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Abstract: This paper presents practical methods for the sequential generation or simulation 

of a Gaussian two-dimensional random field. The specific realizations typically correspond 

to geospatial errors or perturbations over a horizontal plane or grid. The errors are either 

scalar, such as vertical errors, or multivariate, such as  ,  , and   errors. These realizations 

enable simulation-based performance assessment and tuning of various geospatial 

applications. Both homogeneous and non-homogeneous random fields are addressed. The 

sequential generation is very fast and compared to methods based on Cholesky 

decomposition of an a priori covariance matrix and Sequential Gaussian Simulation. The 

multi-grid point covariance matrix is also developed for all the above random fields, 

essential for the optimal performance of many geospatial applications ingesting data with 

these types of errors. 

Keywords: geospatial; random field; errors; sequential; simulation; covariance matrix; 

strictly positive definite correlation function 

 

1. Introduction and Motivation 

This paper identifies a specific and practical subclass of homogeneous Gaussian two-dimensional 

(2D) random fields and presents a simple, fast, sequential method to generate discrete realizations over 

a     (horizontal) grid for the purpose of Monte Carlo simulation-based analyses. Let us term this 
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method Fast Sequential Simulation (FSS) for brevity of further description. FSS can be considered an 

extension of the sequential generation of a first order Gauss-Markov process from a 1D function of 

time to a 2D function of horizontal space. Although FSS was derived independently, it is also 

demonstrated a special case of Sequential Gaussian Simulation which is commonly used in the 

Geostatistics community. In particular, FSS is an unconditional simulation with simplicity and speed 

due to both exponential correlation in the spatial directions and an ordered generation over an evenly 

spaced grid of horizontal locations. Although other applications of Sequential Gaussian Simulation are 

more general (conditional or unconditional, irregularly spaced points, random generation paths, 

arbitrary valid correlation functions, etc.), many applications do not require these generalities but do 

require speed, preferably with a simple and direct implementation. 

The paper first addresses scalar random fields, i.e.,        where   typically represents a scalar error 

or perturbation at grid location      . The desired variance and spatial correlations for the        are 

specifiable with FSS, and the multi-grid point covariance matrix derived. The paper then generalizes 

FSS to the generation of multivariate Gaussian two-dimensional random fields, i.e.,       , where    

is a vector of arbitrary dimension  . Finally, the paper generalizes FSS results even further to  

non-homogeneous Gaussian two-dimensional random fields, where the variance and spatial 

correlations are a function of grid location      . Some of the practical techniques presented for the 

sequential generation of both multivariate and non-homogeneous random fields are believed to be new 

and somewhat innovative. 

Example realizations of scalar, multivariate, homogenous, and non-homogenous random fields are 

presented throughout the paper, as well as various theoretical properties, insights, and proofs, the latter 

contained in appendices. FSS is also compared to equivalent methods based on (1) Cholesky 

decomposition of a pre-computed a priori covariance matrix; and (2) Sequential Gaussian Simulation 

as implemented in various statistical packages. FSS is demonstrated to be many orders of magnitude 

faster than all of these other generation methods, as well as being a simpler implementation. 

The ability to simulate errors across a horizontal grid with specifiable expected magnitudes 

(variance) and interrelationships (correlations) is an important capability in support of the Geospatial 

Sciences and supported by the FSS method presented in this paper. For example, the errors can 

represent elevation errors across a Digital Elevation database, horizontal errors in the location of 

vertices across a GIS database, horizontal and vertical errors in the locations of control points across a 

control point database, etc. All of these errors are essentially a function of horizontal location, 

i.e., representable as a two-dimensional random field. 

These simulated errors can be used to modify corresponding “truth” data in a simulation 

environment. Subsequent performance of various down-stream applications can then be meaningfully 

assessed, including modification (tuning) of their algorithms for optimal and reliable performance. 

Alternatively, in an operational environment, the applications themselves can have an embedded 

simulation capability in order to represent the effects of errors in their input data of known 

(specifiable) a priori characteristics. The effect is relative to the application’s output product and 

usually represented graphically. The simulation of tens of millions of errors within a few seconds and 

hundreds of millions within 30 s on a laptop computer is desired. 

Previously, relevant errors have sometimes been simulated as homogeneous errors solely as an 

assumption for reduced complexity and/or increased speed. However, many realistic applications 
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correspond to data with non-homogeneous error characteristics; for example, data sets previously fused 

from other data sets with differing error (accuracy) characteristics. This paper addresses both types of 

errors. The non-homogeneous techniques presented in this paper essentially preserve the speed 

associated with the technique presented for the homogeneous case, typically reducing the speed by 

only a factor of two or three. The corresponding non-homogeneous characteristics are not totally 

general, but still adequate for many applications. 

Finally, a common theme throughout this paper is the practical computation and need for a multi-grid 

point covariance matrix corresponding to        or        at multiple grid point locations. It is used 

by various applications to predict the accuracy of their input data and properly weight it within their 

various algorithms. 

The authors of [1–5] discuss random fields in general, including their generation or simulation. 

Generation techniques include those based on Cholesky decomposition and Sequential Gaussian 

Simulation. In addition, these references discuss interpolation of a random field’s realization based on 

Kriging. These references are relatively standard in the geostatistics community. They, along with 

other references from this community, are referenced per specific topic throughout the remainder of 

this paper, including appendices. 

As detailed later, FSS was derived independently of Gaussian Sequential Simulation but is 

equivalent in specified circumstances. FSS is also directly related to both generalized multi-grid point 

covariance matrices [6] and strictly positive definite correlation functions [7] that have applications in 

the Geospatial community. Recent applications of FSS include evaluating conflation methods [8] and 

various geospatial algorithms [9]. 

Roadmap 

Sections 1–4 of this paper define the scalar homogeneous Gaussian 2D random field, the fast 

sequential generation algorithm FSS, and related practical aspects. Section 5 compares FSS to more 

typical generation methods such as those based on Cholesky decomposition or Sequential Gaussian 

Simulation, particularly with respect to timing or throughput. Section 6 then extends the FSS technique 

to a multivariate homogeneous Gaussian 2D random field, and Section 7 to a non-homogeneous 

Gaussian 2D random field. 

2. A Scalar Gaussian 2D Random Field and Its Sequential Generation 

In this section of the paper, we define a scalar, homogeneous, Gaussian two-dimensional (2D) 

random field, typically corresponding to perturbations or errors. We also present FSS, the algorithm 

for the fast and sequential generation of a discrete and specific realization of this random field that can 

be used for various Monte Carlo simulation-based analyses. 

We assume that the random field corresponds to  -error for specificity. Indices   and   correspond 

to a two-dimensional grid in the  -  horizontal plane:   is in the “ ” direction and is the first grid 

index,   is in the “ ” direction and is the second grid index. Specifically,        corresponds to  -error 

in meters at grid point      . 
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2.1. Statistical Characteristics 

       is normally (Gaussian) distributed, and has a mean value of zero and a specifiable one-sigma 

  , i.e., is normally distributed         for all grid locations      . Its spatial correlation across the 

grid is separable, i.e., has the (normalized) correlation function         , where    and    are the 

absolute values of the component-wise differences in the       location of two arbitrary grid points. 

