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Abstract: The NASA Giovanni data analysis system has been recognized as a useful tool to 

access and analyze many different types of remote sensing data. The variety of 

environmental data types has allowed the use of Giovanni for different application areas, 

such as agriculture, hydrology, and air quality research. The use of Giovanni for researching 

connections between public health issues and Earth’s environment and climate, potentially 

exacerbated by anthropogenic influence, has been increasingly demonstrated. In this 

communication, the pertinence of several different data parameters to public health will be 

described. This communication also provides a case study of the use of remote sensing data 

from Giovanni in assessing the associations between seasonal influenza and meteorological 

parameters. In this study, logistic regression was employed with precipitation, temperature 

and specific humidity as predictors. Specific humidity was found to be associated (p < 0.05) 

with influenza activity in both temperate and tropical climate. In the two temperate locations 
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studied, specific humidity was negatively correlated with influenza; conversely, in the three 

tropical locations, specific humidity was positively correlated with influenza. Influenza 

prediction using the regression models showed good agreement with the observed data 

(correlation coefficient of 0.5–0.83). 

Keywords: remote sensing; climate; weather; public health; disease; environment; 

atmosphere; ocean; biosphere; precipitation 

 

1. Introduction 

Investigation of connections between Earth’s environment and public health issues can be 

considerably enhanced by the incorporation of remotely-sensed data. These investigations may comprise 

the examination of relationships between public health and primarily natural influences, such as 

meteorological and oceanic processes—an example would be the connection between water-borne 

diseases and heavy rainfall events, the latter potentially related to sea surface temperatures. Also 

included are processes affected by human activities, such as potentially harmful emissions into the 

atmosphere or water supply. An example of this relationship is the emission of sulfur dioxide (SO2) and 

nitrogen dioxide (NO2) by fossil fuel combustion for energy production. Geographical setting, 

climatological baselines, and global teleconnections may also be included in research with  

remotely-sensed data that has public health implications.  

The National Aeronautics and Space Administration (NASA) has acquired a rapidly growing archive 

of Earth remote sensing data, originating with the Landsat and Nimbus satellite missions in the 1970s 

and continuing with increasingly ambitious and technologically advanced missions to the present year, 

marked by the recent launches of the Global Precipitation Mission (GPM) and Orbiting Carbon 

Observatory-2 (OCO-2) satellites.  

Since its inception in 2003, the NASA Geospatial Interactive Online Visualization ANd aNalysis 

Infrastructure (Giovanni) system provides access to a wide variety of NASA remote sensing data and 

other Earth science data sets, allowing researchers to apply selected data to a broad range of research 

topics. Currently hosted by the Goddard Earth Sciences Data and Information Services Center (GES 

DISC, Giovanni includes data from many different NASA missions and projects. An in-progress 

Advancing Collaborative Connections for Earth System Science (ACCESS) project titled “Federated 

Giovanni” will expand the data available in the system by including data from other NASA data centers.  

This variety of data gives Giovanni marked potential for the investigation of different public health 

issues. One of Giovanni’s primary attributes is ease-of-use; researchers who are generally unfamiliar 

with remote sensing data can use the system to find data that is applicable to their topic area and employ 

it. Only a relatively short investment of time and effort is required to become facile with the system. 

Correspondence with users in the public health research sector has indicated their high level of satisfaction 

with access to the data it provides, and the capability of determining whether or not remote sensing data 

can be used in their particular research area. 

Giovanni provides remote sensing data alongside several different basic analytical capabilities, which 

include spatial maps of data variable values, difference maps, area-averaged time-series, animations, and 
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vertical profiles of atmospheric variables. The mapping capability includes rapid averaging, so that mean 

values for months, seasons, or years can be visualized readily. All maps and plots generated by Giovanni 

can be immediately downloaded. Though it is not designed specifically as a data subsetting engine, for 

many data types Giovanni provides a relatively simple way to acquire spatially and temporally subsetted 

data, and it has been used for this purpose in numerous investigations. Giovanni is, ideally, a data exploration 

tool, allowing the performance of operations that used to require days and week for data acquisition and 

preparation to be performed in minutes, enabling more detailed analyses with considerably reduced time 

and effort. The Giovanni system is currently being transitioned from the current system, colloquially 

referred to as “Giovanni-3” [1], to a more flexible architecture, “Giovanni-4”, that accelerates processing 

speed, adds new analysis capabilities, and which consolidates all of the data variables into a single search 

interface, rather than separate portals. The in-development Giovanni-4 system has not yet been described 

in a publication, but is available for use at the GES DISC Web site. 

