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Abstract: The efficacy of integrating open access geospatial data to produce habitat 

suitability maps for the corn bunting (Miliaria calandra) was investigated. Landsat 

Enhanced Thematic Mapper Plus (ETM+), Shuttle Radar Topography Mission (SRTM) 

and Corine (Coordination of Information on the Environment) land cover data for the year 

2000 (CLC2000) were processed to extract explanatory variables and divided into three 

sets; Satellite (ETM+, SRTM), CLC2000 and Combined (CLC2000 + Satellite).  

Presence-absence data for M. calandra, collected during structured surveys for the Catalan 

Breeding Bird Atlas, were provided by the Catalan Ornithological Institute. The dataset 

was partitioned into an equal number of presence and absence points by dividing it into 

five groups, each composed of 88 randomly selected presence points to match the number 

of absences. A logistic regression model was then built for each group. Models were 

evaluated using area under the curve (AUC) of the receiver operating characteristic (ROC). 

Results of the five groups were averaged to produce mean Satellite, CLC2000 and 

Combined models. The mean AUC values were 0.69, 0.81 and 0.90 for the CLC2000, 

Satellite and the Combined model, respectively. The probability of M. calandra presence 

had the strongest positive correlation with land surface temperature, modified soil adjusted 

vegetation index, coefficient of variation for ETM+ band 5 and the fraction of  

non-irrigated arable land.  
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1. Introduction  

European farmland bird species and long-distance migrants continue to decrease at an alarming rate [1] 

despite the passing, in 1979, of the Council Directive 79/409/EEC on the conservation of wild birds, 

also known as the “Birds Directive”. Examples of declining farmland bird species include the 

corncrake (Crex crex) in France [2] and the grey partridge (Perdix perdix) in Italy [3]. Some species 

have become extinct as regular breeders in certain countries, such as the red-backed shrike  

(Lanius collurio) in the United Kingdom and the roller (Coracias garrulus) in the Czech Republic [4].  

Four farmland-specialized bunting species in Western Europe have also suffered particularly severe 

declines. For example, the Ortolan bunting (Emberiza hortulana) population in Finland declined 72% 

between 1984 and 2002 [5], and in Poland, its population declined 20% between 2000 and 2010 [6]. 

The population collapse of the cirl bunting (Emberiza cirlus) in Britain between 1970 and 1990 

coincided with unprecedented large-scale changes in agricultural practice, leading to losses in the 

species’ breeding habitat [7,8]. The yellowhammer (Emberiza citrinella) suffered significant declines 

in the United Kingdom [9], Poland [10] and Sweden [11] since the mid-1960s, due to losses of both 

suitable breeding habitat and nearby wintering sites [12]. Similarly, northern and central European 

populations of the corn bunting (Miliaria calandra) have declined sharply since the mid-1970s [4], 

notably in Britain [13], Poland [14], Germany [15] and Ireland [16]. The declines of these species have 

been credited to detrimental land use policies, such as the Common Agricultural Policy (CAP) [1], that 

have been in effect in the European Union since the early 1960s. CAP promotes the maximization of 

agricultural productivity through the intensification of farmland; a process that results in monocultures, 

pesticide use and the eradication of uncultivated areas [17]. 

Geospatial technologies provide valuable tools to map bird distribution by linking independent 

observations with habitat and other environmental information extracted from satellite imagery or land 

cover data. To assess the relationship between farmland bird species and their habitats, Fuller et al. [18] 

applied a clustering method to link species’ occurrence data from the atlas of breeding birds of Britain 

to a national land cover dataset and found that maps of species clusters exhibited patterns associated 

with habitat assemblages. In another study, Kuczynski et al. [19] combined the proportional cover of 

Corine land cover classes and digital elevation data to study the habitat use of the great grey shrike 

(Lanius excubitor). Recently, Kosicki and Chylarecki [6] combined data from Corine land cover, a 

digital elevation model, normalized difference vegetation index (NDVI) and climatic data from 

Worldclim to predict the habitat of the E. hortulana in Poland.  

