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Abstract: The main aim of this paper is landslide susceptibility assessment using fuzzy 

expert-based modeling. Factors that influence landslide occurrence, such as elevation, 

slope, aspect, lithology, land cover, precipitation and seismicity were considered.  

Expert-based fuzzy weighting (EFW) approach was used to combine these factors for 

landslide susceptibility mapping (Peloponnese, Greece). This method produced a landslide 

susceptibility map of the investigated area. The landslides under investigation have more or 

less same characteristics: lateral based and downslope shallow movement of soils or rocks. 

The validation of the model reveals, that predicted susceptibility levels are found to be in 

good agreement with the past landslide occurrences. Hence, the obtained landslide 

susceptibility map could be acceptable, for landslide hazard prevention and mitigation at 

regional scale. 
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1. Introduction 

Landslides are considered as one of the most destructive geohazards [1] as they cause substantial 

economic, human, and environmental losses in worldwide. Nearly 9% of global natural disasters refer 

to landslides [2]. The publication of landslide papers has experienced a remarkable increase from  

the 1990s to the present [3]. Landslide susceptibility assessment can be tricky because it is very 

difficult to evaluate both the spatial and temporal distribution of past events for large areas mainly due 

to limitations and gaps of both historical records and geographic information [4,5]. Thus, 

a considerable amount of recent research has focused on landslide susceptibility assessment [6,7]. 

Landslide susceptibility (LS) is the propensity of soil or rock to produce various types of  

landslides [6,8]. LS is usually expressed through cartographic means. Such maps are useful for 

developing mitigation plans and selecting the most suitable locations for construction. A LS map 

presents the areas with the potential of landsliding in the future by combining some of the critical 

factors, which contributed to the occurrence of past landslides [9]. 

Elevation, slope, aspect, lithology, land cover, precipitation and seismicity were selected as these 

factors in our study. Among all parameters for LS zonation, elevation, slope and aspect have been 

recognized as the most important conditioning factors [10–12]. The elevation dataset is useful to 

classify the local relief and locate points of maximum and minimum heights within terrains. Generally, 

it is well justified through the literature [13,14], that slope gradients have a large impact on landsliding 

in Peloponnese. The aspect parameter is related to differential weathering, exposure to sunlight and 

drying winds, and soil moisture. Lithology also plays a key role in landslide activity since different 

lithologic units have different landslide susceptibility values [15]. Moreover, slope stability is strongly 

influenced by land cover. Finally, during the last decades, both seismicity [16–18] and precipitation 

factor [19–21] have been used as conditioning factors in many LS zonation studies. Considering the 

geotectonic context in the study area, as well as the climate factor, seismicity and precipitation were 

included in the study. 

Geographic Information Systems (GIS) is an efficient technology to integrate and analyze a large 

amount of geographical data. During the last decades, many GIS-based LS assessment methods have 

been developed. General overviews of landslide susceptibility analyses are presented in [22–25].  

LS modeling is divided into qualitative and quantitative methods. The most important difference 

between these methods is their degree of objectivity. 

The qualitative methods depend on the knowledge and previous experience of the experts, and 

include the geomorphologic analysis [26] and the use of index or parameter maps [27,28].  

The quantitative methods depend on numerical expressions of the relationships between conditioning 

factors and landslide occurrence. They include geotechnical engineering approaches [29,30], statistical 

analysis [31–33], as well as new interesting approaches of LS assessment such as artificial neural 

network (ANN) and neuro-fuzzy logic methods [34,35]. 

Some qualitative approaches however incorporate the idea of ranking and weighting the parameters 

involved, and may turn to be semi-quantitative in nature [34–37]. The use of quantitative methods 

should not be seen as an easier option than the quantitative methods. Qualitative methods are of value 

where the available resources or data dictate that more formalized quantitative assessment would be 

inappropriate or impractical [38]. Since, the current working scale is a regional, (1:500,000), it was 
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considered by the authors to investigate the application of the expert based fuzzy weighting. It is also 

worth emphasizing the quality of a landslide risk assessment, is related to the extend the hazards are 

recognized, understood, and explained, which is not necessarily, related to the extent to which they are 

quantified [39]. Such an approach, known as trapezoidal fuzzy number weighting (TFNW), was 

applied in this study. Wang et al. [40] applied a model to produce a LS zonation map using GIS in the 

Guizhou area (176,167 km
2
). The weight of each factor (and subclass relatively) caused landslide was 

achieved by the TFNW approach. Also, Wang et al. [37] presented a weighting method, integrating 

objective weight (based on entropy) with subjective weight (based on TFNW) to assess the LS under 

GIS environment. The distinction of this method is that a landslide inventory is not compulsory, 

because the weightings are assigned based on the field knowledge of an experienced geomorphologist [41]. 