Missions, instruments, or projects providing data products available in Giovanni which are useful  

for public health research include: the Atmospheric Infrared Sounder (AIRS); the Tropical Rainfall 

Measuring Mission (TRMM); the Ozone Measuring Instrument (OMI); the Moderate Resolution Imaging 

Spectroradiometer (MODIS); the Modern Era Retrospective-analysis for Research and Applications 

(MERRA) project; the NASA Ocean Biogeochemical Model (NOBM); and both the North American 

Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS).  

Although Giovanni is easy to use, many researchers and applied science professionals need guidance 

on how to find the appropriate datasets and how to interpret them. The NASA Applied Remote Sensing 

Training (ARSET) program provides online and in-person training for professional audiences, including 

health specialists, on how to use NASA resources and data, including data sets hosted at the GES DISC 

through Giovanni. Training modules with step by step instructions can be found online [2]. ARSET also 

has online resources that can supplement the use of Giovanni by non-specialists in remote sensing. 

2. Data Parameters in Giovanni Relevant to Public Health 

Data in Giovanni can be categorized with respect to its applicability to public health issues. In the 

following, three tiers of applicability will be presented: Tier 1, data that have a strong relationship  

to public health, and which are thus directly applicable in public health research; Tier 2, data that have 

indirect yet established relationships with an area of public health concern; and Tier 3, data that are 

related to weather or climate with an effect on public health and well-being. 

2.1. Tier 1 Data Parameters 

Tier 1 data types include: 

• Precipitation  

• Temperature 

• Aerosol Optical Depth (AOD) 

• Nitrogen Dioxide (NO2) 

• Carbon Monoxide (CO) 

• Relative Humidity 
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• Cloud Cover 

2.1.1. Precipitation Data 

Precipitation data finds wide application in public health research. Precipitation occurrence has 

frequently been associated with waterborne diseases, insect population outbreaks, and disease transmission 

modes (i.e., shared water resources). Recent studies used Tropical Rainfall Measuring Mission (TRMM) 

daily data products to investigate the connection between rainfall and the location of cholera outbreaks 

in Haiti following a devastating earthquake [3]. Research on malaria transmission using remote sensing 

data frequently involves rainfall data. Malaria is a mosquito-borne disease, and since mosquitoes have an 

aquatic stage of their life cycle, mosquito populations are influenced by rainfall patterns. Kiang et al. [4] 

described research on malaria transmission patterns in Thailand, examining correlations with surface 

temperature, vegetation cover, and rainfall. Adimi et al. [5] described the potential for malaria risk prediction 

in Afghanistan. Both of these investigations accessed rainfall data products in Giovanni. Midekisa et al. [6] 

also used rainfall data to create early-warning models for malaria in Ethiopia.  

Precipitation extremes also have public health effects—directly due to the danger posed by flood 

waters, subsequently due to damage to water utilities and freshwater sources affecting the water supply, 

and finally due to increased potential for disease outbreaks due to contaminated water. With regard to 

floods, Cools et al. [7] described the creation of a flash flood early warning system for Egypt that used 

precipitation data from Giovanni. Singh, Pandey, and Nathawat [8] used Giovanni to investigate the 

cause of the 2008 Kosi flood in India. GLDAS and NLDAS feature many different hydrological variables, 

including soil moisture and runoff in addition to precipitation. These variables can be used to study severe 

storms, snowmelt flooding, and drought intensity. In addition, cloud cover data can be correlated with 

changing precipitation patterns, as well as for tracking severe storms and weather fronts. 

2.1.2. Temperature Data 

Temperature data, along with relative humidity, also can provide significant insight into public  

health concerns. Soebiyanto, Adimi, and Kiang [9] determined that temperature was a primary variable 

associated with seasonal influenza transmission. Surface temperature is a fundamental variable related 

to water resources, drought conditions, vegetation survival, insect overwintering survival, heat stress, 

and disease-vector species ranges. Giovanni has remotely-sensed land surface temperature data from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), atmospheric temperature data from the 

Atmospheric Infrared Sounder (AIRS), model and assimilated model (GLDAS and NLDAS) temperature 

data, and high-resolution temperature data for specific regions. An example of such research was presented 

in Shen et al. [10], which described the pioneering data portal built for the Northern Eurasian Earth 

Science Partnership Initiative (NEESPI). Changes in this region, such as higher temperatures and increased 

fire outbreaks, were described.  