This study aims to better understand the habitat requirement of M. calandra in north-eastern Spain 

through the fusion of open access data derived from Corine land cover, Landsat and the Shuttle Radar 

Topography Mission as surrogates for land use, habitat structure and topography, respectively. 

Declines in Northern European M. calandra populations have been attributed to farmland 

intensification [13,17], while Southern European breeding densities, particularly in Spain, Portugal and 
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Turkey, are fairly stable [20,21], due to the prevalence of traditional low-intensity farming. 

Furthermore, most of the studies on the distribution ecology of M. calandra have been conducted in 

Northern and Central Europe [22]. Hence, there is an opportunity for the study of the habitat 

requirement of this species in a part of the continent that is relatively unaffected by the declining trend.  

2. Study Area 

The study area is located in the province of Lerida in the western part of the autonomous 

community of Catalonia in Spain (Figure 1). The area consists of the comarques of Noguera, Segria, 

Urgell and Pla d’Urgell, covers approximately 3,920 square kilometers and is composed mainly of 

non-irrigated cropland and dry forests with extensive agriculture and dry pastures. Intensive 

agricultural practices are slowly being implemented in the region to replace the economically unviable 

low-intensity extensive farming methods that dominate the landscape of Lerida [23,24]. 

Figure 1. Location of Lerida (red outline) in relation to Europe and Catalonia. 

 

3. Materials and Methods 

3.1. Open Access Geospatial Data 

Since the 1970s, Landsat data has been widely used to map the habitat preference and distribution 

of various species (e.g., [25–28]). Imagery from the Enhanced Thematic Mapper Plus (ETM+) sensor 

onboard the Landsat 7 satellite were downloaded from the USGS Global Visualization Viewer, version 

7.26, available from glovis.usgs.gov [29]. Two scenes from path-198, row-31 for the month of June  

(1 June 2006 and 17 June) of the year 2001 were used for this study to temporally coincide with the 

survey period of the bird data. The dataset used was a standard level one terrain-corrected (L1T) 

product that underwent radiometric and geometric correction. Atmospheric correction was performed 

on the Landsat data using the “Landsat” package [30] in the software program R [31], then projected 

into the European Datum 1950/Universal Transverse Mercator zone 31 North (ED50/UTM 31N) 

projection. A brief description of the Landsat bands is given in Table 1. 
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Table 1. Description of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) bands 

used in this study. Optical data ranges from the beginning of the visible (400 nm) until the 

end of the thermal infrared (1 mm) portion of the electromagnetic spectrum.  

Band 

Spatial 

Resolution 

(m) 

Lower 

Limit 

(µm) 

Upper 

Limit 

(µm) 

Designation Optical Domain 

1 30 0.45 0.52 Blue Visible 

2 30 0.52 0.60 Green Visible 

3 30 0.63 0.69 Red Visible 

4 30 0.77 0.90 Near Infrared Infrared 

5 30 1.55 1.75 Shortwave Infrared Infrared 

6 60 10.40 12.50 Thermal Infrared Thermal 

7 30 2.09 2.35 Shortwave Infrared Infrared 

The Shuttle Radar Topography Mission (SRTM) [32] digital elevation model (DEM) was included 

as a variable because M. calandra abundance is linked directly to habitat diversity, which is, in turn, 

correlated with topographic variability [33]. The 90 m DEM dataset was downloaded from the 

CGIAR-CSI database [34] and projected into the ED50/UTM 31N projection. The dataset was then 

resampled to 30 m to match the resolution of the ETM+ imagery using the nearest neighbor method. 

Elevation of the study area ranges from 1,603 m in the northern parts to 73 m around the river Segre.  

Corine (Coordination of Information on the Environment) land cover 100 m data for the year 2000 

(CLC2000) [35] was downloaded from the European Environmental Agency (EEA) website and 

projected into the ED50/UTM 31N projection. The dataset was rasterized at the original 100 m 

resolution, then resampled to 30 m using the nearest neighbor method to match the spatial resolution of 

the ETM+ imagery. Corine is a pan-European project that aims to produce a distinctive and 

comparable land cover dataset for Europe. The project has a total of 44 land cover classes, out of 

which, 26 occur in the study area (Table 2). The entire CLC2000 dataset is available from 

www.eea.europa.eu/data-and-maps [35]. 