The main aim of this paper was to produce a regional landslide susceptibility map at regional scale 

using a semi-quantitative analysis approach. The performance of this model was evaluated in 

Peloponnese peninsula, Greece. Furthermore, validation analysis was implemented to estimate the 

prediction ability of the applied model. 

2. Study Area 

The proposed method was evaluated in Peloponnese, which constitutes the largest peninsula of 

Greece and one of its nine geographical departments. It is located in the southern part of Greece 

(Figure 1), and is connected with the mainland through the Isthmus of Corinth. The total area of 

Peloponnese is 21,439 km
2
, and its population stands at 1,086,935 inhabitants (Hellenic Statistical 

Agency, 2001). Agricultural, forest and semi-natural areas cover the main part of Peloponnese, 

whereas urban is the dominant land cover in the coastal zone of the peninsula. The climate is typical 

Mediterranean with a hot and relatively dry summer between June and August, and a wet season 

during autumn, winter and spring [42]. 

Figure 1. The location of the study area (Peloponnese peninsula) and the landslide 

validation dataset. 
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Peloponnese has a complex geomorphology, with mountainous inland, many coastal cliffs in the 

south, and basins, coastal beaches, lakes and inland basins in west and southeast coasts. The slopes 

vary from gentle to very steep, while the drainage network is well developed, and is highly controlled 

by fault tectonics. The study area belongs to an active zone with tectonism expressed through faults, 

thrust zones and folds. The main lithological formations in the study area are (a) carbonate  

rocks (44%): limestones, dolomites and marbles; and (b) Neogene sediments (22%): usually marls, 

sandstones and mudstones. In these formations the majority of landslides have occurred. 

Peloponnese is a region highly damaged by the occurrence of severe natural disasters such as 

earthquakes, floods, landslides, and forest fires. Heavy rainfall and earthquakes have triggered several 

landslide events, mainly in northern and western areas of the peninsula [13,43,44]. Many serious 

events are related to major fault tectonics and to unstable zones located in steep slopes. In addition, the 

human interventions for the construction of roads have played a key role in landslide activation. 

Accordingly, the study area forms a complex physiographic region where all conditioning factors of 

landslides present a high spatial variability. The high spatial variability of the factors is related to the 

complexity of the local conditions. These conditions reflect the regional characters of landslide 

manifestation process. Moreover, this variability permitted the creation of distinguishable classes in 

order to implement experts’ assessment of LS for each class. 

3. Data—Methods 

In order to accomplish the LS analysis in the study area a spatial database was designed and 

developed, and spatial analysis tools were implemented within GIS environment with the use of 

ArcGIS (ver. 9.3) software package. This database comprises two main parts: (a) the datasets with  

the background geographic conditions (slope, lithology, land cover, etc.); and (b) the landslide  

(validation) dataset. 

3.1. Data 

In this study, elevation, slope, aspect, seismicity, precipitation, lithology and land cover have been 

selected as the conditioning factors on landslide susceptibility. Although there are no standard 

guidelines for selecting these parameters [23], the nature of the study area, the scale of the analysis, 

and data availability were taken into account [25]. The seven factors used in current research were 

selected on the basis of the aforementioned criteria while literature outputs and general guidelines for 

GIS-based studies were also considered [11,12,17,20,25]. 

Most of these layers consist of continuous data, thus they need to be reclassified into discrete 

subclasses. Here, the categorization of all conditioning factors was implemented as following:  

the equal area categorization (in five classes) was implemented for the factors with continuous values 

(elevation, slope, seismicity, precipitation). For the landcover, lithology, and aspect we preserved all 

the classes of the nominal scale. 