2.1.3. Air Quality Data 

Another area of public health concern is air quality. There are several regularly accessed variables 

related to air quality in Giovanni. Likely the most used are Aerosol Optical Depth (AOD) data products, 
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which are acquired by MODIS and the Ozone Measuring Instrument (OMI). AOD indicates the optical 

clarity of the atmospheric air column, with higher values indicating more scattering and absorption by 

particles and chemicals in the atmosphere. Because of the direct relationship between AOD and some 

kinds of air pollution, particularly the frequently monitored PM2.5 and PM10 particle size fractions, 

AOD data variables have been primary resources in many different studies. Two examples are Li, Shao, 

and Buseck [11] on the effects of biomass burning aerosols on haze in Beijing, China, and Lu et al. [12] 

on sulfur dioxide emissions and trends in eastern Asia. AOD also has been used to track the regional 

impact of smoke from wildfires, which can be transported hundreds of miles from its source (Figure 1). 

Prados et al. [13] provides a comprehensive review of the use of air quality-related data sets in Giovanni. 

Figure 1. MODIS Aerosol Optical Depth (AOD) image showing the large area of elevated 

aerosol concentrations northeast of Moscow (yellow), stemming from massive wildfires that 

erupted in the hot summer of 2010. The daily AOD data was acquired for the period 27–31 

July 2010, and averaged over this time period with Giovanni. 

 

OMI is also an important source of other atmospheric chemistry data. The potential health significance 

of stratospheric ozone depletion is well-known, and OMI ozone data are integral to that research. OMI 

also provides a useful nitrogen dioxide (NO2) data product, which can be used to track wildfire locations 

and movement, as well as air pollution sources resulting from the combustion of fossil fuels. Sergei 

Sitnov has been a prolific user of Giovanni, using the system to publish several papers on NO2 and air 

quality in Russia. One such study looked at the weekly pattern of air quality and its relationship to 

meteorology in the environs of Moscow [14]. Another air quality indicator chemical species is carbon 

monoxide (CO), acquired by AIRS.  
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2.2. Tier 2 Data Parameters 

Tier 2 health-related variables in Giovanni are:  

• Chlorophyll concentration (phytoplankton)  

• Euphotic Depth 

• Sea Surface Temperature 

• Ozone (O3) Erythemal Ultraviolet (UV) Daily Dose 

• Normalized Difference and Enhanced Vegetation Indices (NDVI/EVI) 

• Soil Moisture 

2.2.1. Ocean Data 

It may not be immediately apparent why oceanic phytoplankton chlorophyll concentrations are  

useful for health-related research. However, this data type actually has one of the longest associations 

with public health of any that has been provided by the GES DISC. This is due to the fact that Vibrio 

cholerae, the bacterial species responsible for cholera, has a stage in its life cycle when it infests copepods, 

a zooplankton species that feeds on phytoplankton. Thus, flood-related blooms of phytoplankton can 

provide a fertile ground for the proliferation of copepods and V. cholerae. Coastal Zone Color Scanner 

(CZCS) data were used in the 1980s to examine a cholera outbreak related to a phytoplankton bloom in 

the Bay of Bengal. These data in Giovanni can be used for cholera research, and to examine vectors of 

seafood contamination (“red tides” and other Harmful Algal Blooms, HABS), fish mortality, and severe 

storm effects. The use of ocean remote sensing data to study cholera outbreaks has been described 

previously [15–17]. 

Phytoplankton patterns also are related to fishery success or failure. Because fish constitute the major 

protein source for many coastal populations, these data too can have public health ramifications. Blooms 

also can indicate where someone should not fish; Van Holt showed that shellfish in areas with consistently 

elevated chlorophyll concentrations have more undesirable organisms clinging to their shells than in 

lower-chlorophyll zones [18]. Euphotic depth, a measure of water clarity, has been used for water quality 

studies and reports, and can indicate offshore flood effects. Sea surface temperature (SST) is directly 

related to water quality and phytoplankton growth, but indirectly it is related to coastal precipitation, 

storms, flooding, and the health of coral reefs. The Caribbean SERVIR (Sistema Regional de Visualización 

y Monitoreo) program used MODIS SST from Giovanni extensively in their research report “Sea Surface 

Temperature Trends in the Caribbean Sea and eastern Pacific Ocean” [19], published in 2011 to provide 

a baseline study for the impacts of these events on the population of countries in Central America, 

northern South America, and the Caribbean Sea.  