This function is represented as: 

                                     (1) 

where    and    are specifiable spatial correlation distance constants (meters) and    and    

specifiable grid spacing (meters) in the   and the   directions in the horizontal plane, respectively. 

Note that         and        . 

Figure 1 presents an example of         , with        m,        m, and          m. 

The spatial correlation          is applicable to any pair of grid points within the entire grid that are 

separated by    meters in the  -direction and    meters in the  -direction. The use of two different 

spatial correlation distance constants allows for specification of different correlation characteristics in 

each of the horizontal directions. 

Figure 1. An example of the separable spatial correlation function; in the plot of         , 

   and    have signed values. 

 

Regarding the a priori statistics of        in a more formal manner: 
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Note that     is the expectation operator, and     ,     ,     ,     ,     ,     , 

            if      or     , and            when        . Section 3.0 of this paper 

also presents the covariance matrix associated with two or more       , each associated with a 

different grid point      . 

2.2. Core Grid-Generation Equation 

Equation (3) is the core grid-generation equation for FSS:  

                                                         (3) 

The integers   and   correspond to points in the grid,          , and          .        is a 

random sample of Gaussian white noise, and is normally distributed        , where 

  
                

 . That is, given a desired  ,  , and   , a corresponding value of    is 

computed per the above. 

  is the spatial correlation of the scalar error   between adjacent grid points in the   (or  ) direction 

(     , unit-less), and   is the spatial correlation of the scalar error   between adjacent grid points 

in the   (or  ) direction (     , unit-less) Therefore, we can also write the spatial correlation 

function          as a function of grid units only:  

                (4) 

Figure 2 illustrates the grid of errors        generated based on Equation (3) and corresponding to a 

specific realization of the scalar, homogeneous, two-dimensional random field. 

Figure 2. Horizontal grid of   errors. 

 

All errors in the light orange area affect the error            and those in the light blue area do 

not. Also, based on the specific sequential grid generation algorithm presented in Section 2.3, an error 

in the light blue area (e.g.,         ) may be generated prior to            even though it does 

not affect it. 
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2.3. Sequential Generation Algorithm for Realization over a pxq Grid 

The following presents a specific FSS algorithm for a discrete realization of        over a     grid 

based on Equation (3): 

                     ;  

                             ; 

                             ;  

                                              . 

                               ;  

                                                  . 

The above completes rows 1 and 2. Generate row 3 as follows:  

                             ; 

                                              . 

                                                  . 

Repeat row 3-type processing for rows 4 through  . 

Note that, in general, “               ” corresponds to a random number (realization) 

from a         probability distribution; for example, in matlab this is implemented as  

“                  ”. 

Appendix A of this paper presents a direct proof that the above FSS algorithm generates a realization 

of a two-dimensional random field with the specifiable statistical properties presented in Section 2.1. 

Appendix B also demonstrates its mathematical equivalence to a corresponding Sequential Gaussian 

Simulation approach for completeness. The latter must specify separable exponential correlation in the 

spatial directions and a fixed grid with a specific ordered path across it for generation of the 

realization. Also, depending on how it is implemented, it may or may not take advantage of the need to 

use the realization at only three previously generated grid points for generation at the current grid 

point, as does FSS. If it did in an efficient manner using pre-computed Kriging weights and little 

overhead due to flexibility and complexity, its speed could approach that of FSS. 

2.3.1. Grid Spacing 

Equation (3) and the above algorithm should typically incorporate grid spacing    and    equivalent 

to approximately one-ninth or less their respective spatial correlation distance constant, insuring at 

least 0.9 correlation with an adjacent grid point, i.e.,                     and  

                   , or equivalently,         m and         m. Of course, this  

“rule-of-thumb” is application dependent. For example, if very high spatial correlation between 

adjacent grid points is of interest, spacing should be closer. 
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2.3.2. Grid Buffer 

As shown in Appendix A of this paper, the statistical properties of the        are based on steady-state 

properties over an assumed infinite horizontal grid. Thus, for an actual application (realization) 

necessarily using a finite grid, the “final” grid should have a “buffer” on two edges of the computed 

grid to ensure that steady-state has essentially been reached. This is illustrated in Figure 3, where the 

buffer is yellow and the final grid is green. 

Figure 3. Grid buffer (yellow), computed grid (yellow + green), final grid (green). 

 

Placement of the buffer corresponds to the specific sequential grid generation algorithm presented 

earlier that starts at the top of the grid and always proceeds from right to left. The width of the top 

buffer should correspond to the equivalent of approximately two times the spatial correlation distance 

constant in the  -direction, and the width of the side buffer should correspond to the equivalent of 

approximately two times the spatial correlation distance constant in the  -direction. 

More specifically, width of top buffer (# grid rows) = 
   

  
 and width of side buffer (# grid columns) = 

2     . Or equivalently, if   and   equal the value 0.9, 19 grid rows and 19 grid columns. This will 

ensure generation of errors throughout the final grid with the desired statistical properties. 

2.4. Example Realizations: Surface Plots 

This section presents surface plots of the  -error over a subset of a 2D final grid generated using the 

sequential algorithm of Section 2.3. Example 1 corresponds to specified       m, and specified 

          (thus          m). Assuming a grid spacing in both the y and x directions of 1 m 

(       ), this corresponds to spatial distance constants equal to            m. 

In this particular case, the spatial distance constants    and    were derived from the specified    

and  , given assumed grid spacing    and   , not vice versa. The spatial distance constants were 

computed for information only. That is, there are two basic but equivalent approaches for the 

specification, application, and interpretation of spatial correlation, the particular approach selected based 

on convenience:  

 

l (or x) 

k (or y) 
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Approach 1—specify spatial correlation by the values of   and   (unitless) directly, implement 

Equation (3), and then interpret location-dependent results in terms of grid units. Given assumed grid 

spacing    and    (meters), the spatial distance constants    and    (meters) can be derived for 

information purposes only. 

Approach 2—specify spatial correlation by the values of    and    (meters) and grid spacing    and 

   (meters), compute   and  , implement Equation (3), and then interpret location-dependent results in 

terms of y-x horizontal space in meters. The approach works well when the generated random field is 

to correspond to the a priori statistics and spatial resolution of a specific application of interest in the 

Geospatial Sciences. 

Figure 4 presents the realization results of Example 1 based on Approach 1. Note that the remaining 

realization examples in this paper use Approach 1 as well, as it is most convenient. 

Figure 4. Example 1—Realization of  -error with high spatial correlation between adjacent 

grid points. 

 

Figure 5 corresponds to Example 2, a new realization with the same       m, but with         

(thus        m). 

Figure 6 corresponds to Example 3, a new realization with the same       m, but with  

          (thus         m). 

As expected, the above realizations over portions of the grid do not have a mean  -error of zero nor 

a standard deviation about the mean of 10 m. However, when sample statistics are computed over 

numerous realizations, the corresponding mean and standard deviation approach 0 m and 10 m, 

respectively, matching the common a priori statistics used to generate the realizations. 

Finally, Figure 7 below presents Example 4, a new realization with the same       m, but with 

      and        (thus,         ), i.e., different spatial correlations in the two directions. 
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Figure 5. Example 2—Realization of  -error with low spatial correlation between adjacent 

grid points. 

 

Figure 6. Example 3—Realization of  -error with very high spatial correlation between 

adjacent grid points. 

