land use/cover changes between 1984 and 2013 (note 

black circles show leapfrog developments in the south-western and western parts of the 

study area). Note NBu represents non-built-up, while Bu represents built-up areas. 

Figure 6a–c show the TOC graphs for all models. We focused our model validation on the 20th 

threshold number, which represents 28.8% or 182 km2 of the “non-built-up to built-up” changes 

between 1984 and 2008. Figure 6a shows that the ROC curve for the RF model is above the uniform 

model at the observed 20th threshold number. This indicates that the RF model is better than the 

uniform model at predicting the spatial allocation of “non-built-up to built-up” changes. The ROC curve 

for the SVM model (Figure 6b) is also above the uniform ROC model at the observed 20th threshold 
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number. However, the ROC curve for the SVM model (Figure 6b) is close to the uniform model, 

which suggests decreased allocation accuracy for the “non-built-up to built-up” changes. A similar 

trend is observed with the LR model ROC curve (Figure 6c), which is much closer to the uniform 

model. This indicates that the LR model is less accurate at predicting the allocation of “non-built-up to 

built-up” changes. Our results are in agreement with Wang et al. [68], who noted that the LR model is 

less accurate at modelling slow or rapid land use developments. Furthermore, in a study on predictive 

modelling of potential gold sites, Rodriguez-Galiano et al. [69] revealed that LR models overestimated 

potential gold sites. More importantly, Rodriguez-Galiano et al. [69] concluded that RF models 

performed better than LR models, which is also consistent with our results. Nonetheless, all three 

models are better than the uniform model at predicting the allocation of non-built-up persistence. This 

is reflected by the quantity of correct rejections, which is almost similar for all models (Figure 6a–c). 

Since built-up and non-built-up persistence accounts for approximately 68% of the study area, all 

models have relatively high AUC. Figure 6a–c shows that the RF model has more hits and fewer 

misses and false alarms than the SVM and LR models. For example, the RF model had approximately 

33.1 km2 hits (that is, correctly predicted “non-built-up to built-up” changes) compared to 37.5 km2 of 

the observed “non-built-up to built-up” changes between 2008 and 2013 (validation period). 

Contrarily, the SVM and LR models had approximately 23.5 km2 and 15.7 km2 hits, respectively. 

Consequently, the RF model was better at predicting the spatial allocation of “non-built-up to built-up” 

changes than the SVM and LR models. This is because the RF model can handle the nonlinear 

relationship between dependent and explanatory driving factors. Therefore, the RF model was well 

suited to predict urban growth based on both numerical and categorical driving factors used in this 

study. In addition, the RF model was influenced less by overfitting. As a result, the prediction of new 

built-up areas was not affected by clumping. 

3.2. RF-CA Model Validation 

Figure 7 shows the observed and simulated land use/cover maps for the study area. Visual analysis 

shows that the RF-CA model had the best correspondence between the observed and simulated land 

use/cover maps for 2013 (Figure 7b). This suggests that the RF-CA model was relatively accurate at 

allocating “non-built-up to built-up” changes as well simulating infill development and extension built-

up patterns in the study area. Figure 7c shows that the simulated built-up patterns do not match the 

observed built-up patterns. This suggests that while the SVM-CA model has relatively high simulation 

accuracy in terms of quantity, the spatial allocation of “non-built-up to built-up” changes was poor due 

to overfitting observed during the calibration of the SVM model (Figure 5b). As a result, the SVM-CA 

model had difficulty to simulate built-up patterns similar to the observed built-up patterns. Furthermore, 

the LR-CA model indicates poor correspondence between the observed and simulated land use/cover map 

(Figure 7d). This shows that the LR-CA model failed to allocate “non-built-up to built-up” changes. 

Our results are in agreement with some studies which revealed that logistic regression-CA models 

performed poorly for simulating urban land use changes [33]. Note that all simulation models (RF-CA, 

SVM-CA and LR-CA) failed to simulate unconnected new built-up areas. This is because all transition 

potential models (RF, SVM and LR) failed to predict leapfrog developments (Figure 5).  
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(a) 

(b) 

(c) 

Figure 6. (a) Total Operating Characteristic (TOC) for the RF model; (b) Total Operating 

Characteristic (TOC) for the SVM model; (c) Total Operating Characteristic (TOC) for the 

LR model. 
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Figure 7. Comparison of observed versus simulated land use/cover maps for 2013:  

(a) observed land use/cover map; (b) RF-CA simulated land use/cover map; (c) SVM-CA 

simulated land use/cover map; and (d) LR-CA simulated land use/cover map.  