The lithological map of the study area was created from the Geological Map of Greece with  

scale 1:500,000 (IGME, 1983). The land-cover layer (with cell size 250 × 250 m) in the region of 

Peloponnese was based on CORINE program (Coordinate of Information on the Environment).  

The study area was classified by following the level-1 classification scheme of the CORINE data [45]. 
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The Digital Elevation Model (DEM) was the key to generate various topographic parameters related 

to the landslide activity of the area under investigation. Here, we used the DEM from SRTM  

(Shuttle Radar Topography Mission) database, with cell size 90 × 90 m. From this DEM, elevation  

(0–2367 m), slope angle (0–54°) and slope aspect have been extracted. The precipitation  

data (339–1655 mm) used in this study refers to the mean annual precipitation (MAP) during the 

period from 1950 through 1974 (source: Public Power Company, PPC, cell size: 250 × 250 m). MAP 

is the average of the available long-term records [46]. The seismic factor (0.05–3.95 m/s
2
) was 

produced from the map of expected Peak Ground Acceleration (PGA) with 475-year return period 

(10% probability of exceedance in 50 years). PGA is the absolute maximum amplitude of recorded 

acceleration [47]. The source of this map (with cell size 250 × 250 m) was the Technical Chamber of 

Greece (TCG, 1992). Landslide distribution is strongly affected by seismicity and especially by ground 

acceleration, while magnitude—distance relations have been established for earthquake induced 

landslides [48]. Previous studies emphasized the need of incorporating dynamic factors (Seismicity, 

Rainfall) with other ―static‖ factors for Landslide Susceptibility Zonation mapping in areas whereas 

these factors are playing an important role not only in the reactivation of old landslides but in the 

development of new ones [49,50]. 

Given that the implementation of the semi-quantitative analysis proposed here is not based on a 

landslide inventory, a validation dataset (Figure 1) was only used for the verification of the results 

produced from the model. This validation dataset consisted of 141 landslides (presented as point 

features in the centroid of each landslide) throughout the study area which were derived from two main 

landslide databases: (a) a database maintained by Institute of Geology and Mineral Exploration (IGME) 

formed only from the recent historical records, covering a time period 1910 to 1995 [51], and (b) a 

database—with landslide events that occurred from 1995 through 2003—developed on the basis of 

field work and aerial photograph interpretation. The landslides under investigation have more or less 

same characteristics: lateral based and downslope movement of soils or rocks. Seismic triggered 

landslides, occur in the vicinity of active faults, and usually related to other secondary seismic events, 

like soil liquefaction, subsidence of the coastal strip, and rock falls [48,52,53]. Subaqueous, and 

liquefaction events are not included in this study. Rainfall triggered landslides usually are rapid short 

moving events, while slow short-moving type also occur including extensive instability zones [54]. 

They occur in gentle natural slopes where the translational type predominates. The occasional planar 

slip surfaces are located in the weathered zone of marls or flysch while ground water level reaches the 

surface of the slope during heavy rainfall. The most critical landslide—prone formations regarding 

lithology, and structure are flysch and neogene sediments, while schist and cherts significantly 

contribute in landslide phenomena [55]. Slides which usually take place in the gentle slope of flysch 

mantle are typically quite shallow and take form of a sheet of weathered zone sliding on a slip surface 

parallel to the ground [56]. In line with [57,58], in this paper the term landslide is used for translational 

and rotational earth slides, which were recorded in the validation dataset. These events vary 

consistently in volume, from some thousands of m
3
 to several million m

3
 [55], and depicting small to 

extremely large magnitude, according to [59] classification. 
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3.2. Expert-Based Fuzzy Weighting (EFW) Method 

The expert-based, semi-quantitative method that used in this paper is a modification of the weighted 

linear combination. This method develops a LS map by combining various factor maps corresponding 

to the conditioning parameters [36]. Here, in order to quantify the impact of various classes for the 

standardization of each factor, we used the trapezoidal fuzzy number weighting (TFNW). The details 

of this approach have been described by [40]. Thus, we introduced an expert-based fuzzy weighting 

(EFW) procedure. The main steps of this procedure are presented below:  

(a) Definition of linguistic variables and fuzzy numbers for LS classes in order to incorporate 

uncertainty in the analysis. All fuzzy numbers expressed as (ak, bk, ck, dk). The definition of 

these fuzzy numbers is shown in Table 1. 