3.2. Explanatory Variables  

Explanatory variables in this study describe the biogeophysical aspects of the landscape and were 

used in statistical analysis to predict the occurrence of M. calandra at unsurveyed locations. A total of 

27 explanatory variables (Table 3) were derived from open access geospatial datasets described in the 

preceding section. The following section details the different subgroups of explanatory variables. 
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Table 2. Coordination of Information on the Environment (Corine) land cover 2000 

(CLC2000) classes that occur in the study area. Classes included in the analysis represent 

over 95% of the total surface area. 

CLC2000 Classes  Area in km
2
 

Percent of 

Study Area 

Permanently irrigated land 1,440 26.48 

Non-irrigated arable land 1,182 21.74 

Complex cultivation patterns 923 16.97 

Fruit trees and berry plantations 452 8.31 

Agricultural with natural vegetation 396 7.27 

Transitional woodland-shrub 331 6.08 

Sclerophyllous vegetation 240 4.41 

Broad-leaved forest 240 4.41 

Mixed forest 56 1.04 

Water bodies 50 0.92 

Continuous urban fabric 38 0.69 

Vineyards 26 0.48 

Water courses 16 0.29 

Olive groves 12 0.23 

Natural grasslands 8 0.15 

Industrial or commercial units 8 0.14 

Discontinuous urban fabric 5 0.10 

Mineral extraction sites 5 0.09 

Bare rocks 3 0.05 

Inland marshes 2 0.04 

Annual crops associated with perm crops 2 0.03 

Pastures 1 0.02 

Rice fields 1 0.02 

Sparsely vegetated areas 1 0.02 

Sport and leisure facilities 0.5 0.01 

Construction sites 0.2 0.004 
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Table 3. Univariate descriptive statistics of all extracted explanatory variables grouped by 

data source and their associated acronyms. SD, standard deviation; CV, coefficient of 

variation; LST, land surface temperature; MSAVI, modified soil adjusted vegetation index; 

SRTM, Shuttle Radar Topography Mission. 