 

2.5. Example Realizations: Sample Statistics 

Sample correlation functions or correlograms were computed for two independent realizations 

across a final z-grid 1000 × 1000 in size. A priori statistics were specified with a fixed mean value of 0 
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were plotted as a function of horizontal distance in the x-direction and horizontal distance in the  

y-direction, and are different as expected per the values of r and s. 

Figure 7. Example 4—Realization of  -error with different spatial correlations. 

 

Figure 8. Sample statistics corresponding to 1000 × 1000 grid with different a 

priori correlations. 

 

The second realization corresponded to         , and is presented in Figure 9. Three different 

horizontal directions were evaluated: x, y, and 45 degrees between. Note that results for the latter are 

different even though     because the FSS correlation model is not isotropic. (Note that 45 degrees 

yields the direction with maximum difference.) In general, both plots demonstrate nearly identical 

results between the true and sample correlation functions—not unexpected because FSS has virtually 
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no approximations and because the random field is ergodic and the number of samples within a given 

realization large. 

Figure 9. Sample statistics corresponding to 1000 × 1000 grid with the same a priori 

correlations for the x and y directions, evaluated across three different directions. 

 

Figure 10. Semivariograms corresponding to 200 × 200 grid with the same a 

priori correlations for the x and y directions, evaluated across the y-direction for five 

different realizations. 
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typically of interest in the geostatistics community, computed in the y-direction across the horizontal 

grid. (See [5] for example, definitions of the correlogram and semivariogram.) Note the reasonable 

variability of the sample semivariograms corresponding to each of the five realizations about the 

common theoretical semivariogram. 

3. Multi-Grid Point Covariance Matrix 

If there are   specific scalar errors        of interest associated with   arbitrary and different grid 

locations      , their corresponding     (joint) covariance matrix is symmetric and positive 

definite (valid) since all the grid point errors have the same variance   
  and have inter-grid point 

correlation between pairs corresponding to a normalized strictly positive definite correlation function 

(spdcf)                                     , i.e., the multi-grid point covariance matrix equals:  

           
  

             
              

               
               

      
                        

      
    

  (5) 

where   is an     vector such that              and the            ,        , 

correspond to an ordered list of the   grid point locations. Also,           and           are the y 

and x distances in meters in the horizontal plane between the ordered points            ;   
  

directly multiplies each element of the     matrix. (Alternatively, the spatial correlation function and 

distances could have been written based on grid units.) 

Note that the above is an a priori covariance matrix corresponding to the various        considered 

as random variables, not specific realizations. See Reference [7] regarding the properties of a spdcf 

such that the above       is guaranteed a valid (symmetric and positive definite) covariance matrix 

regardless the size of  . In general, just because the absolute value of correlation between two 

arbitrary grid point locations is less than 1.0, this by itself does not ensure a valid multi-grid point 

covariance matrix for      

The FSS generation of a realization of        over a 2D grid as presented in Section 2.3 did not 

require use of the explicit multi-grid point covariance matrix in the generation process. So, why is the 

calculation of this covariance matrix of interest in terms of specific applications of generated errors or 

perturbations? A major reason is as follows: An “analysis module” may generate the simulated grid of 

errors and apply a subset to “truth data” and then pass the composite data to a “down-stream” 

application such that its performance can be assessed in the presence of errors. Many such applications 

also require knowledge of the multi-grid point covariance matrix corresponding to the composite data 

for purposes of proper weighting of the composite data in various estimation procedures (Kalman 

Filter and Weighted Least Squares estimators) for the parameters (state vectors) of interest to the 

application [6]. Of course, these applications can simply be passed, along with the composite data, the 

corresponding   
  and the parameters that define                                     , such 

that the applications can then build the appropriate multi-grid point covariance matrix themselves. 

  



ISPRS Int. J. Geo-Inf. 2014, 3 829 

 

 

Homogeneity and Gaussian Joint Probability Density 

The scalar errors        generated using the FSS sequential generation technique are Gaussian 

distributed as they are a linear combination of the       , which are Gaussian distributed by definition. 

(The linear combination is demonstrated explicitly in Appendix A.) Also, the corresponding grid of  

 -errors corresponds to a wide-sense homogenous random field since the variance and correlation of 

errors are invariant of specific absolute grid location(s). In addition, since the errors are Gaussian 

distributed, a wide-sense homogeneous random field is equivalent to a homogeneous random field [2]. 

Any finite collection of        at different grid locations       contained in the     vector   has a 

corresponding Gaussian joint probability density function defined as follows:  

                                     (6) 

where   is the multi-grid point covariance matrix, and     is the matrix determinant.Thus, 

probabilities can be assigned in a straightforward manner to any absolute or relative confidence 

interval of interest. 

Finally, it is worth noting that all of the multi-grid point covariance matrices computed per this 

paper are valid, regardless the specific underlying probability distribution of errors. This is true for 

both the scalar error of Sections 1–5, multivariate errors of Section 6, and non-homogenous errors of 

Section 7. This is discussed in References [6,7], which also allow for the use of any valid family of 

spdcf. In addition, the authors of [6] discuss the importance of such covariance matrices, other 

generation methods for such covariance matrices, and how to generate corresponding probability error 

ellipsoids. Note that in Reference [6], these covariance matrices are more generally termed “multi-state 

vector error covariance matrices”. 

4. Interpolation into the Grid 

The FSS technique as described in Section 1 and 2 of this paper generates a realization of a random 

field at grid point locations only. This is perfectly adequate for many applications since the grid can be 

very large and dense. However, if scalar errors are desired between grid point locations, interpolation 

of the        at the four enclosing grid point locations may be performed. Also, the multi-grid point 

covariance (Equation (5)) can be easily modified for a corresponding set of interpolated points. Simply 

modify the distances between grid points to corresponding distance between the locations of the 

interpolated points. These distances may be represented in either non-integer units of grid spacing or 

corresponding   and   distances in meters in the horizontal plane. 

Related Effects 

Dependent on the interpolation method, the actual a priori statistics (one-sigma value, spatial 

correlations) for the interpolated   may be somewhat different than the assumed values as represented 

by the modified multi-grid point error covariance discussed above. The latter is consistent with the a 

priori statistics of the random field assuming no interpolation. (For a priori statistics, the interpolated 

value of z is treated as a random variable, not an estimate of a realization.) 
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For nearest neighbor interpolation, there are no explicit differences between the actual and assumed 

statistics as the location of the point is assumed a (nearest) grid point location. Of course, there can be 

implicit differences: for example, if two points for interpolation are close but not identical in location, 

they can be assigned to the same grid point with corresponding 100% spatial correlation between their 

errors whereas the actual spatial correlation is less.  

For bi-linear interpolation, there are differences due to the “averaging” of uncorrelated components 

of error in the surrounding        used during bi-linear interpolation. The higher the correlation 

between adjacent grid points (the larger   and  ), the less the effect (differences). If the recommended 

a priori correlation between adjacent grid points (0.9 or greater per Section 2.3.1) is used during grid 

generation, the effect is minimal. For example, if         , the actual a priori one-sigma value for 

the interpolated points is 0%–5% less than the a priori one-sigma value for the grid points, and the 

actual a priori correlation between interpolated points 0%–3% less than for grid points at 

corresponding distances. The actual value for the percentage difference is dependent on how close the 

interpolated point(s) is to a grid point. Figure 11 illustrates bilinear interpolation. 