Table 1. Linguistic variables and their correspondence fuzzy numbers and membership. 

Fuzzy Variables (Susceptibility) Fuzzy Numbers Fuzzy Membership 

Very High (VH) (7, 10, 10, 10) 

 

High (H) (5, 7, 7, 10) 

Moderate (M) (2, 5, 5, 8) 

Low (L) (0, 3, 3, 5) 

Very Low (VL) (0, 0, 0, 3) 

(b) Next, we invited three experts, with experience and scientific knowledge of the study area, to 

list a linguistic importance weight for every class of each factor. From these linguistic 

judgments we obtained the corresponding fuzzy numbers. Such judgments are inevitably 

subjective, but, by proposing, several possible scenarios, followed by the systematic testing and 

elimination of options, as a result of additional investigation and discussion, it is possible to 

develop reliable estimates. Experimental evidence suggests that group judgments; appear to be 

more accurate than judgments of a typical, group member [38]. The sum of these numbers is 

still a fuzzy number. Thus, we proceeded to the computation of the aggregated fuzzy weights of 

individual subclasses (Table 2). 

(c) After the defuzzification of the fuzzy weights of individual landslide susceptibility subclasses, 

we proceed to the computation of the normalized weights and the construction of the weight vector. 

For example, the standardization of the first category (―artificial surfaces‖) for the land cover (LC) 

factor is based on three expert fuzzy variables D1, D2, D3 with D1 = (5, 7, 7, 10), D2 = (2, 5, 5, 8), and 

D3 = (2, 5, 5, 8). Thus, the aggregated fuzzy weight for this class is w′LC,1 = ((D11 + D21 + D31)/3), 

((D12 + D22 + D32)/3, ((D13 + D23 + D33)/3), ((D14 + D24 + D34)/3)) = (3.0, 5.7, 5.7, 8.7). Similarly, the 

aggregated fuzzy weights for the other two categories of LC factor are  

w′LC,2 = (4.0, 6.3, 6.3, 9.3) and w′LC,3 = (0.7, 3.7, 3.7, 6.0). The defuzzified values of the aggregated 

fuzzy weights are dw′LC,1 = ((3.0 + 5.7 + 5.7 + 8.7)/4) = 5.8, dw′LC,2 = ((4.0 + 6.3 + 6.3 + 9.3)/4) = 6.5 

and dw′LC,3 = ((0.7 + 3.7 + 3.7 + 6.0)/4) = 3.5. Accordingly, the normalized weights are wLC,1 = 0.37, 

wLC,2 = 0.41 and wLC,3 = 0.22 and the weighted vector for the land cover factor is wLC = (0.37, 0.41, 0.22). 
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The weighted vector provides the standard values for each class of all factors. By implementing the 

same procedure described previously, we used expert-based linguistic variables to calculate the weight 

of importance for each factor (Table 3). 

Table 2. Categories, fuzzy values and weights for landslide related factors. 