 
Variable Coefficient S.E. Wald p 

L
a
n

d
sa

t 
E

T
M

+
 

Standard deviation ETM+1: BAND1SD −1.106 0.636 −1.74 0.009 

Standard deviation ETM+2: BAND2SD 0.017 0.027 0.63 0.523 

Standard deviation ETM+3: BAND3SD 0.027 0.016 1.69 0.103 

Standard deviation ETM+4: BAND4SD 0.012 0.019 0.63 0.523 

Standard deviation ETM+5: BAND5SD −0.005 0.018 −0.28 0.763 

Standard deviation ETM+7: BAND7SD 0.022 0.018 1.22 0.209 

Coefficient of variation ETM+1: BAND1CV 1.172 1.240 0.95 0.344 

Coefficient of variation ETM+2: BAND2CV 1.397 1.225 1.14 0.253 

Coefficient of variation ETM+3: BAND3CV 1.922 0.934 2.06 0.039 

Coefficient of variation ETM+4: BAND4CV −1.003 1.005 −1.00 0.318 

Coefficient of variation ETM+5: BAND5CV −2.994 1.049 −2.85 0.003 

Coefficient of variation ETM+7: BAND7CV 0.995 0.964 1.03 0.302 

LST (°C) 2.182 1.052 2.07 <0.001 

MSAVI 2.311 0.677 3.41 <0.001 

S
R

T
M

 Digital elevation model: DEM (meters) −0.001 0.007 −0.15 0.022 

Slope: SLOPE (degrees) −0.252 0.047 −5.36 0.001 

Aspect: ASPECT −0.001 0.001 −1.00 0.311 

C
L

C
2

0
0

0
 

Agricultural with natural vegetation: PANV * −0.522 0.775 −0.67 0.500 

Broad-leaved forest: BLF * −2.453 0.895 −2.74 0.206 

Complex cultivation patterns: CCP * −0.393 0.390 −1.01 0.314 

Fruit trees and berry plantations: FTBP * −0.479 0.460 −1.04 0.298 

Non-irrigated arable land: NIAL * 2.694 0.594 4.54 <0.001 

Permanently irrigated land: PIL * 1.139 0.397 2.87 0.004 

Sclerophyllous vegetation: SVEG * −0.449 0.798 −0.56 0.573 

Transitional woodland-shrub: TWS * −2.469 0.722 −3.42 0.600 

Distance to wet areas: WETDIST (meters) 7.69e−05 1.95e−05 3.94 <0.001 

Distance to human activity: HUMDIST (meters) −1.26e−04 3.74e−05 −3.37 <0.001 

* = Fractional cover 
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3.2.1. Satellite Image Texture (ETM+) 

Saveraid et al. [36] proposed that the use of satellite data alone is not sufficient in modeling bird 

distribution and that habitat structure variables are also necessary. In order to extract habitat structure 

from the satellite data, first order texture variables were produced by running a 3 × 3 pixel (~8,100 m
2
) 

local statistic across ETM+ imagery of the study area to calculate standard deviation (SD) and 

coefficient of variation (CV). This resulted in two texture measurements for each of the six  

ETM+ visible and infrared bands: BANDxSD and BANDxCV, where x is the Landsat band  

used (see Tables 1 and 2). Standard deviation assesses the variability of image texture, and the 

coefficient of variation (standard deviation of pixel values divided by their mean) gives a measure of 

the variability in image texture as a percent of the mean. Satellite image texture variables have been 

used to quantify landscape heterogeneity and to model the spatial patterns of birds [37] by providing 

data on the relationship between bird distribution and habitat structure. 

3.2.2. Vegetation Index (ETM+) 

Spectral vegetation indices have been widely used in habitat mapping [38], and they provide 

important information about the condition of the vegetation. The modified soil adjusted vegetation 

index (MSAVI) was chosen to minimize the soil background effect and enhance the dynamic range of 

the vegetation signal, producing greater vegetation sensitivity in areas that have significant portions of 

bare soil [39]. MSAVI was calculated from the red (ETM+3) and near-infrared (ETM+4) bands using 

the methods described in Qi et al. [39].  

3.2.3. Land Surface Temperature (ETM+) 

Land surface temperature (LST) measures the energy efficiency of terrestrial ecosystems by 

quantifying radiated thermal energy [40]. It is seldom included as a variable in ecological studies [41], 

but it can offer valuable information about anthropogenic or natural modifications to ecosystem energy 

budgets [42]. LST was derived from the thermal infrared band (ETM+6) using methods described by 

Sobrino et al. [43] and NASA [44]. 

3.2.4. Landscape Metrics (CLC2000) 

Landscape metrics describe the spatial pattern of habitats and have been used to classify the habitat 

suitability of different bird species [45,46]. Metrics were calculated to quantify fractions of the eight 

dominant habitat types in the study area; dominance in this context was established if a CLC2000 class 

covered an area greater than 100 m
2
. For each metric, a 3 × 3 local statistic was used to calculate the 

proportion (between 0 and 1) of a given CLC2000 class within the window. Additionally, distance metrics 

were obtained by calculating the Euclidean distance of each pixel from superimposed layers consisting of 

regions occupied by humans and wet areas (rivers, lakes and marshes). See De Smith et al. [47] for details 

on the derivation of landscape metrics. 
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3.2.5. Topography (SRTM) 

Topographic heterogeneity directly affects habitat selection by influencing temperature and 

humidity gradients and indirectly by modifying the vegetation composition [48]. The inclination of the 

surface slope in degrees and aspect (downslope direction) of the study area were extracted from  

the DEM. 