Figure 11. Bilinear interpolation of four surrounding grid points. 

 

5. Comparison to Alternate Generation Methods 

This paper presents FSS, a fast and efficient sequential method for the generation of a 2D grid of 

errors or perturbations. There is also an implied, associated multi-grid point covariance matrix 

(e.g., Equation (5)), but this covariance matrix is not needed in the generation process. On the other 

hand, the spatial correlation of errors with this generation method is limited to a specific spdcf family 

of spatial correlation functions, i.e.,                                     . (Albeit, reasonably 

general in that the distance constants    and    are specifiable). 

There are two other general approaches to the generation (simulation) over a 2D grid: (1) matrix 

square roots; and (2) Sequential Gaussian Simulation. The latter is sequential and, as mentioned 

previously, more general than FSS. The former is also more general, but not sequential. They are 

described in more detail in the next subsection. 
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5.1. Timing Comparisons among Simulation Techniques 

Figure 12 shows CPU time comparisons among five different techniques for simulating 

perturbations for a square grid by varying the number of points n; where    is the number of points 

along one side of the grid. Computation times were measured with a PC laptop with Intel i5 dual core 

2.3 GHz CPUs and 8 GB of memory. 

The objective was to measure the CPU performance of the main computation (sans overhead setup) 

for each method. Efforts were made to match the modeling parameters among all methods as closely as 

possible. Testing assumed unconditional, homogeneous, and isotropic models only (actually, for FSS 

the model was approximately isotropic, as      ). The following describes what main computations 

were timed in each of the five methods, and are listed in ascending order of computational speed gain 

according to Figure 12.  

(1) Principal matrix square root (using Matlab function SQRTM) 

         (7) 

where     is the nxn principal matrix square root of    
;   is a n × 1 vector realization of n 

independent N(0,1) distributed random variables, and    is the n × 1 vector of perturbations 

corresponding to the random variable z or        over the grid.    was assumed to be a full, and 

positive definite matrix, i.e., the a priori covariance matrix corresponding to the random field at the n 

different points in the grid. Matlab uses the Schur decomposition technique to compute SQRTM for a 

general square matrix, which can be further sped up for symmetric and real matrices. 

Figure 12. Time comparison among methods for unconditional simulation of a scalar 

random field        over a 2D square grid (Note that FSS is cutoff at ~15 s due to reaching 

the system memory limit). 

 

(2) Cholesky decomposition (using Matlab function CHOL) 

       (8) 
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where L is the lower triangular nxn matrix from the Cholesky decomposition,       , where    is 

the conjugate transpose of L;   is a n × 1 vector realization of n independent N(0,1) distributed random 

variables, and    is the n × 1 vector of perturbations corresponding to the random variable z or        

over the grid.    was assumed to be a full and positive definite matrix. 

(3) PREDICT.GSTAT (version 1.0, 19 April 2014) [10] is the algorithm based upon Pebesma [11] 

as implemented and tested in the “R” (version 3.0.2, 64 bit) statistical package. The following R script 

is an example of parameters used to time unconditional simulation on a 100 × 100 grid. Note that only 

the execution of the PREDICT function was timed. 

#unconditional simulations on a 100 x 100 grid using gstat 

library(gstat) 

library(sp) 

# create structure 

xy <- expand.grid(1:100,1:100) 

names(xy) <- c('x','y') 

# define the gstat object (spatial model) 

g.dummy <- gstat(formula=z~1, locations=~x+y, dummy=T, beta=0,  

model=vgm(psill=1,model='Exp',range=10,nugget=0), nmax=2) 

# time one simulations based on the gstat object 

ptm <- proc.time() 

 yy <- predict(g.dummy, newdata=xy, nsim=1) 

proc.time() – ptm 

(4) VISIM in mGstat [12] is a sequential simulation code based on GSLIB (Geostatistical Software 

LIBrary, Stanford Center for Reservoir Forecasting, Stanford University) [13] for sequential Gaussian 

and direct sequential simulation. mGstat is a geostatistical Matlab toolbox available as open source that 

allows access to VISIM (among other algorithms) via a Matlab interface. The parameter file used to 

measure VISIM performance can be found in Appendix C. 

(5) Fast Sequential Simulation (FSS) is the technique described in this paper, and was coded and 

timed as a Matlab function. The main required parameters used were grid spacing (   ), standard 

deviation for the random variable (     ), and the spatial distance correlation constants  

(        ), as all described in Sections 2.3–2.4 of this paper. 

5.2. Discussion of Timing Results 

The principal matrix square root (SQRTM) and Cholesky decomposition (CHOL) methods were 

provided to serve as a starting benchmark. While they are the least practical for large n, their main 

benefit is providing an exact solution for any spatial distribution of points and any a priori spatial 

statistics (valid covariance matrix). Figure 12 shows Cholesky providing roughly half an order of 

magnitude speed gain over SQRTM. 

PREDICT.GSTAT and VISIM provide implementations of standard geostatistical techniques for 

Sequential Gaussian Simulation. Figure 12 shows that they provide comparable speed performance, 

and are 1–2 orders of magnitude faster than SQRTM and Cholesky. Their main advantage is providing 

broad flexibility for general purpose modeling among conditional and unconditional simulations. 

Moreover, additional speed efficiencies can be achieved when simulating multiple realizations with a 

fixed parameter set, which is not captured in Figure 12. E.g., following a single random path through 

the locations, PREDICT.GSTAT reuses results for each of the subsequent simulations [10]. 
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FSS is the technique proposed in this paper. The two main advantages of FSS are (1) speed gain, e.g., 

three orders of magnitude faster than the next fastest technique as shown in Figure 12; and (2) simplicity 

of operation, e.g., requiring only three main parameters. Note that the FSS curve in Figure 12 is cutoff at 

~15 s, which was due to reaching the memory limit for the grid size (n > 2 × 10
8
 points). However, this 

constraint can be easily overcome by performing the computation with a local moving window versus 

storing the entire grid into system memory. The speed gain of FSS makes simulation of considerably 

denser grids more practical compared to the other methods. With this capability, our conjecture is that 

for those applications requiring interpolation, less expensive bilinear or nearest neighbor interpolation 

could be adequate for very dense grids versus more expensive Kriging in coarser grids. The variogram 

(correlation) model is constrained to an exponential function with FSS, which makes it less flexible 

than the GSTAT (Sequential Gaussian Simulation) methods. However, the tradeoff in speed gain and 

simplicity of implementation offers practical and useful advantages to motivate a potentially broader 

community of users. 

6. Extension of FSS to a Multivariate Gaussian 2D Random Field 

The FSS core grid generation equation, Equation (3), can be extended from a scalar error   to a 

(multivariate)     error vector   over a 2D grid in a straightforward manner. The more general case 

is presented directly below, with special but practical subcases presented in following subsections that 

include simpler notation. 

                                                    (9) 

where diagonal    
      
         
      

 ,       ,         ; diagonal    
      
         
      

 ,       , 

        ;  

                  , the     covariance matrix;  

                                ,                                , 

                                ,                                 , for      

and        

     
  

      
        
      

  
   

              
         
              

 , 

     
  

      
         
      

  
   

              
         
              

 ; 

and                     must be a valid (symmetric and positive definite) covariance matrix 

which satisfies the following: 

        , the Hadamard product (term by term product) of two     matrices, where  

   

         
                      
         

  and  ,   correspond to matrix row  , column  . 