Layers (Factors) Categories (Classes) (Experts) Fuzzy Value EFW Weight 

Land cover Artificial surfaces (H,M,M) 0.37 

 Agricultural areas (M,H,H) 0.41 

 Forest and semi-natural land (L,L,M) 0.22 

Lithology Phyllites/Gneiss (metamorphic) (L,M,L) 0.08 

 Limestones—Marbles (L,L,L) 0.06 

 Volcanic (M,M,M) 0.11 

 Schists (metamorphic) (M,M,M) 0.11 

 Neogene (H,VH,M) 0.16 

 Tertiary (H,VH,M) 0.16 

 Flysch (VH,VH,VH) 0.22 

 Cherts—Schists (M,L,M) 0.10 

Precipitation <750 mm (L,VL,M) 0.09 

 750–880 mm (M,L,H) 0.16 

 881–990 mm (M,M,H) 0.19 

 991–1170 mm  (H,H,VH) 0.26 

 >1170 mm (VH,VH,VH) 0.30 

Seismic  <2.20 m/s
2 

(L,VL,L) 0.08 

acceleration 2.20–2.50 m/s
2 

(L,L,L) 0.10 

 2.51–2.90 m/s
2 

(M,M,M) 0.19 

 2.91–3.10 m/s
2 

(H,H,H) 0.28 

 >3.10 m/s
2 

(VH,VH,VH) 0.35 

Elevation <132 m (L,VL,L) 0.08 

 132–330 m (L,L,M) 0.14 

 331–600 m (H,M,M) 0.23 

 601–880 m (Μ,H,H) 0.26 

 >880 m (M,VH,H) 0.29 

Slope <2°
 

(VL,VL,L) 0.06 

 2–6°
 

(L,L,L) 0.11 

 7–10°
 

(M,M,M) 0.19 

 11–15°
 

(H,H,H) 0.28 

 >15°
 

(VH,VH,VH) 0.36 

Aspect Flat (L,VL,M) 0.11 

 North (H,H,M) 0.24 

 East (M,M,M) 0.19 

 South (M,M,M) 0.19 

 West (H,H,H) 0.27 
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Table 3. Weight values for each factor according to the expert-based fuzzy weighting 

(EFW) method. 

Parameter 
Parameter Importance 

(Expert Judgement) 
EFW Weight 

Land cover (M,M,H) 0.11 

Lithology (VH,VH,H)  0.17 

Precipitation (VH,VH,VH) 0.18 

Seismicity (H,H,H) 0.15 

Elevation (M,L,H) 0.09 

Slope (VH,VH,VH) 0.18 

Aspect (H,M,M) 0.12 

VL: Very Low, L: Low, M: Moderate, H: High, VH: Very High. 

(d) The last step is the aggregation of relative values, and the generation of the final expert-based 

landslide susceptibility map (Figure 2). This step was implemented by using the weighted linear 

combination method [60]. Therefore, each standardized factor is multiplied by its weight, and 

the results are summarized according to the following formula:  

LSExpert = ji

n

i

i wfw ,

1




 (1) 

where, LSExpert is the final landslide susceptibility score calculated for each pixel, fwi is the 

weight of the factor and wi,j is the standardized score for the class j of the factor. We classified 

the final LS map into five discrete categories: ―Very Low‖, ―Low‖, ―Moderate‖, ―High‖ and 

―Very High‖ landslide susceptibility according to the standard deviation [23]. This method uses 

the mean value to generate class breaks by adding or subtracting one standard deviation at a 

time [10]. Moreover, in order to maintain five classes, we embedded extremely low and high 

outliers into ―Very Low‖ and ―Very High‖ susceptibility classes respectively. 

Figure 2. The landslide susceptibility map produced by the EFW model. 
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4. Results 

The overall results of the EFW analysis are presented in Tables 2 and 3. According to the experts, 

the most important conditioning factors are precipitation, slope and lithology with weight values 0.18, 

0.18 and 0.17, respectively. Importance evaluation for each subclass is more or less linear for factors 

with continuous values (slope, precipitation, seismicity). With regards to these factors, the experts 

estimated that high values are related to high landslide susceptibility. As far as lithology, land cover 

and aspect (factors with nominal values) are concerned, ―flysch‖, ―agricultural areas‖ and ―west 

facing‖ subclasses have the highest importance values (i.e., weight values of 0.22, 0.41 and 0.27, 

respectively). On the contrary, ―limestones‖, ―forest and semi-natural land‖ and ―Flat facing‖ 

subclasses were found to have the lowest importance values relating to LS mapping (i.e., weight values of 

0.06, 0.22 and 0.11 respectively). 

The output LS map (Figure 2) from the EFW model shows that 25% (5239 km
2
) and 7% (1370 km

2
) 

of the study area were classified as ―High‖ and ―Very High‖ susceptibility zones, respectively. The 

same map also shows that the northern, central and south-southwestern parts of the study area are 

susceptible at ―High‖ and ―Very High‖ scale. Finally, the overlay of the final LS map with the 

landslide validation dataset indicated that 16%, 38% and 38% (total: 92%) of the landslide events fall 

within ―Very High‖, ―High‖ and ―Moderate‖ landslide susceptibility zones (in total 71% of the study 

area), respectively. It is notable that according to the used model only 7% and 1% of the landslide 

events fall in ―Low‖ and ―Very Low‖ susceptibility zones, respectively. 