3.3. Open Access Bird Data  

This study was commenced with the intention to only use open access data in mapping the habitat 

of M. calandra. Therefore, data on M. calandra presence was downloaded from two open access 

sources, the Global Biodiversity Information Facility (GBIF; www.gbif.org) [49] and the Avian 

Knowledge Network/eBird (AKN/eBird; www.avianknowledge.net) [50]. However, it was found that 

the quality of these data was too poor to perform robust analysis on the habitat suitability of this 

particular species in Catalonia (Figure 2). Hence, these open access data were not used in this study. 

Figure 2. Comparison of corn bunting observations in Catalonia from one closed access 

(Catalan Breeding Bird Atlas (CBBA)) and two open access sources (Global Biodiversity 

Information Facility (GBIF) and Avian Knowledge Network/eBird (AKN/eBird)).  
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Data from the Catalan Breeding Bird Atlas 

Data was requested from the Catalan Ornithological Institute (ICO), which provided presence and 

absence records of M. calandra from the Catalan Breeding Bird Atlas (CBBA) [51]. CBBA surveys 

were conducted during the breeding season (1 March to 30 July) in the years 1999–2002. Surveys were 

conducted by experienced professionals between sunrise and 11 am and between 6 pm and sunset. The 

survey plots were 1 km × 1 km UTM squares in which two 1-hour surveys were conducted and the 

presence or absence of the species was recorded [51]. The total number of M. calandra locations in the 

study area was 339, out of which, 251 (74%) were presence points and 88 (26%) were absence points. 

Further details on the field sampling methodology can be found in Brotons et al. [51]. 

3.4. Free and Open Source Geospatial Software 

Due to the limited availability of funds, only free and open source software were used in this study. 

Statistical modeling was conducted using the R Environment for Statistical Computing version 2.9.2 [31]; 

the latest version of R is available from www.r-project.org [31]. R was also used to project the data to 

the ED50/UTM 31N projection using the “rgdal” package [52]. Spatial analysis, including calculation 

of landscape metrics and visualization of the final maps, was conducted using Whitebox Geospatial 

Analysis Tools (WGAT) version 0.12, available at www.uoguelph.ca/~hydrogeo/Whitebox [53]. 

Topographic analysis was done in the System for Automated Geoscientific Analyses (SAGA)  

version 2.03 [54]. SAGA is available from www.saga-gis.org [54]. All work was done in Ubuntu 

version 9.10. Ubuntu is a Linux-based open source operating system that can be downloaded from 

www.ubuntu.com [55]. 

3.5. Modeling  

There are three times (251) as many presence points as there are absence points (88) in the bird 

data, and this disparity will introduce bias in the modeling process. In order to minimize this, the 

dataset was partitioned into an equal number of presence and absence points. Five groups were created 

(Figure 3), each composed of 88 randomly selected presence points to match the number of absences 

in the dataset. All the explanatory variables were extracted at each one of these points using the 

“overlay” function in R. The modeling framework is presented in Figure 4. 

Each of the five groups comprises three subgroups: (1) a Satellite group that comprises the 

explanatory variables derived from the ETM+ imagery and the SRTM data, (2) a CLC2000 group that 

comprises the landscape metrics derived from the Corine land cover data and (3) a Combined group 

that consists of both the Satellite and CLC2000 variables. 

A logistic regression [56] model was built for each of the five groups, and a stepwise elimination 

process based on Akaike Information Criterion (AIC) [57] optimization was applied to remove 

insignificant variables. Then, a stepwise variance inflation factor (VIF) [58] elimination was applied 

using the “vif” function in R. All variables with VIF values greater than 5 [59] were discarded to avoid 

multicollinearity (Table A1 in the Appendix). Models were evaluated using Cohen’s kappa [60], area 

under the curve (AUC) of the receiver operating characteristic (ROC) [61] with a threshold of 0.50 to 
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denote suitable habitat. Resultant probability maps were averaged to produce mean CLC2000, Satellite 

and Combined maps (Figure 5).  

Figure 3. The 251 presence points were divided into five groups, each composed of 

88 randomly selected presence points (in black) to match the 88 absence points (in red). 