Note that the above constraint that    is a positive definite matrix is not satisfied for all possible 

combinations of   ,   , and desired (valid) steady state error covariance   , in which case Equation (9) 

and its statistics are no longer valid. 
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The corresponding derivation of the a priori statistics for the above multivariate homogeneous 

Gaussian 2D random field, including the constraint for   , is somewhat complicated and presented in 

Appendix D. 

The actual grid generation algorithm associated with Equation (9) is as described previously in 

Section 2.3 of this paper associated with Equation (3), except that                is replaced by 

  
   

        , and                is replaced by   
   

        , where the superscript 1/2 

corresponds to principal matrix square root and          is the realization of an independent     

random vector with each component an independent realization of a scalar random variable that is 

distributed       . Of course,   replaces  ,   replaces  , and   replaces  , as well. 

Finally, for reasons similar to those presented in Section 3.1 for the scalar random field, the above 

errors        are multivariate Gaussian distributed and correspond to a homogeneous random field. 

Again, see Reference [1]. 

6.1. Common Spatial Correlation Subcase 

The following is a special, but practical, subcase of Equation (9) where the constraint on    is 

always satisfied:  

                                                   (10) 

where        ,        ,                  . 

This, in turn, leads to a simple form for the cross covariance and corresponding spatial 

spdcf:                                          ; that is, all   components  

of         have common inter-grid (spatial) correlation via a common (scalar) spdcf  

                                  . 

Note that Equation (10) allows for a full nxn covariance matrix   , i.e., there can be non-zero  

intra-component correlations among the   components of       . For example, assume that     and 

         consists of error components  ,  , and  . Furthermore, at an arbitrary grid point 

location       the  -component of error is correlated +0.10 with the  -component of error and the 

same  -component of error is correlated −0.60 with the  -component of error. Of course, all  -choose-2 

(a value of 3 for the case    ) combinations of correlation among error components must correspond 

to a symmetric and positive definite   . 

Multi-Grid Point Covariance Matrix 

For the special case of common spatial correlation, the corresponding       multi-grid 

point covariance matrix for a collection of        at   arbitrary grid points       has a convenient and 

valid representation:  

          

                

                 
               

                 
                            

  
   

  (11) 

where    is an      vector such that       
      

   and the            ,          , 

correspond to an ordered list of the   grid point locations. The     cross-covariance terms 
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               consist of each element of    multiplied by the scalar value             ,  

         . 

6.2. Diagonal Covariance Subcase 

Another special, but practical, subcase of Equation (9) is when the specified    is a diagonal matrix. 

This allows for any values of        and       , i.e., different specifiable spatial correlations 

for each of the two directions for each of the   error components. Additionally, of course, this allows 

for different variances specified along the diagonal elements of   ; also, the constraint on    is always 

satisfied. Note that this special case is simply equivalent to the scalar case for each of the   

components applied independently. 

The resultant system of equations are identical to Equation (9) except that we have the following 

diagonal matrices:  

    
   

   
     
     

 
  

                                        
  

    
     

   
   
    

    
     

 
  

(12) 

where   
    

                                                     . 

Note that each component of        has its own spatial correlation function with specifiable 

distance constants. 

6.2.1. Example Realizations 

This section presents quiver plots of multivariate error over a subset of a 2D final grid generated 

using the sequential algorithm discussed in Section 6. The multivariate error corresponds to a  

two-dimensional vector (   ). The corresponding covariance matrix is diagonal with a common 

variance for the two components of error for convenience, i.e.,     
  

  

   
  . Similarly, spatial 

correlations corresponding to a specific spatial direction are common for convenience, i.e.,       and 

     . Figure 13 (automatically scaled) corresponds to          m, and            and 

          . Figure 14 (automatically scaled) corresponds to          m, and            

and          . 

6.2.2. Multi-Grid Point Covariance Matrix 

For the special case of a diagonal covariance matrix   , the corresponding       covariance matrix 

for a collection of        at   arbitrary grid points       has a convenient and valid representation:  

          

        

         
         

               
            

      
     

  (13) 
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where   is an      vector such that       
     

   and the            ,         , 

correspond to an ordered list of the   grid point locations. Also,   corresponds to the  

matrix Hadamard (element by element) product, the     diagonal matrix 

     

                 
         
                 

 , and               corresponds to the spatial correlation 

function associated with component         of       . 

6.3. General Case with Constraint Enforced 

Referring back to the general case of Section 6, the following presents two examples for    . 

Assume that the two components of error correspond to  -error and  -error for specificity. From 

Equation (9),             can have any combination of values such that each is within the positive 

interval (0,1) and   , a function of the desired    and the            , is a symmetric and positive 

definite matrix. 

Figure 13. Realization of two-dimensional multivariate errors over a 2D grid: high spatial 

correlation in the grid’s   or y-direction and high spatial correlation in the grid’s   or  

 -direction. 

 

Subcase 1: Assume that         and        , to narrow down the possible  

combinations; therefore,  

    
                        

                        
                    (14) 

which is always positive definite for any   and  . 

Subcase 2: Assume that       and      , therefore, 

    
     

           
 

        
      

        (15) 

which is positive definite if 
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                       , or  
           

     
       

  
   , where     

  
      

       
   (16) 

The left portion of Figure 15 plots the upper and lower bounds for    given the desired value of    

and assuming that        ; the right side assuming that        . 

Figure 14. Realization of two-dimensional multivariate errors over a 2D grid: high spatial 

correlation in the grid’s   or y-direction and lower spatial correlation in the grid’s   or  

 -direction. 

 

Figure 15. Flow-down of constraints to spatial correlation bounds. 

  

As can be seen from the above, the larger the absolute value of the correlation   between the error 

components x and y, the closer       must be to      . 

Note that any multi-grid point covariance matrix for this general case must be assembled  

“term-by-term” using the a priori statistics presented in Equation (9), i.e., there is no convenient 

functional form for the cross-covariances in the multi-grid point covariance matrix similar to those 

presented for the special case of common spatial correlation among the components of        and the 

special case of a diagonal covariance matrix    presented earlier. 
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7. Extension of FSS to a Non-Homogeneous 2D Random Field 

This section of the paper extends the FSS of a scalar homogeneous Gaussian 2D random field to a 

scalar non-homogeneous Gaussian 2D random field. In particular, the specified values for   ,  , and   

(variance and spatial correlation parameters) corresponding to        are either explicitly or implicitly 

a function of grid location      . There is no one “right way” to do the extension. 

Two general methods are presented below, each practical but with different characteristics regarding 

the form of non-homogeneity represented. Each method can also compute a corresponding multi-grid 

point covariance matrix, necessary for many applications as discussed earlier in Section 3. For one 

method, this covariance matrix is exact, for the other, an approximation. The best technique, when 

both non-homogeneity characteristics and possible multi-grid point covariance matrix approximations 

are taken into account, is application dependent. (The methods presented below can also be extended 

in a straightforward manner to multivariate non-homogeneous Gaussian 2D random fields.) 