To estimate the sensitivity of the weighting for the aforementioned method sensitivity analysis was 

implemented by changing the weight of the three most important factors (slope, MAP and lithology) 

and examine the effect of this change on the output LS map [61]. 

Thus, a series of evaluation runs were conducted. In these tests the weight of the most important 

factor was altered (±5%, 10% and 20%). At the same time, the weights of the other criteria were 

adjusted proportionally to satisfy the rule which requires all weights to sum to one. Accordingly,  

for each simulation a series of evaluation LS maps was generated and compared with the LS output 

map of the base run. Finally, a summary table (Tables 4–6) was created to quantify the changes in the 

evaluation maps in comparison with the base map. 

Table 4. Changes in evaluation map (%) (Slope factor sensitivity analysis). 

Weight Change % 
Change in Classification 

M to H H to M M to L L to M H to L/L to H 

−20 8.78% 6.55% 6.03% 6.08% 0.14% 

−10 7.57% 6.72% 5.92% 6.21% 0.13% 

−5 7.48% 6.52% 5.98% 6.17% 0.13% 

+5 7.43% 6.38% 6.11% 5.97% 0.14% 

+10 7.40% 6.48% 6.07% 6.05% 0.14% 

+20 8.78% 6.55% 6.03% 6.08% 0.14% 
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Table 5. Changes in evaluation map (%) (mean annual precipitation (MAP) factor 

sensitivity analysis). 

Weight Change% 
Change in Classification 

M to H H to M M to L L to M H to L/L to H 

−20 7.47% 6.71% 6.19% 6.33% 0.14% 

−10 7.30% 6.51% 5.99% 6.21% 0.13% 

−5 7.47% 6.39% 6.00% 6.21% 0.13% 

+5 7.30% 6.48% 5.92% 5.90% 0.13% 

+10 7.61% 6.38% 5.84% 5.98% 0.13% 

+20 7.74% 6.22% 5.99% 5.92% 0.15% 

Table 6. Changes in evaluation map (%) (Lithology factor sensitivity analysis). 

Weight Change 

% 

Change in Classes of Landslide Susceptibility 

M to H H to M M to L L to M H to L/L to H 

−20 7.59% 6.32% 5.97% 5.96% 0.13% 

−10 7.50% 6.30% 5.84% 5.94% 0.13% 

−5 7.21% 6.45% 5.88% 5.96% 0.13% 

+5 7.48% 6.42% 6.17% 5.83% 0.14% 

+10 7.48% 6.52% 6.20% 6.08% 0.14% 

+20 7.44% 6.76% 6.19% 6.13% 0.13% 

The results of the sensitivity analysis show that there is very limited area (less than 0.2%) with very 

significant change (more than one susceptibility class) from each original rank on the base run. 

Moreover, slope is the most sensitive criterion which causes susceptibility class modification equal  

to 27.6% when its weight changes for 20%. The greatest change (8.78%) in this run was from the class 

Moderate to the class High. The greatest variation throughout sensitivity analysis occurred in the 

classes Moderate, High and Low. Classes Very High and Very Low are relatively stable. 

A standard validation analysis was additionally performed, using the validation dataset in order to 

estimate the overall performance of the LS model in the study area. For the validation of the output 

from our analysis, the receiver operating characteristics (ROC) curve was drawn, and the area under 

curve (AUC) value was calculated for the proposed model. In practice, the AUC performs very well 

and is often used when a general measure of predictiveness is desired [62]. ROC analysis is considered 

as a powerful method for the validation of landslide susceptibility models [19,63]. The AUC value 

ranges from 0.5 to 1.0. The ideal model yields an AUC value close to 1.0 (perfect fit), whereas a value 

close to 0.5 indicates an inaccurate model (random fit). 

Figure 3 shows the ROC curve of EFW model for the validation dataset. The AUC value of 0.70 

indicates a reasonable prediction ability of the model.  
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Figure 3. Receiver operating characteristics (ROC) curve for the EFW model. 