 

Figure 4. Framework of this study.  
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Figure 5. Mean probability maps according to the (A) CLC2000 (B) Satellite and  

(C) Combined models. Note the difference in texture between A and B owing to the 

coarser resolution of the CLC2000 data and the finer resolution of the combined Landsat 

and SRTM data. C produces a harmonized output that captures key variations of the 

previous two without compromising resolution. 

 

4. Results 

The CLC2000, Satellite and Combined model outputs for all five groups were averaged to produce 

three final maps (Figure 5). The mean AUC values of 0.69, 0.81 and 0.90 for the CLC2000, Satellite 

and the Combined Model, respectively, were above the random model threshold (0.50), indicating that 

the explanatory variables influence M. calandra habitat selection.  

The mean logistic regression model for the CLC2000 group is summarized in Table 4. AUC value 

for this model was 0.69. The model assumes unfavorable habitat in the steeps slopes of higher 

altitudes, and there was a distinctive preference for the non-irrigated arable land (p < 0.001) landscape 

metric. The exclusion of non-irrigated arable land had the greatest effect on the model by increasing 

the AIC by an average of 43.56. In contrast, M. calandra exhibited reduced preference for areas that 

were predominantly composed of permanently irrigated land (p = 0.002), but the map displays 

favorability for grassy fringes, where permanently irrigated land meets habitats, such as non-irrigated 

arable land. 

The mean logistic regression model for the Satellite group is summarized in Table 5. AUC value for 

this model was 0.81. Land surface temperature (p < 0.001), surface slope (p < 0.001) and modified soil 

adjusted vegetation index (p < 0.001) had the strongest influence on the independent variable.  

M. calandra is a ground nesting species and prefers uncultivated land; therefore, it is not surprising 

that land surface temperature would have a strong influence on habitat preference during the breeding 

season, as it is able to discriminate the thermal signature of dry, non-irrigated land. The correction 

factor in the modified soil adjusted vegetation index algorithm enhances the vegetation signal in areas 

with low vegetation density. The coefficient of variation of the ETM+ band 5 (p = 0.002) also exhibited 

a strong positive influence on M. calandra occurrence, because vegetation moisture content is 
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discernible in the shortwave infrared region between 1.55 and 1.75 microns, suggesting that texture 

features in the infrared region are likely to detect variation in vegetation structure. An interesting result was 

the negative relationship of M. calandra with the standard deviation of the ETM+ band 1 (p = 0.097); 

removal of this variable significantly increased the model AIC score. The negative relationship could 

be attributed to the fact that the spectral range of ETM+ band 1 captures the reflection of 

urban landscapes.  

Table 4. Output of the mean CLC2000 model. 

Variable Coefficient S.E. Wald p 

(Intercept) −0.703 0.456 −1.542 0.123 

PANV 1.207 0.861 1.402 0.161 

CCP 1.136 0.539 2.108 0.035 

FTBP 1.291 0.613 2.106 0.035 

NIAL 4.032 0.721 5.592 <0.001 

PIL 2.395 0.557 4.300 0.002 

SVEG 1.924 0.976 1.971 0.048 

HUMDIST −8e−05 * 5e05 ** −1.6e−10 0.091 

WETDIST −5e−05 2e05 −2.501 0.016 

     
AIC 355 AUC 0.69  

* −1e−05 = −0.00001 

** 1e05 = 100000 

Table 5. Output of the mean Satellite model. 

Variable Coefficient S.E. Wald p 

(Intercept) −12.741 3.004 −4.241 0.002 

MSAVI 3.432 0.979 3.506 <0.001 

BAND1SD −0.093 0.056 −1.661 0.097 

BAND5CV 5.255 1.735 3.029 0.002 

DEM 0.003 0.001 3.001 0.011 

SLOPE −0.301 0.075 −4.013 <0.001 

LST 0.286 0.071 4.028 <0.001 

     
AIC 310 AUC 0.81  

The mean logistic regression model for the Combined group consisted of nine explanatory variables 

