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Abstract: Logistic regression is a classical linear model for logit-transformed conditional
probabilities of a binary target variable. It recovers the true conditional probabilities if the
joint distribution of predictors and the target is of log-linear form. Weights-of-evidence
is an ordinary logistic regression with parameters equal to the differences of the weights
of evidence if all predictor variables are discrete and conditionally independent given the
target variable. The hypothesis of conditional independence can be tested in terms of
log-linear models. If the assumption of conditional independence is violated, the application
of weights-of-evidence does not only corrupt the predicted conditional probabilities, but also
their rank transform. Logistic regression models, including the interaction terms, can account
for the lack of conditional independence, appropriate interaction terms compensate exactly
for violations of conditional independence. Multilayer artificial neural nets may be seen
as nested regression-like models, with some sigmoidal activation function. Most often, the
logistic function is used as the activation function. If the net topology, i.e., its control, is
sufficiently versatile to mimic interaction terms, artificial neural nets are able to account for
violations of conditional independence and yield very similar results. Weights-of-evidence
cannot reasonably include interaction terms; subsequent modifications of the weights, as
often suggested, cannot emulate the effect of interaction terms.
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1. Introduction

The objective of potential modeling or targeting [1] is to identify locations, i.e., pixels or voxels,
for which the probability of an event spatially referenced in this way, e.g., a well-defined type of ore
mineralization, is relatively maximum, i.e., is larger than in neighbor pixels or voxels. The major
prerequisite for such predictions is a sufficient understanding of the causes of the target to be predicted.
Conceptual models of ore deposits have been compiled by [2]. They may be read as factor models (in
the sense of mathematical statistics), and a proper factor model may be turned into a regression-type
model when using the factors as spatially-referenced predictors, which are favorable to or prohibitive
of the target event. Thus, we may distinguish necessary or sufficient dependencies between the
binary target T(x) indicating the presence or absence of the target at an areal or volumetric location
x ⊂ D ⊂ Rd, d = 1, 2, 3, and the spatially referenced predictors (B0(x),B1(x), . . . ,Bm(x))T = B(x),
which may be binary, discrete or continuous. Then, mathematical models and their numerical realizations
are required to turn descriptive models into constructive ones, i.e., into quantitatively predictive models.
Generally, a model considers the predictor B(x), with B0(x) ≡ 1 for all x ⊂ D, and assigns a parameter
(θ0, . . . , θm)T = θ to them, which quantifies, by means of a link function F , the extent of dependence
of the conditional probability P (T(x) = 1|B(x)) on the predictors, i.e.,

P (T(x) = 1|B(x)) = F (θ|B(x))

Since the target T(x), as well as the predictor B(x) refer to areal or volumetric locations x ⊂ D, we
may think of a two-dimensional digital map image of pixels or a three-dimensional digital geomodel of
voxels. The pixels or voxels initially provide the physical support of the predictors and the target and will
then be assigned the predicted conditional probability and the associated estimation errors, respectively.
Then, the numerical results of targeting depend on the size of the objects, pixels or voxels, i.e., on the
spatial resolution they provide. If the actual spatial reference of the target (or the predictors) is rather
pointwise, i.e., if their physical support is rather of zero measure, then the dependence on the spatial
resolution must not be ignored, because already, the estimate Ô(T = 1) = P̂ (T = 1)/(1 − P̂ (T = 1))

of the unconditional odds will be largely affected, as the total number of pixels or voxels depends on the
spatial resolution, while the total number of pointwise occurrences is constant. If the spatial resolution
provided by the pixels or voxels is poor with respect to the area or volume of the actual physical support
of the predictors or target, then the numerical results of any kind of mathematical method of targeting
are rather an artifact of the inappropriate spatial resolution.

To estimate the model parameters θ, data within a training region are required. The mathematical
modeling assumption associated with a training dataset is complete knowledge, i.e., in particular, we
assume that we know all occurrences of the target variable T = 1. However, in contrast to geostatistics [3],
potential modeling does not consider spatially-induced dependencies between the predictors and the
target. In fact, potential modeling applies the assumption of independently identically distributed random
variables. Their distribution does not depend on the location. Therefore, any spatial reference can be
dropped, and models of the form:

P (T = 1 |B) = F (θ |B)

are considered, only.
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2. Mathematical Models

2.1. The Modeling Assumption of Conditional Independence

The random variables B1, . . . ,Bm are conditionally independent given the random target variable T,
if the joint conditional probability factorizes into the individual conditional probabilities:

P⊗m
`=1B`|T =

m⊗
`=1

PB`|T

Equivalently, but more instructively in terms of irrelevance, the random variables B1, . . . ,Bm are
conditionally independent given the random variable T, if knowing T renders all other Bj except Bi

irrelevant for predicting Bi, i.e.,
PBi|

⊗
6̀=i B`⊗T = PBi|T

in terms of conditional probabilities.
It is emphasized that independence does not imply conditional independence and vice versa. The

significant correlation of predictor variables does not imply that they are not conditionally independent.
On the contrary, variables B1 and B2 may be significantly correlated and conditionally independent
given the variable T, in particular when T can be interpreted to represent a common cause for B1 and
B2, cf. the illustrative example [4]. In this way, conditional independence is a probabilistic approach
to causality, while correlation is not. To relax the restrictive assumption that all predictor variables
are conditionally independent given the target variable, the assumption of conditional independence of
subsets of predictor variables, referred to as the Bayesian belief network, provides intermediate models
that are less restrictive, but more tractable than general models [5]. A suitable choice of subsets are
the cliques of the graphical model [6] representing the variables and their conditional independence
relationships leading to interaction terms in logistic regression models [7].