 

5. Discussion and Conclusions 

This study applied an expert-based (EFW) method to prepare a landslide susceptibility map at 

regional scale (Peloponnese peninsula, Greece). To achieve this objective, seven conditioning factors 

(elevation, slope, aspect, seismicity, precipitation, lithology and land cover) were taken into consideration. 

For the creation of the EFW susceptibility map all the factors were combined, after expert-based 

weighting. For this model the landslide inventory map is not needed. This kind of analysis is purely 

subjective. To some extent, opinions may change for every individual expert and thus may be 

subjected to cognitive limitations with uncertainty and subjectivity. However, methods depend on 

expert opinions are often useful for regional assessments [22]. Most of the quantitative/ 

semi-quantitative landslide susceptibility research follows similar strategy with the proposed one by 

inviting a limited number of experts (See among others [24,64]). The main issue is not to invite as 

many scientists as possible but to invite experts with detailed knowledge of the landslides in the area 

under investigation and to ensure an overall consensus of their evaluation about the importance of the 

factors involved. 

With the implementation of ROC analysis we can assess the prediction accuracy of a model. In this 

study, the empiric ROC area for the EFW model was estimated to be 0.70 for the validation dataset 

(Figure 3). Then, there is 70.0% agreement between prepared LS map and landslide locations of the 

validation dataset, which is a reasonable result, taking into consideration the scale of analysis. 

Recently, LS analyses in the international literature have used ROC analysis, not only to validate the 

landslide susceptibility mapping models, but also to compare their prediction capabilities.  

Many researchers—among others [65,66]—have implemented expert-based approaches for LS 

mapping at regional scale with fair to good results (AUC values: 0.65–0.81). 

The implementation of the expert-based model in the study area revealed that there are different 

zones within Peloponnese, which seem to configure various landslide susceptibility clusters (Figure 2). 

The high susceptibility values are mainly located in the northern, central and south-southwestern 

Peloponnese. According to the final LS map, the ―Very High‖ susceptibility zone covers a significant 

part of the study area (7% of the total area). Most of the landslide events of validation dataset occur in 

areas with elevation lower than 880 m, slope angle from 7° to 15°, north or west facing, high levels of 

annual precipitation (991–1170 mm) and high seismic acceleration (2.91–3.10 m/s
2
). 
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The most important factors for the LS zonation in the study area are precipitation, slope and 

lithology. It seems that the incorporation of dynamic factors (precipitation, seismicity) in this regional 

analysis was more or less beneficial to the assessment of landslide susceptibility. 

The main idea behind this research strategy is to investigate how this ―subjective‖ method is 

effective in this scale. The findings of our analysis are more or less acceptable. Thus, in a future worl, 

we intent to combine this method with statistical modeling (based on landslide inventories) in a 

―hybrid approach‖. 

Some basic characteristics, limitations and assumptions of the method have to be pointed out.  

A limitation of the proposed method is that the LS assessment is dependent on the subjective judgment 

of the experts and can be sensitive to slight differences in the weights associated with  

factors [64,67,68]. To deal with this problem the sensitivity analysis was performed. Secondly, as the 

analysis based on medium-scale datasets, the results are unsuitable for detailed site-oriented specific 

analysis. At large scales, more exhaustive datasets and detailed geotechnical information are required. 

The subclass division of the conditioning factors is considered as the most subjective aspect of slope 

instability zonation methods. However, using some consistency (e.g., the adoption of similar 

classification approach) in different study areas may help to reduce the effects of subjectivity. 

Additionally, the proposed approach does not insist on consensus but rather formalizes a synthetic 

outcome from experts’ judgments. Furthermore, it should be mentioned that, according to our analysis, 

the output LS map presents only the predicted spatial distribution of landsliding. It does not present the 

temporal probability of landsliding. Therefore, the result from this paper should be used in the first 

stage of preliminary susceptibility mapping. Despite these limitations, the used method can produce 

trustworthy landslide susceptibility maps at regional scale. This is very useful information for local 

authorities and decision makers in order to target their mitigation strategies. 
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