For quantitative model validation, we used the observed (initial) land use/cover map for 1984, the 

observed (reference) land use/cover map for 2013, and the simulated land use/cover map for 2013. The 

Kappa simulation (KSimulation), Kappa transition (KTransition), Kappa translocation (KTranslocation), 

and the figure of merit statistics were used to validate the RF-CA model [70–73]. The KSimulation 

expresses the agreement between the simulated land use/cover transitions and reference land use/cover 

transitions, while KTranslocation measures the degree to which the transitions agree in terms of 

allocations [70–72]. The KTransition captures the agreement in terms of quantity of built-up and  

non-built-up transitions, while the figure of merit expresses agreement between the observed and 
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simulated changes [70–72]. The KSimulation, KTransition and KTranslocation statistics are available 

in Map Comparison Kit software [70]. More details about the KSimulation, KTransition and 

KTranslocation statistics can be found in [70,71], while details of the figure of merit are available in [73].  

Table 4 shows the validation statistics based on KSimulation, KTranslocation, KTransition and  

the figure of merit. The overall KSimulation score for the RF-CA model indicates that the “non-built-

up to built-up” changes were correctly simulated. Further analysis shows that the RF-CA model 

correctly simulated allocation and quantity of “non-built-up to built-up” changes. This is reflected by 

the high KTranslocation and KTransition (Table 4). The overall KSimulation score for the SVM-CA 

model was 0.12 lower than the RF-CA model. The KTranslocation for the SVM-CA model was lower 

than the RF-CA model, which indicates that the SVM-CA model poorly simulated the allocation of 

“non-built-up to built-up” changes (Table 4). In contrast to the RF-CA and SVM-CA models, the 

overall KSimulation score for the LR-CA model was extremely low. Clearly, the LR-CA model failed 

to simulate the “non-built-up to built-up” changes. The low KTranslocation of −0.22 indicates that the 

LR-CA model could not allocate “non-built-up to built-up” changes during the simulation. Most 

allocation errors for the LR-CA model are attributed to poor performance of the LR model. Generally, 

the RF-CA model had the highest accuracy as shown by a high figure of merit (approximately 47%). A 

study by Pontius et al. [72] revealed that the figure of merit observed in other land change models ranged 

from 1% to 59%. Therefore, the accuracy of the RF-CA model is relatively high since the figure of 

merit is within the upper range of previously observed land change models [73]. 

It is interesting to note that the KTransition was very high (98% to 99%) for all simulation models 

because similar multiple-step transition rates were used during CA simulation (Table 3a). A 

quantitative comparison of the observed and simulated land use/cover maps show that the observed 

built-up class was 338.3 km2, while the corresponding simulated class was 340.3 km2 for the RF-CA 

model. In contrast, the observed non-built-up class was 601.9 km2, whereas the corresponding simulated 

class was 599.9 km2. For the SVM-CA model, the observed built-up class was 338.3 km2, while the 

corresponding simulated class was 332.9 km2. However, the observed non-built-up class was 

601.9 km2, while the corresponding simulated class was 607.4 km2. For the LR-CA model, the 

observed built-up class was 338.3 km2, whereas the corresponding simulated class was 340.3 km2. In 

contrast, the observed non-built-up class was 601.9 km2, while the corresponding simulated class was 

599.9 km2. These results show that all simulation models were relatively accurate for simulating land 

use/cover quantity. 

Table 4. Validation statistics for all simulation models. 