2.2. Logistic Regression

A modern account of logistic regression is given by [8]. The conditional expectation of an indicator
random target variable T given a (m + 1)-variate random predictor variable is equal to its conditional
probability, i.e., for B = (B0,B1, . . . ,Bm)T with B0 ≡ 1

E(T | B) = P (T = 1 | B)

Omitting the binomially distributed error term ([8]), as is done often, the ordinary logistic regression
model without interaction terms for the conditional probability to be predicted can be written as [8]:

• in terms of a logit:
logitP (T = 1 | B) = βTB = β0 +

∑
`

β` B`

• in terms of a probability:

P (T = 1 | B) = Λ
(
βTB

)
= Λ

(
β0 +

∑
`

β` B`

)
(1)
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• with the logistic function:

Λ(z) =
1

1− exp(−z)

The ordinary logistic regression model is optimum, i.e., it agrees with the true conditional probability,
if the predictor variables are discrete and conditionally independent given the target variable [7]. Here,
the predictor variables are assumed to be discrete to ensure that the joint probability of B and T

has a representation as a log-linear model, which is then subject to factorization, according to the
Hammersley–Clifford theorem [7].

The logistic regression model can be generalized to include any interaction terms of the form
B`i ∗ . . . ∗ B`j , i.e., any product terms of predictors:

P (T = 1 | B) = Λ
(
β0 +

∑
`

β` B` +
∑
`i,...,`j

β`i,...,`jB`i ⊗ . . .⊗ B`j
)

Lacking conditional independence can be exactly compensated for by corresponding interaction terms
included in the logistic regression model, and the resulting logistic regression model with interaction
terms is optimum for continuous predictor variables if the joint distribution of the target variable and
the predictor variables is of a log-linear form. A log-linear form is ensured if the predictor variables
are discrete. Thus, for discrete predictor variables, the logistic regression model, including appropriate
interaction terms, is optimum [7].

Given m ≥ 2 predictor variables B` 6≡ 1, ` = 1, . . . ,m, there is a total of
∑m

`=2

(
m
`

)
= 2m − (m+ 1)

possible interaction terms. To be a feasible model, the total number 2m of all possible terms would have
to be reasonably smaller than the sample size n. However, the interaction term B`1 ⊗ . . .⊗ B`k , k ≤ m,
is actually required if B`1 , . . . ,B`k are not conditionally independent given T.

Logistic regression parameters can be interpreted with respect to logits analogously to the parameters
of linear regression model, e.g., β` represents the increment of logitP (T = 1 | B) if B` is increased by
one unit [8]. There are more involved interpretations to come, cf. Appendix B.

Given a sample b`,i, ti, i = 1, . . . , n, ` = 1, . . . ,m, the parameters of the logistic regression model
are estimated with the maximum likelihood method numerically realized in Fisher’s scoring algorithm
(a form of Newton–Raphson, a special case of an iteratively reweighted least squares algorithm) and
encoded in any major statistical software package.

2.3. Weights-of-Evidence

The model of weights-of-evidence is the special case of a logistic regression model without interaction
terms, if all predictor variables are binary and conditionally independent given the target variable [9]. It
reads, e.g., in terms of the conditional probability to be predicted:

P (T = 1 | B) = Λ
(
βTB

)
= Λ

(
β0 +

∑
`:B`=1

β`

)
(2)

where:
β0 = logitP (T = 1) +W (0), β` = C`, ` = 1, . . . ,m (3)
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with contrasts C` defined as:
C` = W

(1)
` −W

(0)
` , ` = 1, . . . ,m

with weights-of-evidence:

W
(1)
` = ln

P (B` = 1 | T = 1)

P (B` = 1 | T = 0)
, W

(0)
` = ln

P (B` = 0 | T = 1)

P (B` = 0 | T = 0)
(4)

and with:

W (0) =
m∑
`=1

W
(0)
`

provided that:
P (B` = i | T = j) 6= 0, i, j = 0, 1, ` = 1, . . . ,m (5)

Since the model of weights-of-evidence [10–14] is based on the naive Bayesian
approach [5,14–17] assuming conditional independence of B given T, it can be derived in elementary
terms from Bayes’ theorem for indicator random variables B0,B1, . . . ,Bm:

O(T = 1 | B) = O(T = 1)

∏m
`=1 P (B` | B0, . . . ,B`−1, T = 1)∏m
`=1 P (B` | B0, . . . ,B`−1, T = 0)

= O(T = 1)
m∏
`=1

F`

with:
F` =

P (B` | B0, . . . ,B`−1, T = 1)

P (B` | B0, . . . ,B`−1, T = 0)
, ` = 1, . . . ,m (6)

where the (conditional) odds O of an event are defined as the ratio of the (conditional) probabilities of
an event and its complement. Now, the naive Bayes’ assumption of conditional independence of all
predictor variables B given the target variable T leads to the most efficient simplification:

F` =
P (B` | T = 1)

P (B` | T = 0)
, ` = 1, . . . ,m

and, in turn, to weights-of-evidence in terms of odds:

O(T = 1 | B) = O(T = 1)
m∏
`=1

P (B` | T = 1)

P (B` | T = 0)

i.e., updating the unconditional “prior” odds O(T = 1) by successive multiplication with “Bayes factors”
P (B` | T = 1)/P (B` | T = 0) to result in final conditional “posterior” odds O(T = 1 | B) [13]; see
Appendix 1 for a complete derivation.

Due to the simplifying assumption of conditional independence and in contrast to general logistic
regression, the ratios of conditional probabilities involved in the definition of the weights of evidence,
Equation (4), can be estimated by mere counting. Moreover, weights-of-evidence can easily be
generalized to discrete random variables, as a discrete variable with s different states can be split into
(s− 1) different binary random variables to be used in regression models.
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2.4. Testing Conditional Independence

A straightforward test of conditional independence employs the relationship of weights-of-evidence
and log-linear models. If predictor variables are discrete and conditionally independent given the
target variable, then by virtue of the Hammersley–Clifford theorem, a correspondingly factorized simple
log-linear model without interaction terms is sufficiently large to represent the joint distribution [7,9].
Thus, if the likelihood ratio test of this null-hypothesis with respect to an appropriate log-linear model
leads to its reasonable rejection, then the assumption of conditional independence can be rejected,
too. This test does not rely on any assumption involving the normal distribution, as the omnibus
tests [18,19] do.