7.1. Method 1: Convex Combination 

The core grid generation equation and corresponding sequential algorithm for scalar errors 

(Sections 2.2 and 2.3) is simply exercised   different times, either sequentially with the results saved 

temporally, or in parallel in order to save storage. (Of course, the grid size and spacing remains 

constant each time.) The number of times is typically two, i.e.,    . Each uses a different set of 

specified   ,  , and  . Thus, after the above is performed there are   grids, each homogenous and in 

accordance with the   ,  , and   specified for use with that particular grid. Each grid is uncorrelated 

with the others. 

The   grids of       , designated         for         , are then combined based on a convex 

combination into a final grid of       . That is, at each       location in the     grid: 

                        
    , where             and            

    (17) 

The specification of the         values, also symbolized as      for convenience, can be as simple 

or as complicated as appropriate over the locations across the     grid. However, their recommended 

values are in accordance with the following: 

Let us assume that        is to be exclusively the value         across the various       in Region i 

of the     grid; hence, in this region, all       . In addition, let us define Region i–j as a “buffer 

region” from Region i into Region j. In this buffer region,      varies linearly from 1–0 corresponding 

to the       at the start to the end of the buffer region, respectively. Furthermore, of course,  

            throughout Region i–j. Finally,        for all locations        in         . See 

Figure 16 as an example for    . 

Note that the width of the buffer region Region i–j should be at least twice the maximum of the 

corresponding spatial distance constants associated with         and        , expressed in grid unit. 

This ensures reasonable spatial correlation across the buffer region. If there were no buffer region, the 

spatial correlation between two points, one anywhere in Region i and the other anywhere in Region j, 

would be 0, i.e., there would be an unwanted abrupt change across the boundary of the two regions. 
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Figure 16. Example of region layout over a     grid. 

 

7.1.1. Multi-Grid Point Covariance Matrix 

Assume that   different scalar        in the (final) grid are of interest regarding a corresponding 

multi-grid point covariance matrix. Each of these        corresponds to their own unique       

location in the grid, and are ordered in a known fashion sequentially for        , and placed into 

an     vector  , where           . Such a vector can also be defined for the same ordered 

locations for each of the   different realizations as   ,       . Therefore, based on Equation (17)  

we have:  

       
 
   , (18) 

where    is an     diagonal matrix for            with the appropriate values of          down  

its diagonal.  

For example, if the first component of   corresponds to grid location              , the first 

diagonal component of    equals           . 

Let us represent the corresponding     multi grid point covariance matrix for the    as   . 

(See Section 3 for how this matrix is computed given the corresponding   ,  , and  .) The     multi 

grid point covariance matrix for   is computed as follows:  

                 

 

   
  

            

 

   
    (19) 

A nice feature of Method 1 is that the above representation for the multi-grid point covariance 

matrix   is exact.   also corresponds to the following:  

          

   
          

     
 

          

          

  
  

  
    

 

  (20) 

where   is an     vector such that            and the            ,          , 

correspond to the ordered list of the   grid point locations;      
 corresponds to the explicit correlation 

between two such points; the matrix entries “_” indicate symmetry. 

 

Region 2 (light blue) 

Region 1 (light orange) 

Region 1-2 (red) 
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7.1.2. Typical Statistics 

The a priori statistics for a point and a point pair in the final        grid are readily determined by 

the appropriate entries of a multi-grid point covariance matrix in which the two points are referenced. 

For convenience, results are summarized for a typical case as follows:  

Assume a total of two regions and the typical values for      in Region 1         ,      in 

Region 2          , and       in Region 1–2             . Let us designate the a priori  

one-sigma and correlation functions for the homogeneous         and         across the grid as     

and          , and     and          , respectively, for convenience. We have the following 

location-dependent statistics for the final combined       :  

One-sigma value   : a point in Region 1,    ; a point in Region 2,    ; a point in Region 1–2, 

        
             

     . 

Spatial correlation function          value for a pair of points: both in Region 1,          ; both 

in Region 2,          , one in Region 1 and one in Region 2, 0; one in Region 1 and one in Region 1–2, 

 
        

  
          , etc. 

7.1.3. Example Realizations 

The following non-homogeneous realization combines two homogeneous realizations with  

                     and                     , respectively. Region 1 of the 

displayed portion of the final grid consists of  =1–10, Region 1–2   = 11–30, and Region 2   = 31–60. 

(For each region, the corresponding   = 1–60.) Use of the typical assignment scheme for the values of 

     (and              was employed. Figure 17 below presents the results. 

Figure 17. A smooth transition from Region 1 to Region 2, each with their own specified 

a priori statistics. 

 
0

30

60

0

30

60
-100

-50

0

50

100

k grid units

realization of scalar (z) error via method 1

l grid units

e
rr

o
r 

o
r 

p
e
rt

u
rb

a
ti
o
n
 (

m
)



ISPRS Int. J. Geo-Inf. 2014, 3 841 

 

 

The same experiment was performed (but different realization) except that there was no  

Region 1–2, i.e., a non-typical scheme. Figure 18 below presents the results. 

7.2. Method 2: Functional Variation of a Priori Statistics 

With the second method, the core grid generation equation and corresponding sequential algorithm 

for scalar errors (Sections 2.2 and 2.3) is implemented only once, but modified as follows:  

                                                   

                                         
(21) 

where        is a random sample of Gaussian white noise distributed             , and where 

  
                               

      . Also,                    , and                    , 

that is, the spatial distance constants can be considered a function of       as well. 

Figure 18. An abrupt transition between Region 1 and Region 2, each with their own 

specified a priori statistics. 

 

As indicated above, the values for   ,  , and  , and hence   , are a function of the grid location 

     . In addition, for Method 2, they are determined by the bilinear interpolation of such specified 

values over a less-dense grid overlaying the grid of errors to be generated. For example, if the 2D     

grid of errors to be generated is 900 × 1000, the grid for interpolation might be an evenly spaced 4 × 3 

parameter grid overlying the denser grid. Each of the corresponding 12 parameter grid points contains 

the specified values for   ,  , and   for the corresponding local region around the parameter grid point. 

Note that    is a function of the interpolated values of   ,  , and  ; hence, is also recalculated in 

Equation (21) for every grid location      . See Figure 19 for a graphical representation of the 

interpolation parameter grid. Each interpolation parameter grid location contains a unique set of values 

for   ,  , and  . 
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Also, the spacing between interpolation parameter grid points should be at least twice the maximum 

of the corresponding spatial distance constants associated with that grid point and the other 

interpolation parameter grid points immediately surrounding it, expressed in grid unit. This ensures 

that both the desired and the computed approximation of the a priori statistics corresponding to the 

       across the dense grid are approximately met and reasonably reliable (see Section 7.2.2), 

respectively. (This also assumes that the appropriate buffer relative to the “final” grid is included as 

well—see Section 2.3.2) 

Once defined appropriately, Equation (21) is then implemented via a direct counterpart to the 

algorithm described in Section 2.3. The latter simply utilizes the appropriate   ,  , and   values that 

vary with       location. 

Figure 19. An example of an Interpolation Parameter Grid. 

 

7.2.1. Example Realizations 

The following examples correspond to a       parameter interpolation grid overlaying a       

2D grid. The results corresponding to a       displayed portion of the final grid are presented. 