2.2.2. Ozone Data 

As noted earlier, OMI data is an obvious choice to examine stratospheric ozone depletion and the 

Antarctic “ozone hole” depth and extent. But the Erythemal Daily Dose data product, which describes 

the impact of ultraviolet radiation exposure on humans, has been used in some unique ways. Serrano, 

Cañada, and Moreno [20] used this data product to quantify the dangers to youth skiers of significant 

exposure to ultraviolet radiation.  
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2.2.3. Vegetation Indices 

NDVI and EVI, both indices of vegetation greenness and ground cover, are also potentially useful 

data types for health research, as is soil moisture. These indices indicate the extent and intensity of 

drought, and thus are related to water resources and agricultural success. Kiang et al. [3] employed the 

vegetation indices in modeling malaria occurrence in Thailand, as they are relevant to land use and 

mosquito breeding environments. High resolution (5.6 kilometer) NDVI and EVI data are currently 

available in the Monsoon Asia Integrated Regional Study (MAIRS) high resolution monthly data portal.  

2.3. Tier 3 Data Parameters 

Tier 3 data types may be related to weather and climate, with effects on public health and well-being. 

Many of these data types measure quantities that are important to water resources:  

• Snow Depth 

• Snow Mass 

• Snowfall Rate 

• Snowmelt 

• Fractional Snow Cover 

• Snow/Ice Frequency 

• Wind Speed 

• Runoff 

The current drought besetting western states of the United States, which some meteorologists  

describe as commencing in the year 2000, is having observable effects on snow in the mountain ranges, 

particularly those of California. As this will have ramifications for the management of water resources, 

and also impact wetland areas, the use of Giovanni to monitor such changes may be warranted. Furthermore, 

heavy snows can lead to floods, which may be predictable from snow depth data and observable with 

runoff data. Trends in snow parameters also may be indicators of climate change impacts and shifts in 

freeze and melt timing. A Giovanni time-series prepared for the NASA Data Investigations for Climate 

Change Education (DICCE) project [21] demonstrated how Giovanni could be used by teachers and 

students in New Mexico. Figure 2 shows a 1979–2010 monthly snow mass time-series for the mountainous 

area of northern New Mexico, a major source area for the Rio Grande River. Reduced snow mass from 

1995–2005 is clearly visible.  

The data tiers described above are necessarily broad classifications. Data types can have varying relevance 

to particular diseases, and research conducted on the connections between diseases and environmental 

factors must consider the spectrum of potential relationships. For example, snow depth or mass is rarely 

important for malaria incidence, but it is an important variable for malaria in Afghanistan. NDVI is not 

related to influenza, but is important for many vector-borne diseases, while AOD can be significant for 

respiratory diseases (such as influenza), but not for vector-borne diseases. Regional (particularly coastal) 

SST has been shown to be very relevant to cholera, while basin-scale SST is related to rainfall, and thus 

may have a relationship to diseases with a precipitation or hydrological connection.  
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Figure 2. Monthly time-series of Modern Era Retrospective-analysis for Research and 

Applications (MERRA) snow mass data, plotted with Giovanni, for the central mountainous 

region of northern New Mexico, USA. 

 

3. Influenza Example 

The following example demonstrates how Giovanni was integral to the use of remote sensing data  

in studying the relationship between influenza and meteorological parameters, and further shows the 

capability of these parameters in predicting influenza activity. The burden of influenza, and how it is 

related to meteorological conditions, will be described first.  

Influenza is an acute respiratory infection that can rapidly spread worldwide in seasonal epidemics. It 

approximately infects 5%–15% of the world population and causes up to 500,000 deaths each year [22]. 

In the United States, the economic cost of influenza epidemic is estimated to be around US$71–167 

billion per year [22]. The epidemic timing varies across latitude, further suggesting the role of meteorological 

and environmental factors on influenza transmission. In the temperate region, influenza epidemic occurs 

during the winter time [23,24]. However, the seasonality and pattern of influenza epidemics in the tropics 

are less defined: from year-round high influenza activity, peaks that coincide with rainy seasons, to multiple 

peaks in a year [23,25–27]. Animal and laboratory studies have indicated that low temperature and 

humidity—consistent with wintertime conditions—provide suitable conditions for efficient transmission 

and longer virus survivorship [28,29]. In the tropics, rainfall is often associated with higher influenza 

activity although the direct causal relationship remains unclear. It is postulated that rainfall promotes 

indoor crowding that in turn, increases the probability for aerosol- and contact transmission [30]. 