These omnibus tests use deviations of a characteristic of a fitted model F
(
θ̂ |bi, ti, i = 1, . . . , n

)
from properties of the mathematical modelF (θ |B) known from probability and mathematical statistics,
to interfere on the validity of the modeling assumption of conditional independence. The omnibus tests
take as characteristic the mean of conditional probabilities over all objects, i.e., pixels or voxels, in the
training dataset of sample size n,

1

n

n∑
i=1

P (T = 1 | B = bi) = P (T = 1) (7)

Thus, for a proper (“true”) model, the mean of P̂ (T = 1 | B = bi), i = 1, . . . , n, is (approximately)
equal to P̂ (T = 1), estimated by the relative frequency of T = 1 in the training dataset. Deviations
of the mean from P̂ (T = 1) would indicate that the model may not be true. For a weights-of-evidence
model, deviations could be caused by a lack of conditional independence, while for a logistic regression
model, 1

n

∑n
i=1 P̂ (T = 1 | B = bi) = P̂ (T = 1) is always satisfied (up to numerical accuracy). Based

on Equation (7), [19] developed the omnibus test, and [18] the new omnibus test.
A more sophisticated statistical test for real predictor variables was recently suggested by [20].

2.5. Weights-of-Evidence vs. Logistic Regression

The parameters of ordinary logistic regression are equal to the contrasts of the weights, if all
predictor variables are indicators and conditionally independent given the target variable. Thus,
weights-of-evidence is the special case of ordinary logistic regression if the predictors B are indicator
variables and conditional independent given T. The other way round, logistic regression is the canonical
generalization of weights-of-evidence [14,17]. Note that the weights-of-evidence model cannot be
enlarged to include interaction terms.

Generally, i.e., without assuming conditional independence, the relationship of ordinary logistic
regression parameters and the contrast of weights of evidence is clearly non-linear [21,22]; see
Appendix 2 for an explicit derivation.

When P̂ (T = 1 | B = bi), i = 1, . . . , n, are estimated by maximum likelihood applied to the ordinary
logistic regression model, Equation (7) always holds, because it is part of the maximum likelihood
systems of equations. Having recognized weights-of-evidence as a special case of logistic regression,
when predictors are indicator variables and conditionally independent given the target variable, the
above comparison may now be seen as checking the statistics of different models. Analogously, the
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estimated contrasts Ĉ` of weights of evidence may be compared with the estimated logistic regression
coefficients β̂`. Then, any deviation between them is indicative of violations of the modeling assumption
of conditional independence.

2.6. Weights-of-Evidence vs. the τ - or ν-Model

The modeling assumption with respect to the factors of Equation (6) of the τ -model [23–25] is:

F` =

(
P (B` | T = 1)

P (B` | T = 0)

)τ`
, ` = 1, . . . ,m

Then, modified weights are defined as:

W̃
(1)
` = τ

(1)
` W

(1)
` , W̃

(0)
` = τ

(0)
` W

(0)
` , C̃` = W̃

(1)
` − W̃

(0)
` , ` = 1, . . . ,m

and:

logitP (T = 1 | B) = logitP (T = 1) + W̃ (0) +
m∑
`=1

C̃` B`

P (T = 1 | B) = Λ

(
logitP (T = 1) + W̃ (0) +

m∑
`=1

C̃` B`

)

with W̃ (0) =
∑m

`=1 τ
(0)
` W

(0)
` .

The modeling assumption with respect to the factors of Equation (6) of the ν-model [26,27] is:

F` = ν`

(
P (B` | T = 1)

P (B` | T = 0)

)
, ` = 1, . . . ,m

Then, modified weights are defined as:

˜̃
W

(1)

` = ln ν
(1)
` +W

(1)
` ,

˜̃
W

(0)

` = ln ν
(0)
` +W

(0)
` ,

˜̃
C` =

˜̃
W

(1)

` −
˜̃
W

(0)

` , ` = 1, . . . ,m,

and:

logitP (T = 1 | B) = logitP (T = 1) +
˜̃
W

(0)

+
m∑
`=1

˜̃
C` B`

P (T = 1 | B) = Λ

(
logitP (T = 1) +

˜̃
W

(0)

+
m∑
`=1

˜̃
C` B`

)

with ˜̃W (0)

=
∑m

`=1

(
ln ν

(0)
` +W

(0)
`

)
.

A this point, we may conclude that there is no way to emulate the effect of interaction terms of logistic
regression models by manipulating the weights of evidence or their contrasts.
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2.7. Artificial Neural Nets

General regression models can be tackled by various approaches of statistical learning, including
artificial neural nets [15]. With respect to artificial neural nets and statistical learning [5,15,16,28], the
logistic regression model, Equation (1),

π1(bi) = P (T = 1 | B = bi)) = Λ
(
β0 +

m∑
`=1

β`b`,i

)
, i = 1, . . . , n

is called a single-layer perceptron or single-layer feed-forward artificial neural net; minimization of the
sum of squared residuals is referred to as training; gradient methods to solve for the model parameters
are referred to as the linear perceptron training rule; the stepsize along the negative gradient is called the
learning rate, etc. The notion of random variables, conditional independence, estimation and estimation
error and the significance of model parameters does not seem to exist in the realm of artificial neural nets,
not even under new labels. Nevertheless, artificial neural nets may be seen as providing a generalization
to enlarge the logistic regression model by way of nesting logistic regression models with or without
interaction terms. A minor additional generalization is to replace the logistic function Λ by other
sigmoidal functions and to model the conditional probability of a categorical variable T (of more than
two categories) given predictor variables B.