(Table 6, Figure 6) and had the highest AUC of 0.90. The comparative ROC plot in Figure 7 displays 

the effect of multiple factors not limited by data source on M. calandra habitat selection behavior. For 

example, the selection of the modified soil adjusted vegetation index indicates the effect of soil 

background as an important factor in habitat selection. Increased reflectance from the underlying soil 

could be caused by the operation of heavy machinery or other anthropogenic disturbances. The 

Combined model indicates that M. calandra avoids areas with steep slopes, areas near human activity 

and urban infrastructure and areas entirely composed of intensely irrigated land. The model also shows 
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that, during the breeding season, M. calandra habitat suitability is positively influenced by  

non-irrigated arable land and dry, open areas far from forest cover.  

Table 6. Output of the mean Combined model. Bold letters in parentheses link each 

variable with the corresponding plot in Figure 6. 

Variable Coefficient S.E. Wald p 

(Intercept) −12.16 3.495 −3.479 0.005 

MSAVI (A) 3.287 0.883 3.723 0.002 

LST (B) 0.328 0.095 3.453 <0.001 

BAND5CV (C) 4.600 1.856 2.478 0.013 

BAND1SD (D) −0.141 0.060 −2.350 0.019 

SLOPE (E) −0.211 0.082 −2.573 0.010 

BLF (F) −0.002 0.001 −2.001 0.051 

NIAL (G) 1.975 0.613 3.222 0.001 

PIL (H) 1.658 0.685 2.420 0.015 

HUMDIST (I) −9e−05 5e−05 −1.801 0.048 

     
AIC 285 AUC 0.90 

 

Figure 6. The nine explanatory variables common to the Combined model in all five 

groups: (A) Modified Soil Adjusted Vegetation Index; (B) Land Surface Temperature in °C; 

(C) Coefficient of Variation of ETM+ Band 5; (D) Standard Deviation of ETM+ Band 1; 

(E) SRTM Slope in degrees; (F) Fraction of Broad-leaved Forest; (G) Fraction of  

Non-irrigated Arable Land; (H) Fraction of Permanently Irrigated Land; (I) Distance to 

Human Activity in meters. 
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Figure 7. Comparative receiver operating characteristic (ROC) plot of the mean area under 

the curve (AUC) values for the five groups.  

 

5. Discussion 

Over the last forty years, changes in the European agricultural landscape have resulted in a 

continuously decreasing trend in the breeding numbers of farmland bird species. Predictive distribution 

modeling of species of concern is important in order to assess the significance of habitats from a 

conservation perspective, and there is a need to monitor this decline using tools that are easily 

available, affordable and practical. The fusion of open access data, both biological and geophysical, 

from different sources is a viable method in producing models that reflect species’ habitat preference.  

Explanatory variables selected for this study were derived from open access geospatial data sources 

to assess M. calandra habitat suitability during the breeding season. Image texture represents the visual 

effect produced by the spatial distribution of tonal variability (pixel values) in a given area [62] and 

can serve as a substitute for habitat structure, because variability in the reflectance among adjacent 

pixels can be caused by horizontal variability in plant growth [37]. MSAVI possesses a correction 

factor that adjusts according to vegetation density, which has been shown to enhance the dynamic 

range of the vegetation signal and produce greater vegetation sensitivity [39]. Topography indirectly 

affects the distribution of species by modifying the relationships of birds with vegetation or by 

modifying the vegetation types [63]. Landscape metrics quantify specific spatial characteristics of 

patches, classes of patches or entire landscape mosaics from categorical map patterns [47] and help 

explain how spatial patterns of landscapes influence ecological processes [64]. Anthropogenic distance 

metrics are important measures for predicting bird assemblages in agricultural eco-regions [65], since 

some species prefer to breed in areas far from intensive human disturbance. Non-irrigated arable land 

is an extensive land cover class [66] that includes infrequently irrigated fallow land or areas under crop 
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rotation that are cultivated with cereals, legumes, fodder crops and root crops. On the other hand, 

permanently irrigated land is an intensive land cover class [66] that includes areas under constant 

irrigation using permanent infrastructure, such as irrigation channels and drainage networks. The 

varieties of crops grown on permanently irrigated land cannot be cultivated without an artificial  

water supply. 