Model KSimulation KTranslocation KTransition Figure of Merit (%) 

RF-CA 0.51 0.51 0.99 47 
SVM-CA 0.39 0.4 0.98 39 
LR-CA −0.22 −0.22 0.99 6 

3.3. Analysis of Components of Agreement and Disagreement 

The KSimulation statistic provides a quantitative measure of simulation accuracy. However, 

KSimulation does not provide the components of agreement and disagreement between the observed 
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and simulated land use/cover maps. Therefore, we analysed components of agreement and disagreement 

for the RF-CA, SVM-CA and LR-CA models. Figure 8a–c show the components of agreement and 

disagreement based on the overlay of the initial (1984), the observed (2013) and simulated land 

use/cover maps (2013) for all models. The components of agreement and disagreement reveal 

information such as: (1) observed change simulated correctly as change (hits); (2) observed persistence 

(that is, built-up and non-built-up) simulated correctly as persistence (null successes); (3) observed 

change simulated incorrectly as persistence (misses); and (4) observed persistence simulated incorrectly 

as change (false alarms).  

 

Figure 8. Components of agreement and disagreement for: (a) RF-CA simulated land 

use/cover map; (b) SVM-CA simulated land use/cover map; and (c) LR-CA simulated land 

use/cover map. 
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For the RF-CA model, non-built-up persistence had the largest components of agreement, 

accounting for approximately 55% of the study area (Figures 8a and 9). This is because non-built-up 

persistence occupied about 68% of the study area between 1984 and 2008. The second largest components 

of agreement was “non-built-up to built-up” changes accounting for approximately 15% of the study area, 

while built-up persistence had the smallest components of agreement with approximately 13% 

(Figures 8a and 9). The largest components of disagreement were the misses (that is, observed change 

simulated as persistence at 9%) and false alarms (observed persistence simulated as change at 8%). 

Figure 8a shows that the RF-CA model performed relatively well. However, further analysis indicates 

(Figure 9) that the combined misses and false alarms (17%) are slightly greater than the hits (15%). For 

the SVM-CA model, non-built-up persistence had the largest component of agreement with approximately 

54%, followed by “non-built-up to built-up” changes and built-up persistence with approximately 13% 

(Figures 8b and 9). The largest components of disagreement were the misses (that is, observed change 

simulated as persistence at 10%) and false alarms (observed persistence simulated as change at 10%). 

The combined misses and false alarms (20%) for the SVM-CA model are greater than the hits (13%). 

However, for the LR-CA model, non-built-up persistence had the largest component of agreement, 

with approximately 43% (Figures 8c and 9). The second largest components of agreement was built-up 

persistence (with approximately 13%), while “non-built-up to built-up” changes had the smallest 

components of agreement with merely 2% (Figures 8c and 9). The largest components of disagreement 

were the misses (that is, observed change simulated as persistence at 21%) and false alarms (observed 

persistence simulated as change at 21%), hence its poor simulation accuracy (Table 4).  

 

Figure 9. Components of agreement and disagreement expressed as a percentage. 
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The simulation results show that the RF-CA model was substantially more accurate than the SVM-CA 

and LR-CA models. This is because the RF model was better at modelling the unbalanced land 

outcomes, namely the combination of rapid and slow urban growth developments, which occurred 

during the “1984–2002” and “2002–2008” periods. For example, the rate of “non-built-up to  

built-up” change between 1984 and 2002 was approximately 114.4 km2, while the “non-built-up to 

built-up” change slowed to 69.8 km2 between 2002 and 2008 [49]. According to Wang et al. [68], LR 

models are not recommended when rapid or slow land change processes result in highly unbalanced 

land outcomes. It is also important to note that the number of training pixels for the “non-built-up to 

built-up” change was less than the persistence land use/cover areas (built-up and non-built). As a 

result of the unbalanced training samples, the LR model failed to generalize resulting in large 

errors. Our results suggest that the SVM model was also affected by overfitting and hence the 

SVM-CA model has lower accuracy than the RF-CA model.  

This study highlights important insights that may be used to improve land change models. First, the 

RF-CA model used multiple-step transition rates—from the “1984–2002”, “2002–2008” and “1984–2008” 

epochs—which were computed from three land use/cover maps (1984, 2002 and 2008). This is 

important because land use/cover changes, especially over a twenty-nine year time period, follow 

nonlinear changes that are too complex to be represented by two observation dates only [74,75]. 