The basic multi-layer neural network model can be described as a sequence of functional
transformations [15,29–31], often depicted as a graph:

• input: predictor variables B;

• first layer: linear combinations A(1)
j , j = 1, . . . , J , of the predictor variables B, referred to as input

units or activations:

A
(1)
j =

m∑
`=0

β
(1)
j` B`, j = 1, . . . , J (8)

or:

A
(1)
j =

m∑
`=0

β
(1)
j` B` +

∑
`i,...,`i′

β
(1)
j(`i,...,`i′ )

B`i ⊗ . . .⊗ B`i′ , j = 1, . . . , J (9)

to mimic interaction terms:

• hidden layer: each of them is subject to a transformation applying a nonlinear differentiable
activation function h usually of sigmoidal shape, referred to as hidden units:

Zj = h
(
A
(1)
j

)
, j = 1, . . . , J

• second layer: linear combinations A
(2)
j , k = 1, . . . , K of hidden units, referred to as output

unit activations:

A
(2)
k =

J∑
j=0

β
(2)
kj Zj, k = 1, . . . , K

• output: each of the output unit activations is subject to an activation function S, e.g.,
logistic function:

πk = S
(
A

(2)
k

)
, k = 1, . . . , K
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Then:

πk(B) = P (T = tk | B)) = S


J∑
j=0

β
(2)
kj h

(
m∑
`=0

β
(1)
j` B`

)
︸ ︷︷ ︸

hidden layer

 , k = 1, . . . , K (10)

If K = 1 and S = Λ, h = id, J = 0, then we are of course back to ordinary logistic regression,
Equation (1). On the other hand, in Equation (10), the linear combination of predictors, as given by
Equation (8), can easily be replaced by the enlarged combination, including interaction terms, as given
by Equation (9), where the consideration of interactions terms requires a more versatile net topology.
The lack of the notion of significant parameters and, in turn, significant models is prohibitive of the
successive construction of proper models. Instead, all variables and a sufficiently versatile net topology
are plugged in, and coefficients for all variables are determined numerically with some gradient method.
This procedure does not seem to meet the idea of parsimonious models.

2.8. Balancing

Methods of statistical learning are prone to fail if the odds O(T = 1) are too small, cf. [32–37].
Simple balancing mimics preferential sampling, i.e., a new balanced dataset is constructed by weighting
all objects with T = 1 with a weight 1 < µ ∈ R. This kind of balancing immediately results in:

O(Tbal = 1) = µ O(T = 1), O(Tbal = 1 | Bbal) = µ O(T = 1 | B)

and then in:

logitP (Tbal = 1) = lnµ+ logitP (T = 1)

logitP (Tbal = 1 | Bbal) = lnµ+ logitP (T = 1 | B)

Moreover, if:
logitP (Tbal = 1 | Bbal) = F

(
θ |Bbal

)
is a proper (“true”) model for the balanced sample, then:

F (θ |B) = F
(
θ |Bbal

)
− lnµ (11)

is a proper model of logitP (T = 1 | B) with respect to the initial sample, and:

F
(
θ̂ |B

)
= F

(
θ̂ |Bbal

)
− lnµ

whatever the proper models are. For instance, if ordinary logistic regression without interaction terms,
i.e., assuming conditional independence,

logitP (Tbal = 1 | Bbal) = logitP (Tbal = 1) +W (0) +
m∑
`=1

β` B`
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is a proper model for the balanced sample, then:

logitP (T = 1 | B) = β0 +
m∑
`=1

β` B`

= logitP (Tbal = 1)− lnµ+W (0) +
m∑
`=1

β` B`

= logitP (T = 1) +W (0) +
m∑
`=1

β` B`

is a proper model for the initial sample. Thus, balancing by weighting objects, pixels or voxels,
supporting T = 1 with µ > 1, does exactly what it is designed for: it increases the odds O(T = 1)

by a factor of µ and preserves proper models, i.e., their parameters, otherwise.
It is emphasized that Equation (11) holds for mathematical models, if they are proper. Then,

Equation (11) may be read as back transformation of balancing by weighting objects with T = 1 with
weight µ. It may not hold for fitted models, i.e., estimation of the parameters of a poor model may
corrupt the equation; then, F

(
θ̂ |B

)
6= F

(
θ̂ |Bbal

)
− lnµ. Note that the weights of evidence are not

all affected by this kind of balancing.

2.9. Numerical Complexity of Logistic Regression

Potential modeling with logistic regression using a 3D training dataset of n voxels and (m + 1)

predictor variables to fit the regression parameters requires to resolve a system of (m + 1) non-linear
equations. Usually, the total number of predictor variables is much smaller than the total number of
voxels. Statisticians’ numerical method of choice is iteratively reweighted least squares. The numerical
complexity of one iteration step is of the order of 2n(m+ 1)2 flops; the total number of iterations cannot
generally be estimated. Considering the size of the problem for 3D geomodels with a reasonable spatial
resolution clearly indicates that its numerical solution requires a highly efficient data management of 3D
geomodels in voxel mode and very fast numerics based on massively parallel processing.

3. Examples

Both datasets are fabricated to serve certain purposes. The mathematical assumption associated with
a training dataset is complete knowledge, i.e., in particular, we assume that we know all occurrences of
the target variable T = 1. Otherwise, not even the odds or logits of T = 1 could be estimated properly.
Thus, previously unknown occurrences or their probabilities cannot be predicted with respect to the
training dataset. Comparing the estimated conditional probabilities with counted conditional frequencies
provides a check of the appropriateness of the applied model. A more powerful check is to use only part
of the data out of the training dataset to estimate the parameters of a model and, then, to validate the
model with the remaining data that were not used before. All computations were done with the free
statistical software, R [38].
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3.1. Dataset RANKIT Revisited

A first presentation and discussion of the dataset RANKIT (Figure 1) has been given in [9]. The
RANKIT dataset comprises two predictor variables B1,B2 and a target variable T referring to pixels of
a digital map image. The predictor variables B1,B2 are uncorrelated and not conditionally independent
given the target variable T.