All 49 sets of          parameters were identical except for four sets corresponding to an interior 

rectangle near the center of the final grid. Let us term the 45 common sets as Group 1 and the other 

four common sets as Group 2. In Figure 20 below, the Group 1 set contain values       m,  

       . Group 2 sets contain values       m,        . 

In Figure 21 below, the Group 1 sets contain        m,        . Group 2 sets contain  

       m,        . 

7.2.2. Statistics and Multi-Grid Point Covariance Matrix 

Corresponding a priori statistics are no longer straightforward for this method, but can be 

approximated. In particular,    corresponding to a specific location       is the corresponding bilinear 

interpolated value. The spatial correlation function corresponding to   different locations       is the 

average of   spatial correlation functions, each corresponding to the bilinear interpolated values for   

and   for that location. Of course, these statistics reflect non-homogeneity, i.e., are a function of the 

specific       locations of interest. The corresponding     approximation for the multi-grid point 

covariance matrix corresponding to scalar errors at   different grid locations is represented as follows:  
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  (22) 

where   is an     vector such that              and the            ,        , 

correspond to an ordered list of the   grid point locations.  

Figure 20. Non-homogeneous scalar realization—different variances. 

 

Figure 21. Non-homogeneous scalar realization—different variances and spatial correlations. 
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Because the average of a collection of strictly positive definite correlation functions (spdcfs) is an 

spdcf itself, the above is guaranteed a valid covariance matrix regardless of the fact that the various     

can vary in value (Reference [7]). 

Note that if the   grid points consist of widely spaced subgroups of points such that the scalar error 

at any grid point in one subgroup has (approximated) low correlation (e.g., less than 0.1) with the 

scalar error at any grid point in any other subgroup, a higher fidelity representation for the multi-grid 

point covariance matrix can be achieved as follows: Use the representation in Equation (22) to compute a 

“sub-multi-grid point covariance matrix” for each subgroup of grid points, and then combine them into 

the (final) multi-grid point covariance matrix by placing (in order) each sub-multi-grid point covariance 

matrix down the block diagonals with values of zero for all off-diagonal (cross-covariance) blocks. 

Finally, to generate a multi-grid point covariance matrix for a non-homogeneous multivariate 

       instead of that for a non-homogeneous scalar       , the same general procedure presented in 

this section can be extended in a straightforward manner using methods described in References [6,7]. 

8. Summary and Conclusions 

Practical methods for the sequential generation of two-dimensional random fields were presented, 

and their corresponding multivariate covariance matrices derived. The corresponding methods were 

based on FSS, which was also compared to Sequential Gaussian Simulation and other approaches. 

Although less general, FSS was shown to be clearly superior in terms of speed and simplicity, 

primarily due to assumed separable exponential spatial correlation and simple ordered generation over 

an evenly spaced grid. FSS methods presented in the paper are applicable to performance assessment 

and tuning of geospatial applications in a simulation environment, as well as near-real time display of 

the effect of errors on applications by the applications themselves. 
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Appendix A: Derivation of Statistics for the FSS Scalar Gaussian 2D Random Field 

The following derives the steady-state variance (  
 ) and spatial correlation (        ) associated 

with       , assumed generated using Equation (3) from the main body of this paper. These a priori 

statistics were also summarized earlier in Equation (2). 

First we show the relationship of        with the various white noise (uncorrelated between grid 

points) samples        across the grid. After that, we calculate the corresponding statistical properties 

of        based on those for       . 

A.1. Relationship of Core Grid-Generation Equation with Underlying Random Samples 

The following derives the relationship of Equation (3), the core-grid generation equation for       , 

with the underlying random samples        across the (infinite) grid. 
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Define:  

             

      

           
(A1) 

a convolution over a grid of uncorrelated random numbers, with the point        in the lower left 

corner of the kernel (see the light orange area in Figure 2). 

It follows that:  

                                                   (A2) 

(Note that Equation (A2) is a repeat of Equation (3) from the main body of this paper for convenience.) 

A.1.1. Proof of Relationship 

The following presents a proof of Equation (A-2) by direct expansion using Equation (A1):  

Left side of Equation (A2), 

                   

          

               

                                        
                  

Right side of Equation (A2), 

                                         

         
                          

                             
                 

           

                  
                                    

                    

         
                                                             

                
                                                 

        
                 

The left and right sides of Equation (A2) are equal, hence Equation (A2) is correct. This proved that 

Equation (A1)   Equation (A2); see Section A.3 for an informal proof that Equation (A2)  

 Equation (A1) for completeness. 

A.2. Derivation of Statistics 

In addition, the following a priori statistics apply:  

          , i.e., a mean value of zero; (A3) 

             
  

  
 

            
, or more generally,                               

        
 . 

Note that this set of equations implies that:  

For a given                           ;                 , or equivalently,  

                                    . 
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A.2.1. Detailed Derivations  

The following derives Equation (A3) by the statistical properties of Equation (A1):  

                  
                        

                     ; 

                    
                        

                     

         
                          

          
                

  
                               

  
                        

  
 

            
; 

The above utilized the following: by definition,            ,              
 , and 

                                ; by the properties of a geometric series,  

    
    

 

   
             , which is applicable since                   and 

                  in the above. 

Define        and        for convenience.  

                                         

         
                          

                           

         
                            

                    

The latter representation is due to the fact that                                 . 

Thus, 

                                  
                        

                     

      
 . 

Similarly, 

                                         

         
                          

                           

         
                            

                         

             
                              

                       

               
                            

                       

             
                          

                       

               
                            

      
            

                      
                               

      
 . 

By the same procedure, it is also follows that  

                                              
  . 

Thus,  

                                    
          

 ,  

or alternatively,  

                                                  
 . 
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A.3. Further Relationship of the Core Grid-Generation Equation with Underlying Random Samples 

The following presents an informal proof that Equation (A2)   Equation (A1). That is, Equation (A2) 

for the sequential generation of the scalar random field        implies the representation of        as a 

weighted sum (kernel) of an infinite grid of        as represented by Equation (A1). 

Figure A1 demonstrates that each random sample        in the light orange area contributes 

                   to        via Equation (A2). In the following figure,       and        

for specificity. 

Note that, for example, in the above figure the            multiplier corresponding to grid location 

          is equal to:                       , via applications of Equation (A2). This same 

three-term paradigm is also applicable to all other grid locations with an incoming “diagonal arrow”. 

Finally, the multiplier      corresponds to the contribution of            to       , i.e.,        

                            , or more generally,              
                , i.e., 

Equation (A1). 

Figure A1. The “route” of            to       , the lower left grid location in the 

orange area. 

 

Appendix B: Mathematical Comparison of FSS to Sequential Gaussian Simulation 

Sequential Gaussian Simulation is based on drawing random numbers from the appropriate 

(conditional) probability distributions, and since distributions are Gaussian, equivalent to the use of the 

appropriate conditional mean and variance. These, in turn, correspond to the minimum mean square 

estimate, or simple Kriging interpolation, detailed as follows. Let us assume that a horizontal grid of 

realizations as per the pattern specified in Section 2.2 has already been generated and that the next 

point in the ordered grid is to be generated based on these values. Let us specify    as the     vector 

of generated values and    as the scalar value to be generated:  

         
     

   

    
        

      
(B1) 

 

l (or x) 

k (or y) 

u(k-2,l-3)         

  

   

       

     

    

       r 
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   is the best estimate of the realization at the appropriate horizontal location. 

                 
  is the corresponding simulated value, where               

  corresponds 

to a mean-zero Gaussian random number with variance    

 , i.e., the variance of the Kriging solution 

relative to the value of the true realization. 