In this study, influenza occurrence in five countries with either temperate or tropical climates was 

analyzed. The countries we studied were the Netherlands and New Zealand in temperate climate zones, 
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and the Philippines, Vietnam and Sri Lanka in tropical climate zones. Influenza data was obtained  

from the World Health Organization Flu Net [31] for each country. Data was obtained for at least 3 years 

(Figure 3). Precipitation data was obtained from NASA’s TRMM via Giovanni (TRMM 3B42 product). 

Briefly, the TRMM 3B42 product combines precipitation estimates from TRMM and other satellites as 

well as gauge analysis to produce daily precipitation at finer scale [32]. Near surface (2 m) specific 

humidity was obtained from Global Land Data Assimilation System (GLDAS), also archived in 

Giovanni. The Giovanni system was used to automatically download and subset the data based on the 

rectangular boundary of the study area. Output from Giovanni was an ASCII file of the aforementioned 

geophysical parameters, tagged with latitude, longitude and time. Spatial and temporal averaging was 

then performed on the retrieved data, as described below. The ASCII output format made it easier to do 

post-processing with statistical software (R), where we developed our model. Hence, the Giovanni 

system allowed us to effectively retrieve the dataset without the need to download or store large-sized 

HDF files. Ground stations were the source of minimum temperature data [33]. Due to the limitations of 

TRMM spatial coverage, precipitation data for the Netherlands was obtained from ground stations. 

Figure 3. Weekly influenza positive (in %) and meteorological parameters averaged across 

study period. Bar plot shows the percentage of influenza positive. TMIN is minimum 

temperature (°C), SH is Specific Humidity (g/kg) and PRCP is precipitation (1 cm). 

 

The weekly proportion of respiratory samples that tested positive for influenza acted as an influenza 

activity indicator. Logistic regressions were then developed for each study location, with minimum 

temperature, precipitation and specific humidity (averaged from current to previous 3 weeks) as covariates. 

The previous two weeks of influenza activity, and a third order polynomial function of the week number, 

were also included as covariates. Backward variable selection was then applied to obtain a parsimonious 
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model (a model with as few covariates as possible). A more detailed description of the model can be 

found in Soebiyanto et al. [25].  

Figure 3 plots the weekly influenza activity and meteorological parameters, averaged across the study 

period. Out of the three tropical study locations, Vietnam had larger variability in both minimum 

temperature and specific humidity. In the temperate locations, the Netherlands had larger variability in 

these two parameters (as compared to New Zealand). Precipitation in the tropical locations showed 

varying seasonality, while it was evenly distributed throughout the year in the temperate locations. The 

plots of the influenza positive proportion (Figure 3) showed that influenza peaks during wintertime in 

the temperate locations: around February–March in the Netherlands (Northern Hemisphere) and  

July–August in New Zealand (Southern Hemisphere). At this time, both temperature and specific 

humidity were also at their minimum values (Figure 3). In the tropics, the seasonality was not as  

well-defined. On average in the tropics, higher influenza activity appears to be associated with higher 

temperature, specific humidity, and precipitation values.  

Results from the logistic regression models (Table 1) indicated that minimum temperature was 

inversely associated (p < 0.05) with influenza activity in Sri Lanka (Odds Ratio (OR) = 0.59, 95% 

Confidence Interval (CI) = 0.39–0.90). Specific humidity was significantly associated (p < 0.05) with 

influenza activity in all locations with varying relationships. Proportional associations were found in  

all three tropical locations (OR range of 1.13–1.47), while inverse associations were found in the  

two temperate locations (OR = 0.79 (0.67–0.95) in the Netherlands, and OR = 0.41 (0.29–0.58) in New 

Zealand). Here, proportional association indicates that an increase in the specified meteorological 

parameter was associated with an increase in influenza activity. Inverse association indicates an increase 

in a meteorological parameter was associated with a decrease in influenza activity. Precipitation, 

meanwhile, was not significantly associated (p > 0.05) with influenza activity in any of the locations.  

Table 1. Multivariate regression between influenza positive proportion and meteorological 

parameters. Bold font indicates significance at α = 0.05 levels, RMSE indicate root mean 

squared error and Corr. Coeff. is the correlation coefficient between the observed and predicted 

influenza positive proportion. The models were adjusted for previous weeks’ influenza activity, 

seasonality and other possible nonlinear relationships (modeled as a polynomial function, up 

to degree of 3, of the week number). When OR is not shown, the variable is not selected by 

the backward selection (not included in the final model). 