Figure 1. Spatial distribution of two indicator predictor variables B1,B2 and the indicator
target variable T of the dataset RANKIT and two uni-directional semi-variograms (left); and
the spatial distribution of two indicator predictor variables B1,B2 and the indicator target
variable T of the dataset RANKITMIX and two uni-directional semi-variograms (right),
revealing different spatial distributions and different geostatistical characteristics than
RANKIT. The red lines indicate the values of the classical sample variances.
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Here, the example is completed by considering a randomly rearranged dataset RANKITMIX (Figure 1),
which originates from the dataset RANKIT by rearranging the pixel references (i, j) of triplets
(bk1, bk2, tk), k = 1, . . . , n, of realizations of B1,B2 and T in the dataset at random. The uni-directional
variograms of Figure 1 clearly indicate that the two datasets differ in their spatial statistics.

However, the datasets RANKIT and RANKITMIX have identical ordinary statistics like contingency
tables, Tables 1 and 2, or a correlation matrix, Table 3, in common.

Table 1. Unconditional contingency table of B1 and B2, and conditional contingency tables
of B1 and B2 given T of datasets RANKIT and RANKITMIX, respectively.

B2 = 0 B2 = 1

B1 = 0 64 16
B1 = 1 16 4

T = 0 B2 = 0 B2 = 1

B1 = 0 62 11
B1 = 1 10 3

T = 1 B2 = 0 B2 = 1

B1 = 0 2 5
B1 = 1 6 1



ISPRS Int. J. Geo-Inf. 2014, 3 1398

Table 2. Contingency tables of T and B1 and B2, respectively, of datasets RANKIT and
RANKITMIX, respectively.

B1 = 0 B1 = 1

T = 0 73 13
T = 1 7 7

B2 = 0 B2 = 1

T = 0 72 14
T = 1 8 6

The indicator predictor variables B1 and B2 seem to be uncorrelated, while B1 and T, and B2 and
T, respectively, are significantly correlated for all significance levels α > 0.002213 and α > 0.02101,
respectively; cf. Table 3.

Table 3. Correlation matrix of the datasets RANKIT and RANKITMIX, respectively.

B1 B2 T

B1 1.0000000 –0.0000000 0.3026050
B2 –0.0000000 1.0000000 0.2305562
T 0.3026050 0.2305562 1.0000000

Therefore, for both the RANKIT and the RANKITMIX dataset, respectively, the models of
weights-of-evidence, ordinary logistic regression without interaction term and enlarged logistic
regression with the interaction term read explicitly:

WofE : P̂ (T = 1 | B1B2) = Λ (−2.726 + 1.725B1 + 1.349B2)

ologReg : P̂ (T = 1 | B1B2) = Λ (−2.831 + 1.874B1 + 1.535B2)

logRegwI : P̂ (T = 1 | B1B2) = Λ (−3.434 + 2.923B1 + 2.646B2 − 3.233B1 B2)

Table 4. Comparison of conditional probabilities predicted with elementary counting,
weights-of-evidence (WofE), ordinary logistic regression without interaction terms
(oLogReg), logistic regression including interaction terms (LogRegwI), and artificial neural
nets using a genetic algorithm (ANNGA [38]) applied to the training dataset RANKIT.

P̂ (T = 1 | B1B2) Counting WofE oLogReg LogRegwI ANNGA

B1 = 1,B2 = 1 0.25000 0.58636 0.64055 0.25000 0.24992
B1 = 1,B2 = 0 0.37500 0.26875 0.27736 0.37500 0.37502
B1 = 0,B2 = 1 0.31250 0.20156 0.21486 0.31250 0.31250
B1 = 0,B2 = 0 0.03125 0.06142 0.05565 0.03125 0.03124

Since the mathematical modeling assumption of conditional independence is violated, only logistic
regression with interaction terms yields a proper model and predicts the conditional probabilities
almost exactly.
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Figure 2. Spatial distribution of predicted conditional probabilities P̂ (T = 1 | B1B2)

for the training dataset RANKIT according to: elementary estimation (top left); logistic
regression with interaction term (top center); artificial neural net ANNGA of R (top right);
weights-of-evidence (bottom left); logistic regression without interaction (bottom right).
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Figure 3. Spatial distribution of predicted conditional probabilities P̂ (T = 1 | B1B2) for
the training dataset RANKITMIX according to: elementary estimation (top left); logistic
regression with interaction term (top center); artificial neural net ANNGA of R (top right);
weights-of-evidence (bottom left); logistic regression without interaction (bottom right).
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The results of weights-of-evidence, logistic regression with or without interaction terms and artificial
neural net applied to the fabricated datasets RANKIT and the RANKITMIX dataset, respectively, are
summarized in Table 4. Figure 2 depicts the results of dataset RANKIT, and Figure 3 depicts the results
of dataset RANKITMIX.

Obviously, the digital map images of Figures 2 and 3 are related to each other by the same
rearrangement as the datasets RANKIT and RANKITMIX of the top row of Figure 1. This relationship
can be depicted like a commutative diagram (Figure 4), for instance with respect to logistic regression,
including interaction terms.

Figure 4. Commutation of targeting and simultaneous random rearrangement of all digital
map images.
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To state it explicitly, each of the methods of targeting considered here commutes with any
random rearrangement applied simultaneously to all digital map images involved in or resulting
from targeting. Thus, targeting and potential modeling, resp., are not spatial methods; they do not
employ spatially-induced dependencies, which have been shown to be different by looking at the
semi-variograms of the datasets; Figure 1.

After balancing with m = 10, the models of weights-of-evidence and enlarged logistic regression
with interaction terms read explicitly:

WofE : P̂ (Tbal = 1 | Bbal
1 Bbal

2 ) = Λ
(
−0.423 + 1.725Bbal

1 + 1.349Bbal
2

)
logRegwI : P̂ (Tbal = 1 | Bbal

1 Bbal
2 ) = Λ

(
−1.132 + 2.923Bbal

1 + 2.646Bbal
2 − 3.233Bbal

1 Bbal
2

)
with −0.423 − ln(10) = −0.423 − 2.302 = −2.726 and −1.132 − 2.302 = −3.434, respectively,
thus confirming Equation (11). However, the ordinary logistic regression model without interaction
terms reads:

ologReg : P̂ (Tbal = 1 | Bbal
1 Bbal

2 ) = Λ
(
−0.960 + 2.468Bbal

1 + 2.201Bbal
2

)
with −0.960 − 2.302 = −3.263 6= −2.831 and different parameters βbal

1 and βbal
2 , as the ordinary
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logistic regression model is not a proper model due to the violation of the modeling assumption of
conditional independence.