(More details can be found in the literature for simple Kriging [1,3], conditional and unconditional 

simulation [1], sequential simulation [14], Sequential Gaussian Simulation [4], and Gaussian 

probability distributions, the conditional mean, and the conditional variance [15].)  

Let us now assume specific grid point locations of interest and a Gaussian two-dimensional random 

field with a priori standard deviation         and separable exponential spatial correlation with 

correlation between adjacent grid point locations          and         . A representative set of 

14 grid locations (    ) are represented graphically as follows:  

Figure B1. The example grid. 

 

We first generate the realizations for    and then    based on the FSS sequential method presented 

in this paper (Section 2), and obtain:   
   [7.15 6.20 5.45 6.88 8.08 8.66 8.46 5.92 8.16 11.28 8.88 

9.99 8.34] and     [9.81]. (Components 1–13 of    correspond to grid points #1–13, and    

corresponds to the red point in Figure B1.) During generation of   , the additive Gaussian random 

number   per Equation (3) was equal to −0.39 corresponding to the standard deviation  

                = 1.31. (Also. using the symbology of Equation (3),    corresponds to 

           and   to           .) 

We now implement the Kriging equations (B1) for Sequential Gaussian Simulation using the value 

of    generated by FSS and detailed in the previous paragraph. In addition, the same additive Gaussian 

random number   will be added to the Kriging solution for    per the Sequential Gaussian Simulation 

procedure since, as will be demonstrated below,    
   . In support of the Kriging solution, the  

a priori cross-covariance matrix between    and    and the a priori covariance matrix for    are 

computed in accordance with the assumed statistics (      ) of the random field presented previously. 

Correspondingly, both     and     are full (no zero elements), but the product       
   is only non-zero 

for the three elements of    which correspond to the nearest three grid locations 8, 9, and 13 to the 

point to be simulated. (It also follows that a pre-computed “compressed” 1 × 3 version of       
   can 

actually be used as common Kriging weights for the realizations at the three nearest grid points.)  

 

5 

10 

RED: current point for 

generation of realization 

6 

11 

GREEN: a “closest” 

grid point 
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In particular, and based on the point locations laid out in Figure B1:  

      
                   (     ), and       

  

  
  

     

    
  
  

  
  

  (      ). 

Therefore, given the values of r and s specified earlier,       
    = [0 0 0 0 0 0 0 −rs s 0 0 0 r] =  

[0 0 0 0 0 0 0 −86 0.95 0 0 0 0.90], and the solution (with additive random number) is  

      
              , identical to that generated using the FSS method of this paper. In addition, 

   
     , which is equal to   . These equivalences and the use of only the nearest three grid points 

were enabled due to both the separable exponential spatial correlation and the regular grid of 

realizations generated in a simple, ordered fashion. (Thus, for example, if grid point #8 were moved 

+0.5 grid units in the y-direction, there would be 7 instead of 3 non-zero scalar weights.) 

The above was an arbitrary, but specific, example. A formal analytic proof that the Kriging weight 

row vector       
   has only non-zero weights –rs, s, and r corresponding to the three nearest grid 

points is relatively easy and done by direct verification that          , where   is a     row 

vector consisting of all zeroes except for the non-zero scalar weights –rs, s, and r at the appropriate 

locations corresponding to the three nearest grid points (see Figure B1). Similarly, in order that 

     ,       
      must equal   

            ), which is easily verified by direct evaluation of 

      
          . 

Thus, this appendix has both demonstrated and proven that FSS is equivalent to Gaussian 

Sequential Simulation under appropriate circumstances. 

Appendix C: VISIM Parameter File 

 Parameter file for VISIM 

 ************************ 

0 # - conditional simulation (3=Vol,2=point,1=Vol+Point, 0=Uncon) 

nodata # - file with conditioning data 

1 2 3 4 # - columns1 for X,Y,Z,vr,wt,sec.var 

dummy # - Geometry of volume/ray 

dummy # - Summary of volgeom.eas 

 -1 1e+21 # - trimming limits for conditioning data 

0 -1 -1 -1 -1 0 0 # - debugging level: -1,0,1,2,3, 

read_covtable,read_lambda,read_volnh,read_randpath,do_cholesky,do_error_sim 

visim.out # - file for output 

1 # - number of realizations to generate 

0 # - ccdf. type: 0-normal, 1-target  

reference.eas # - target histogram file 

1 0 # - columns for variable and weights 

-3.50 3.50 100 # - min_Gmean, max_Gmean, n_Gmean 

 0.00 2.00 100 # - min_Gvar, max_Gvar, n_Gvar 

170 0 # - nq, do_discrete  

500 1.0000 1.0000 # - nx,xmn,xsiz 

500 1.0000 1.0000 # - ny,ymn,ysiz 
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 1 1.0000 1.0000 # - nz,zmn,zsiz 

69069 # - random number seed 

0 8 # - min and max original data for sim 

28 # - number of simulated nodes to use 

3 32 0.001 # - volNH method(0,1,2) nusevols, covlevel  

3 # - Random path  

1 # - assign data to nodes (0=no, 1=yes) 

0 # - maximum data per octant (0=not used) 

 30.0000 30.0000 0.0000 # - radius for search ellipsoid 

 0.0000 0.0000 0.0000 # - angles for search ellipsoid 

 10.0000000000 1.0000000000 # - global mean and variance  

1 0.001000000 # - nst, nugget effect 

2 0.999000000 45.000000 0.0000 0.0000 # - it,cc,ang1,ang2,ang3 

 249.5000 249.5000 0.0000 # - a_hmax, a_hmin, a_vert 

0.000 100.000 # - zmin,zmax (tail extrapolation for target histogram) 

1 0.000 # - lower tail option, parameter 

1 3.000 # - upper tail option, parameter 

Appendix D: Derivation of Statistics for the Multivariate Gaussian 2D Random Field 

Equation (9) of Section 6 in the main body of this paper is a straightforward multivariate extension 

of the FSS scalar random field Equation (3) of Section 1.2. In this appendix we derive the 

corresponding statistics associated with Equation (9). 

Equation (D1) below is a straightforward multivariate extension of the Equation (A1) of Appendix A:  

             
                , a vector of assumed dimension     (D1) 

And based on Equation (D1), we derive the corresponding a priori multivariate statistics as follows:  

                     =  

         
                          

                       
 
    

         
                          

                   
 
        

        
                                

      , dimension    , where  

        ,    

         
                          
         

 ,            . 

The     term of the above Hadamaker product        corresponds to 

    
   

        
   

         
   

  
     

           
   

     
      

   
  

   
      

                  
                    

        
  

        
  

       .  
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Equivalently,        , where    

         
                      
         

 . Also,    must be positive 

definite in order that    is positive definite via the earlier summation. (Note that, in the above, 

         , i.e., they commute since they are diagonal matrices.) Also,  

                        

         
                          

                       
 
    

           
                            

                   
 
      

            
                                       . 

Similarly, 

                            , and  

                            . 

Further note that                                                , etc. 

In addition,                                           , since        

         , as required for wide-sense homogeneity (see Reference [7]). 
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