 Odds Ratio (95% Confidence Interval) Model Performance 

 Min. Temp. Precipitation 
Specific 

Humidity 
Training Prediction 

 (°C) (mm) (g/kg) RMSE RMSE 
Corr. 
Coeff 

Philippines   1.13 (1.07, 1.19) 0.064 0.048 0.831 

Sri Lanka 0.59 (0.39, 0.90)  1.47 (1.11, 1.97) 0.048 0.055 0.503 

Vietnam   1.15 (1.09, 1.20) 0.054 0.079 0.730 

Netherlands   0.79 (0.67, 0.95) 0.139 0.136 0.803 

New Zealand  1.00 (0.99,1.01) 0.41 (0.29, 0.58) 0.147 0.141 0.618 
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The inverse relationship between influenza activity and minimum temperature in Sri Lanka, and 

specific humidity in the temperate locations were consistent with experimental studies that indicated 

such conditions (low temperature and humidity) were suitable for longer influenza virus survivorship 

and more efficient transmission [28,29]. Findings on specific humidity in the tropical locations were in 

contrast to those in the temperate locations. These were consistent with other studies in the  

tropics [23,26,27]. The proportional association with specific humidity may indicate an indirect 

relationship with influenza activity, similar to precipitation. Indoor public places may provide 

opportunities for crowding when it rains or when humidity is high, and thus may enhance contact, 

aerosol, and droplet transmission. 

We only find an association with minimum temperature in Sri Lanka, and not in the rest of the tropics 

and temperate study locations. In the temperate region, minimum temperature is often highly correlated 

with specific humidity. Hence, minimum temperature could be related to influenza in a similar fashion 

as specific humidity, but our model did not select this parameter, as it may not give the best model 

performance. This was consistent with another study showing that the relationship between influenza and 

temperature in the temperate United States was not as statistically strong as that of influenza and absolute 

humidity [24]. Meanwhile, temperature in the tropics typically remains relatively similar throughout the 

year without strong seasonality pattern. Therefore it was not associated with influenza, which was also 

observed in another study for tropical regions [23]. 

Figure 4. Regression models prediction of influenza positive proportion during the indicated 

period. The black line is the observed data (validation dataset, not used in training the models), 

and the red line is the model prediction with grey shades indicating the 95% Confidence 

Interval (CI). 
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The resulting models (one model in each study location) were then used to predict influenza activity 

during the final year of the data (Figure 4). These data sets were not used in training the models. The 

estimated influenza activity could be seen to reasonably follow the observed curves. Root mean squared 

errors (RMSE, Table 1) were less than 0.15 (influenza activity in this study was expressed in proportion). 

The correlation coefficients (Table 1) between the estimated and observed influenza activity showed a 

good agreement between the two (mean = 0.7, range = 0.5–0.83).  

In conclusion, this analysis showed specific humidity as an important determinant for influenza 

activity across the climate zones. In temperate climate zones, influenza activity increased with decreasing 

specific humidity; the reverse was observed in the tropical locations. The former is consistent with low 

temperatures and low humidity occurring in winter, when influenza activity is elevated in temperate 

climate zones. It was also demonstrated, in Figure 4, that regression models which include meteorological, 

seasonal, and autoregressive inputs can be used to predict influenza activity relatively well. Hence, it is 

possible to use projected influenza activity as a guide for planning future prevention efforts. Short-term 

weather forecasts can be used to estimate influenza in the following week, whereas climate models can 

be used to assess how influenza activity and timing may change with climate over the next decades.  

4. Conclusions 

The multitude of remotely-sensed data parameters available in Giovanni, provide many potential 

research opportunities for examination of relationships between environmental factors and public health 

issues. Our example, an investigation of possible relationships between influenza activity and three 

variables—temperature, specific humidity, and precipitation—demonstrates how having such data types 

readily available for rapid subsetting and download in Giovanni, can enable the research process for 

researchers who are not necessarily familiar with the details of satellite remote sensing. This example 

does not fully demonstrate the capabilities of Giovanni’s basic analytical functions, such as data variable 

maps, time-series, or Hovmöller diagrams, which can also be used in research. With due attention to the 

possibility of non-causal statistical correlations between environmental data and public health data, 

Giovanni provides an easy and rapid way to access and use NASA’s Earth science resources in the health 

science sector. Furthermore, as climate change results in differing patterns of disease transmission and 

occurrence, Giovanni’s analytical capabilities can be exploited to observe related changes in 

environmental factors.  
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