3.2. Dataset DFQR

The dataset DFQR is visualized as a digital map image in Figure 5.

Figure 5. Spatial distribution of two indicator predictor variables B1,B2 and the indicator
target variable T of dataset DFQR.
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The contingencies are given in Tables 5 and 6.

Table 5. Unconditional contingency table of B1 and B2, and conditional contingency tables
of B1 and B2 given T of dataset DFQR.

B2 = 0 B2 = 1

B1 = 0 64 15
B1 = 1 15 6

T = 0 B2 = 0 B2 = 1

B1 = 0 60 11
B1 = 1 11 2

T = 1 B2 = 0 B2 = 1

B1 = 0 4 4
B1 = 1 4 4

Table 6. Contingency tables of T and B1 and B2, respectively, of dataset DFQR.

B1 = 0 B1 = 1

T = 0 71 13
T = 1 8 8

B2 = 0 B2 = 1

T = 0 71 13
T = 1 8 8

The correlation matrix (Table 7) indicates that B1 and B2 are uncorrelated, and significantly correlated
with T for all significance levels α > 0.001652.

Table 7. Correlation matrix of dataset of dataset DFQR.

B1 B2 T

B1 1.0000000 0.0958409 0.3107386
B2 0.0958409 1.0000000 0.3107386
T 0.3107386 0.3107386 1.0000000

The test of conditional independence referring to log-linear models (Table 8) shows that the
null-hypothesis of conditional independence of B1 and B2 given T cannot reasonably be rejected.
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Table 8. Significance test of the null-hypothesis of conditional independence, referring to a
log-linear model for dataset DFQR.

Statistics

χ2 df P (> χ2)

Likelihood Ratio 9.872996e-05 2 0.9999506
Pearson 9.859977e-05 2 0.9999507

The corresponding conditional relative frequencies factorize almost exactly, i.e.,

P (B1 = 1, B2 = 1 | T = 1) = P (B1 = 1 | T = 1)P (B2 = 1 | T = 1) = 0.25

but:
P (B1 = 1, B2 = 1 | T = 0) = 0.02380952

and:
P (B1 = 1 | T = 0)P (B2 = 1 | T = 0) = 0.02395125

With Ô(T = 1) = 0.1904, logitP̂ (T = 1) = −1.6582, the weights-of-evidence model
reads explicitly:

P̂ (T = 1 | B1B2) = Λ (−2.7082 + 1.6977B1 + 1.6977B2)

The ordinary logistic regression model without interaction terms reads explicitly:

P̂ (T = 1 | B1B2) = Λ (−2.7094 + 1.6994B1 + 1.6994B2)

where:

• β0 is significant for all α > 1.12e− 08, and

• β1, β2 are significant for all α > 0.00651.

The two models are almost identical; small deviations of their parameters result from small violations
of conditional independence. While the test with p = 0.999950 indicates that the null-hypothesis
of conditional independence cannot reasonable be rejected, the conditional relative frequencies
do not factorize perfectly, but only approximately. The conditional probabilities estimated with
weights-of-evidence or ordinary logistic regression almost exactly recover the conditional probabilities
estimated elementarily by counting conditional frequencies for the training dataset DFQR; cf. Table 9.

The logistic regression model with interaction terms reads explicitly:

P̂ (T = 1 | B1B2) = Λ (−2.7080 + 1.6964B1 + 1.6964B2 + 0.0082B1B2)

where:

• β0 is significant for all α > 1.57e− 07,

• β1, β2 are significant for all α > 0.0295, and
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• β12 is not at all significant as p = 0.9949.

The conditional probabilities estimated with logistic regression, including the interaction terms, exactly
recover the conditional probabilities estimated elementarily by counting conditional frequencies for the
training dataset DFQR, which is just the numerical confirmation, that the log-linear model with interaction
terms is a perfect model for the training dataset DFQR; cf. Table 9 and Figure 6.

After balancing with m = 10, the models for the balanced dataset are:

WofE : P̂ (Tbal = 1 | Bbal
1 Bbal

2 ) = Λ
(
−0.4056 + 1.697Bbal

1 + 1.697Bbal
2

)
ologReg : P̂ (Tbal = 1 | Bbal

1 Bbal
2 ) = Λ

(
−0.4059 + 1.698Bbal

1 + 1.698Bbal
2

)
logRegwI : P̂ (Tbal = 1 | Bbal

1 Bbal
2 ) = Λ

(
−0.4054 + 1.696Bbal

1 + 1.696Bbal
2 + 0.008299Bbal

1 Bbal
2

)
confirming Equation (11), as the assumption of conditional independence was not rejected.

Table 9. Comparison of conditional probabilities predicted with elementary counting,
weights-of-evidence (WofE), ordinary logistic regression without interaction terms
(oLogReg), logistic regression including interaction terms (LogRegwI), and artificial neural
nets using a genetic algorithm (ANNGA [38]) applied to the training dataset DFQR.