The mean Combined logistic regression model had an accuracy of 0.90 based on AUC. M. calandra 

had a strong positive correlation with LST, MSAVI, BAND5CV and non-irrigated arable land (NIAL). 

These parameters served as ecological surrogates in the modeling process. Land cover variables 

provided direct causal relationship with M. calandra distribution; for example, during the breeding 

season, the species prefers to nest in uncultivated land and avoids pastures, which explains the 

favorability of NIAL over permanently irrigated land (PIL). Pastures and intensified agricultural fields 

exhibit low temperature in summer breeding months, due to heavy irrigation. Here, LST proves useful 

in discriminating between intensely irrigated and non-irrigated land. However, urban environments 

also exhibit high LST, and the inclusion of BAND1SD, which is sensitive to the highly variable 

spectral signature of urban landscapes, provided additional information about habitat suitability.  

Research on the declines of the four farmland bunting species in Europe generally involved a 

variety of statistical modeling of field-collected independent variables (e.g., the presence and absence 

of species [8] or the abundance and density [5]) and explanatory variables (e.g., crop type, land use [7], 

tree density and vegetation structure [21] or proportions of certain land use features [12]). The absence 

of geolocated components in these studies creates difficulty in understanding the spatial patterns of 

species distributions. In contrast, the logic behind the modeling approach utilized in this study is that 

the presence or absence of the species at a particular location is a function of the explanatory variables 

that represent the species’ environment at that location. The use of variables derived from remote 

sensing and land cover data as proxies predicting avian habitat suitability is not a new field of research, 

but previous studies have not taken full advantage of the information contained within open access 

remote sensing data. For example, in the study by Kosicki and Chylarecki [6], NDVI was the only 

biophysical variable extracted from remote sensing data. Previous studies on M. calandra habitat 

association that did not use open access geospatial data have yielded results similar to the outcomes of 

this study; Brambilla et al. [22] found that the proportion of arable land positively influenced the 

habitat preference of breeding M. calandra, while Stoate et al. [21] found that ‘treeless cereal 

cropland’ supported the highest breeding densities of the species.  

The data used in this study were provided by the ICO, and the procurement of biodiversity data 

from such sources often has to undergo a request-and-decision process that results in approval or 

rejection, depending on the quality of the submitted proposals, the affiliation and academic level of the 

requester, the cooperativeness of the data-holding institution and the sensitivity of the data  

(e.g., IUCN Red List species). Closed-access data, such as the CBBA, are often of a higher scientific 

quality and are more extensive than open access, readily available data, such as GBIF and AKN/eBird 

(Figure 2). During the process of developing a methodology for this project, and prior to gaining 

permission to use ICO data, the author had experienced either rejections or no responses to requests for 

data access from several European organizations. Hence, the scope of the project and the methodology 

had to be constrained. It is thus imperative for conservation organizations with large high quality 
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scientific data to invest in web-based infrastructure that facilitates access to biodiversity data, so that 

the research community, particularly those with limited finances, can use them. 

6. Conclusion 

The development of distribution maps that consist of information from both Earth observation and 

land cover datasets are of importance for species that have indeterminate ranges [67] and for 

monitoring the spatial dynamics of threatened species. This data-fusion approach helps in the 

identification and maintenance of important habitats as the Bird Directive stipulates and, in 

combination with readily accessible open access biodiversity data, also facilitates the rapid delivery of 

environmental information to decision makers.  
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Appendix 

Table A1. Variance inflation factor (VIF) values for the nine explanatory variables. VIF 

measures the increase of variance in a regression coefficient that is caused by 

multicollinearity (high correlation of two of more explanatory variables).  

Explanatory Variable VIF 

MSAVI 3.820 

BAND1SD 0.095 

BAND5CV 2.850 

SLOPE 0.165 

LST 0.283 

BLF 0.438 

NIAL 2.061 

PIL 2.051 

HUMDIST 4.3e−5 
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