Therefore, the three-epoch multiple-step transition rates improved the spatial allocation of “non-built-up 

to built-up” changes. Second, we used temporal “distance to previous built-up” (1984 and 2002), and 

“distance to major roads” (1984–2002 and 2002–2008 periods) driving factors to improve spatial 

allocation of “non-built-up to built-up” changes in the CA model framework. Third, we employed the RF 

model, which fits the nonlinear relationship between the “non-built-up to built-up” changes and driving 

factors based on learning. Results indicate that the RF transition potential map (Figure 5a) shows 

relatively accurate urban growth patterns such as extension and infill developments. As a result, the 

RF-CA model was better at allocating “non-built-up to built-up” changes than the SVM-CA and  

LR-CA models. Fourth, while the RF model cannot analyse the effects of the driving factors on  

“non-built-up to built-up” changes, variable importance was computed. Figure 10 shows that the 

“distance to previous built-up” driving factors had the highest importance, followed by “distance to 

city center” in the study area. Our results are in agreement with a previous study [11], which revealed 

that urban land in a 1 km neighbourhood and accessibility to the city center were the most influential 

variables for modelling spatial patterns of urban growth in Africa. Fifth, RF-CA model combines the 

advantages of both the RF model and spatially explicit dynamic stochastic CA model available in 

Dinamica EGO. For example, the RF model establishes a nonlinear relationship between land 

use/cover changes and driving factors in order to produce a transition potential map. The CA model 

then uses patch and edge expansion functions to allocate change pixels based on the RF transition 

potential map and multiple-step transition rates [1,59]. In addition, the CA model also incorporates a 

saturation value parameter, which varies multiple-step transition rates based on dynamic analysis of 

feedbacks [52,59]. Since the neighbourhood in the CA model is updated during each simulation, spatial 

allocation of pixels improves given a relatively accurate transition potential map. Last but not least, 

both the RF transition potential model and the RF-CA simulation model have been validated using 

validation statistics recommended by land change modelling experts [65–67,70,71]. This is important 
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because reliable and informative validation statistics provide valuable insights on modelling and simulation 

errors, which may assist researchers in improving land change models. 

 

Figure 10. Variable importance for the “non-built-up to built-up” changes based on mean 

decrease accuracy. 

While this study has highlighted important insights that can be used to improve urban land  

change models, there are a number of limitations which require further study. First, the combined 

misses and false alarms are slightly greater than the hits because the RF-CA model failed to simulate 

unplanned leapfrog developments in the south-western part of the study area (Figure 3d). Second, 

failure to integrate spatial explicit socioeconomic data (e.g., housing development plans, income 

levels, etc.) due to data unavailability [30] implies that some “non-built-up to built-up” changes will 

not be predicted and hence cannot be simulated correctly. Furthermore, issues related to 

nonstationarity need to be addressed by using more temporal land use/cover data (e.g., at five year 

intervals) or combining RF-CA models with other land change models. Third, we used only built-up 

and non-built-up classes for simulating urban growth, which simplifies the land use/cover patterns and 

urban growth processes [76] in the study area. This is because the original input land use/cover data 

consist of the built-up, non-built-up and water classes only. Therefore, further studies should test the 

RF-CA model using multiple land use/cover classes. 

4. Conclusions 

The objective of this study was to test a RF-CA land change model for Harare Metropolitan 

Province. In order to implement the RF-CA model, we computed multiple-step transition rates, and 

performed transition potential modelling and CA simulation as well as model validation. In addition, 

we applied SVM-CA and LR-CA models in order to compare performance with the RF-CA model. 
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Simulation results show that the RF-CA model performed better than the SVM-CA and LR-CA 

models. The RF-CA model had a high simulation accuracy, while SVM-CA and LR-CA models had lower 

simulation accuracies. The performance of RF-CA model was attributed to the relatively accurate RF 

transition potential maps. Generally, the RF-CA model was relatively accurate at allocating “non-built-up 

to built-up” changes as well as simulating built-up patterns such as extension and infill developments. 

For the RF-CA model, the non-built-up persistence had the largest components of agreement, while the 

second largest components of agreement were “non-built-up to built-up” changes. The modelling and 

simulation results presented in this paper, however case study specific, provide an initial exploration of 

the RF-CA model for land change modelling. While some model uncertainties remain, the RF-CA 

model developed in this study has potential to improve land change modelling in general, and urban 

growth modelling and simulation in particular. 
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