P̂ (T = 1 | B1B2) Counting WofE oLogReg LogRegwI ANNGA

B1 = 1,B2 = 1 0.66666 0.66534 0.66585 0.66666 0.66666
B1 = 1,B2 = 0 0.26666 0.26687 0.26699 0.26666 0.26666
B1 = 0,B2 = 1 0.26666 0.26687 0.26699 0.26666 0.26666
B1 = 0,B2 = 0 0.06250 0.06248 0.06242 0.06250 0.06250

Figure 6. Spatial distribution of predicted conditional probabilities P̂ (T = 1 |
B1B2) for the training dataset DFQR according to: elementary estimation (top left);
weights-of-evidence (top center); artificial neural net ANNGA of R (top right), ordinary
logistic regression(bottom left), logistic regression with interaction term (bottom right).
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4. Conclusions

Targeting or potential modeling applies regression or regression-like models to estimate the
conditional probability of a target variable given predictor variables. All models considered here:

• assume independently identical distributed random predictor and target variables, respectively, i.e.,
all models are non-spatial and do not consider spatially-induced dependencies, as, for instance,
geostatistics; therefore, rearranging the dataset at random results in random map images or
geomodels, but does not change the fitted models.
• are not pointwise; they involve random variables referring to locations given in terms of areal

pixels of 2D digital map images or volumetric voxels of 3D geomodels; thus, their results depend
on the spatial resolution of the map image or the geomodel, respectively.
• require a training region to fit the model parameters; that is to say that the mathematical modeling

assumption associated with the training region is that it provides “ground truth”.

Then, the models can be put in a hierarchy, beginning with the naive Bayesian model of
weights-of-evidence depending on the modeling assumption of conditional independence of all predictor
variables given the target variable. It is the special case of the logistic regression model if the predictor
variables (i) are indicator or discrete random variables and (ii) conditionally independent given the
target variable. In this case, the contrasts of weights-of-evidence are identical to the logistic regression
coefficients. Otherwise, there is no linear relationship between weights of evidence and logistic
regression parameters.

The canonical generalization of the naive Bayesian model featuring weights of evidence to the case of
lacking conditional independence is logistic regression, including interaction terms. If the interactions
terms are chosen to correspond to violations of conditional independence, they are compensating
exactly for these violations, if the predictor variables are discrete; for continuous predictor variables,
they compensate exactly only if the joint probability is log-linear; otherwise, they may compensate
approximately. Thus, in the case of discrete predictor variables, the logistic regression model is optimum.

Applying weights-of-evidence despite lacking conditional independence corrupts both the predicted
conditional probabilities, as well as their rank-transforms. Their is no way to emulate the effect of
interaction terms by “correcting” the weights of evidence subsequently, e.g., by powering or multiplying
with some τ - or ν-coefficients.

To further enlarge the models, nesting logistic regression-like models is an option. Irrespective of
the vocabulary, nesting giving rise to “hidden layers” is the hard core of artificial neural nets. If the
configuration of the net topology is sufficiently versatile, artificial neural net models can compensate
for the lack of conditional independence, much in the same way as logistic regression models, including
interaction terms. When the odds of the target are too small, some “balancing” may be required. A simple
balancing method was shown to leave the model parameters unchanged, if the model itself is proper.

The possibility to include interaction terms in logistic regression models or other models originating
in statistical learning opens a promising route toward an effective means to abandon the severe
modeling assumption of conditional independence and to cope with the lack of conditional independence
in practice.
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A promising future perspective is regression accounting for spatially-induced dependencies to get rid
of (i) the training region partitioned in pixels or voxels and the dependence on the spatial resolution that
they provide; and (ii) the modeling assumption of independently identical distributed random variables.
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A. Appendix

A.1. Derivation of Weights-of-Evidence in Elementary Terms

If T,B are indicator random variables with P (T = j) > 0, P (B = i) > 0, i, j = 0, 1, then Bayes’
theorem states:

P (T = j | B = i) =
P (T = j,B = i)

P (B = i)
=
P (T = j)

P (B = i)

P (T = j,B = i)

P (T = j)

= P (T = j)
P (B = i | T = j)

P (B = i)

Then, the ratio of the conditional probabilities of T = 1 and T = 0, respectively, given B, referred to
as the log-linear form of Bayes’ theorem,

O(T = 1 | B) =
P (T = 1 | B)

P (T = 0 | B)
=
P (T = 1)

P (T = 0)

P (B | T = 1)

P (B | T = 0)
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is independent of the probability of the condition B. Bayes’ theorem generalizes for several indicator
random variables B0,B1, . . . ,Bm to:

O(T = 1 | B) = O(T = 1)

∏m
`=1 P (B` | B0, . . . ,B`−1, T = 1)∏m
`=1 P (B` | B0, . . . ,B`−1, T = 0)

= O(T = 1)
m∏
`=1

F`

with:
F` =

P (B` | B0, . . . ,B`−1, T = 1)

P (B` | B0, . . . ,B`−1, T = 0)
, ` = 1, . . . ,m

Now, the naive Bayes’ assumption of conditional independence of all predictor variables B given the
target variable T leads to the most efficient simplification:

F` =
P (B` | T = 1)

P (B` | T = 0)
, ` = 1, . . . ,m

and results in weights-of-evidence in terms of odds:

O(T = 1 | B) = O(T = 1)
m∏
`=1

P (B` | T = 1)

P (B` | T = 0)

= O(T = 1)
∏
`:B`=1

P (B` = 1 | T = 1)

P (B` = 1 | T = 0)

∏
`:B`=0

P (B` = 0 | T = 1)

P (B` = 0 | T = 0)

= O(T = 1)
∏
`:B`=1

S`
∏
`:B`=0

N` (12)

with:
S` =

P (B` = 1 | T = 1)

P (B` = 1 | T = 0)
, N` =

P (B` = 0 | T = 1)

P (B` = 0 | T = 0)
, ` = 1, . . . ,m

provided that P (B` = i | T = j) 6= 0, i, j = 0, 1, holds. Then, the weights-of-evidence model reads:

• in terms of a logit (“log-linear form of Bayes’ formula”):

logitP (T = 1 | B) = logitP (T = 1) +
∑
`:B`=1

W
(1)
` +

∑
`:B`=0

W
(0)
` (13)

and:

• in terms of a probability:

P (T = 1 | B) = Λ

(
logitP (T = 1) +

∑
`:B`=1

W
(1)
` +

∑
`:B`=0

W
(0)
`

)
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with W (1)
` = lnS`, W

(0)
` = lnN`, if Equation (5) holds. Then, the weights-of-evidence model in terms

of contrasts, Equation (2), is derived from its initial representation in terms of weights as follows:

P
(
T = 1 | B

)
= Λ

(
logitP (T = 1) +

∑
`:B`=1

W
(1)
` +

∑
`:B`=0

W
(0)
`

)

= Λ

(
logitP (T = 1) +

m∑
`=1

(
W

(1)
` B` +W

(0)
` (1− B`)

))

= Λ

(
logitP (T = 1) +W (0) +

m∑
`=1

C` B`

)

= Λ

(
logitP (T = 1) +W (0) +

∑
`:B`=1

C`

)

To avoid the restrictive condition, Equation (5), the weights-of-evidence model in terms of odds,
Equation (12), is rewritten as:

O(T = 1 | B) = O(T = 1)
m∏
`=1

(
S`B` +N` (1− B`)

)
To distinguish different cases, we setM = {1, . . . ,m},m ∈ N, and then:

D = {` ∈M | S` 6= 0 ∧ N` 6= 0}
S = {` ∈M | S` 6= 0 ∧ N` = 0} (14)

N = {` ∈M | N` 6= 0 ∧ S` = 0}

leading to:

O(T = 1 | B) = O(T = 1)
∏
`∈D

(
S`B` +N` (1− B`)

) ∏
`∈S

S`B`
∏
`∈N

N` (1− B`)

and after taking the logarithm to:

ln O(T = 1 | B) = ln O(T = 1)+

+
∑
`∈D

ln
(
S`B` +N` (1− B`)

)
+
∑
`∈S

ln (S`B`) +
∑
`∈N

ln
(
N` (1− B`)

)
Eventually, the naive Bayes’ model in terms of logits reads:

logitP (T = 1 | B)

= logitP (T = 1) +
∑
`∈D

W
(0)
` +

∑
`∈D

C`B` +
∑
`∈S
B`=1

W
(1)
` +

∑
`∈N
B`=0

W
(0)
`

= logitP (T = 1) +
∑
`∈S

W
(1)
` B` +

∑
`∈N

W
(0)
` (1− B`) +

∑
`∈D

W
(0)
` +

∑
`∈D

C`B` (15)
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Thus, for the slightly more general Equation (15) than Equation (13), the initial correspondence
Equation (3) becomes a little bit more involved, i.e., with the notation of Equation (14):

β0 = logitP (T = 1) +
∑
`∈D

W
(0)
`

β` = C`, ` ∈ D
β` = W

(1)
` , ` ∈ S

β` = W
(0)
` , ` ∈ N

A.2. Explicit Derivation of the Generally Non-Linear Relationship of Logistic Regression Coefficients
and Weights of Evidence

For indicator predictor variables (B0, . . .Bm)T = B with realizations (b0, . . . , bm)T = b with b0 =

1, b` = 0, 1, for ` = 1, . . . ,m,, the ordinary logistic regression model reads explicitly:

logitP (T = 1 | B = b) = ln
P (T = 1 | B = b)

P (T = 0 | B = b)
= β0 +

∑
`:b`=1

β` = logitπ(b) (16)

with:
π(b) = P (T = 1 | B = b)

There are 2m different realization b; hence, there are 2m different logits. Now, keeping all Bj = bj

fixed, except B`, Equation (16), implies that the logarithmic odds ratio:

ln

(
P (T=1|B0=1,B1=b1,...,B`=1,...,Bm=bm)
P (T=0|B0=1,B1=b1,...,B`=1,...,Bm=bm)

)
(
P (T=1|B0=1,B1=b1,...,B`=0,...,Bm=bm)
P (T=0|B0=1,B1=b1,...,B`=0,...,Bm=bm)

) = β`, ` = 1, . . . ,m (17)

for all Bj, j = 1, . . . ,m, j 6= `, fixed, cf. [8]. Applying Bayes’ formula and the assumption of the
conditional independence of B given T, the left-hand side of Equation (17) simplifies to the contrast
C` of weights of W (1)

` and W
(0)
` . In this way, Equation (17) provides a common interpretation of

ordinary logistic regression parameters and weights of evidence and their associated contrasts in the
case of conditional independence.

With respect to the ordinary logistic regression model, the 2m marginal log odds c`k are defined by:

c`i = logit
(
P (D = 1|B` = i)

)
= logit

(∑
b`=i

(π(b)P (B = b)) /
∑
b′`=i

P (B = b′)
)

= logit

∑
b`=i

(
Λ
(
β0 +

∑
k:bk=1 βk

)
P (B = b)

)∑
b′`=i

P (B = b′)

for ` = 1, . . . ,m and i = 0, 1 and where b′ is a copy of b; the sum is taken over all b with b` = 1. Then,
the m contrasts are:

C` = c`1 − c`0, ` = 1, . . . ,m (18)
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Equation (18) establishes the non-linear relationship of contrasts and regression parameters. The
trivial case m = 1 leads immediately to C1 = β1. For m = 2, Equation (18) simplifies to:

c11 = logit
Λ(β0 + β1 + β2)P (B1 = 1,B2 = 1) + Λ(β0 + β1)P (B1 = 1,B2 = 0)

P (B1 = 1,B2 = 1) + P (B1 = 1,B2 = 0)

c10 = logit
Λ(β0 + β2)P (B1 = 0,B2 = 1) + Λ(β0)P (B1 = 0,B2 = 0)

P (B1 = 0,B2 = 1) + P (B1 = 0,B2 = 0)

c21 = logit
Λ(β0 + β1 + β2)P (B1 = 1,B2 = 1) + Λ(β0 + β2)P (B1 = 0,B2 = 1)

P (B1 = 1,B2 = 1) + P (B1 = 0,B2 = 1)

c20 = logit
Λ(β0 + β1)P (B1 = 1,B2 = 0) + Λ(β0)P (B1 = 0,B2 = 0)

P (B1 = 1,B2 = 0) + P (B1 = 0,B2 = 0)

Mistaking the logit transform as linear leads to the erroneous linear relationship of contrasts and
logistic regression parameters given by Deng (2009); cf. [22].

c© 2014 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article
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