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Abstract: Globally, nost weatherelateddamagesare caused bthunderstorms. Beside
floods, strongwind, and hail, oneof the major thunderstorm ground effsas lightning.
Therefore lightning investigationsincluding detectionglusteridentification, trackingand
nowcastingare essential. To enable reliable decisions, current and predicted lightning
cluster andtrack featuresas well asanalysis results have to be represented in the most
appropriate way. Our paper introduces a framewdrich includes identification, trackp,
nowcasting and in particularvisualization and statistical analysi$ dynamic lightning
datain threedimensional spacelhe paper is specifically focused on enabling users to
conduct the visual analysis of lightning data for the purpose of idexittfic and
interpretation of spati-temporal patterns embedded in lightning datad their dynamics.

A graphic user interface (GUI) is developed, wherein lightning tracks and predicted
lightning clusters, including their prediction certainty, can be itnyated within a 3D view

or within a Spacdime-Cube.In contrast to previous work, our approach provides insight
into the dynamics of past and predicte@8D lightning clustersand cluster features over
time. We conclude that an interactive visual explanatin combination with a statistical
analysiscan provide new knowledge withilightning investigations andhus support
decisionmaking in weather forecast or lightning damage prevention.
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1. Introduction

Visualization is an enabling mechanishathelpsto understand anelxplore complex fationships
in a spatiatontext It does not necessarily improve information communication, but it aims to increase
the probabilityof doingso.Maps are among the most popular visualizatidreyare typically usedo
represengeographidanformationin an abstract fornthat may facilitate the identification of spatial
patternsat various levelsand emphasize characteristfeaturesbelongingto the respective spatial
phenomenalnt o d asqgci@tg the amount ohared information andatais constantlyincreasg.
Thus there is agrowing need for datalsstracion [1]. A straightforward projection of digital data on a
display surface does not make sense from cartographic perspéatitgad, maps are elaborately
designed to reveglatternsthat may not be immediatelyrecognizedn the real world2]. The rapid
increaseof dataamountand complexity that now requséoth visual representation and analybes
given rise to the new scientific discipline of Visual Analytj& and conventional maps have been
considerably extended and elaborated to embrace further graphic presentations. In this paper, maps a
treated as a subset of visualizations

Research in #hareaof interactive visual analysidraws on expertise in visuahalytics exploratory
data analysisinterface desighand cognitive ergonomic3.he theories of cognitive ergonomican
support theidentification of constraints for visualizations and their interpretatidhsFrom these
constraints and vieweabgoles and characteristics, parameters for the visualization design can be
derived. If the visualization is embedded in an interactive system, it will possessfaldvaalded
valued empower users and learn from useabehavior. Previous studiesof visual analysis and
exploratory tools for point datasets can be found[5i 11]. Further theoretical foundations in
geospatial and temporal visual analytics are provid¢d, 812 16]. Investigationssummarizedn this
paper supportisual data analysis and visual analytics approadhes have beemxamined in a
number of research projects 2004, for example,the National Visualization and Analytics Center
(NVAC) was founded17]. NVAC gathered experts from differedisciplinesandproposeda research
agenda for visual analytickhe VisMaste® a Eurogan Coordination Action Projéttis alsofocuse
on the research discipline of Visual Analyt{d8]. Moreover,a working groupof the MOVE projet
is focusel on Visual Analytics for Movemerand Cognitive Issug4.9]. The main objective of MOVE
(COST Action 1C0903) is to develop improved methods for knowledge extraction from massive
amounts of data about moving objedibe demando make full useof technicalprogresshatenable
personalizd illustration, multifaceted displays (dynamic, connected, multidimensional), combinations
of reality and visualizatignandbenefis from nonvisual perceptual channelgas emphasized i§20].
According to thelnternational Cartographic Assation research agengan important issue in
Geovisualization and Vi sual anal ytics i1is that
medium to embrace dynamic, thveed fourd i me nsi on al dd2lla represent a
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Furthermore in [2] it is statel that efficient visual explorationmight enable the possibilitgf
analyZng data sets in timéAs such the reed toincorporatedargedata commonly increases, but up to
datemethodamight not be effectiveenough for a visuanalysis.Considerable overptting andvisual
disorder may lead to illegib data representatioimn addition it is not always easto recognizetrack
and interpret abundantsimultaneously changingisual componentq?2]. In [22], the challenges in
extremescale visual analytics are described, whereby in particular two sé thallenges aralso
dealt with in this workthe analytics of temporally evolved features; data summarization and triage for
interactive query.

Investigaions of dynamic patterns also aim to detect location basehts that appear over time
and help to find time, locatigrand reasons of events. Events and their pattern behavior represent a
higher level of knowledge in comparison to chang8]. Therefore they are more valuable for
decision makers. An event can be understood as a significant change within a specific time period or
which happens at a certain moment of time. Furthermore, pattern behaviors can be very complex anc
irregular. Neverthelesghey can be visually represented for further analj23.

Lightning is a very complex evenf flash is a lightning discharge in its totality; the average
duration of a flash is 0.5 s. A stroke is a partial discharge consisting of a dowmeeairty leader
streamer of low luminous intensity followed by anward-moving return streamer of high luminous
intensity. One flash may consist of one single stroke or a series of strokes in the same or adjacen
channelg24]. In this work we only use the term lightginThe dataisedare detected lightning points
wherebyevery lightningpoint corresponds toraindividual dischargésingle strokg

Within this study, fievend refers to the occurrence and prediction of thunderstorms represented by
tracked and nowcastedihtning dustes. We investigate a concept for visual analytics of dynamic
lightning clustes in 3D. Webriefly describe how to detect lightning daaad how to track and
nowcast lightninglustes. The term lightning cluster is used to define lightning detections clustered in
time and space to represent the part of a thunderstorm with lightning activities. Tiind@roasting
refers to lightning cluster predictions for time periofitess than adw hours.

The paper is focused on the visualization of experimental dynamic lightning position data. We do
not intend to provide any analysis thie meteorological implications of thunderstornfarthermore,
we do not consider the degree of applicabilitfytbe presented visualization to different types of
storms. Our aim is to provide a computational framework for 3D lightning stroke visualization of
given historical data in the form of a GUI tool, including its mathematically based geometrical
extrapolaton in space and time to the extent allowed by the ddta.goal of this work is not to
develop a perfect tracking and nowcasting solution. Inst@adaim to enable users to accomplish
visual and statistical analysis of tracked and nowcasted lightnisggcfeatures in an integrated syste

2. MethodologicalFrameworkd Stateof the Art
2.1.LightningData Detectiorand Position Accuracy

The 3D lightning testdata are provided blghtning detection netark (LINET) [25], a lightning
detection network irEurope LINET was established at théniversity of Munich(Department of
Physics)and put intgoermanenbperation by nowcast GmbH in 2008he networkcurrently contains
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130 sensorslistributed over 30 European countrid$ie acquisition ofthe emission ltude in-cloud
(IC) lightning is unique.As stated if26,27] the 2D-location accuracy amounts to about 150Tine
accuracy of incloud lightning pointaltitudesis about 10% for example an IC lightning at 10 km
heighthas its accuracgf + /1ikm.

2.2. ThunderstormandLightning Cell Nowcasting

A main part of thunderstorm investigation is to detect, track and nowcast lightning cells.
Thunderstorm nowcasting algorithms consist of three steps: cell identification, cell traaohkahgell
prediction.Nowcasting comprises the detailed description of the current weather along with forecasts
obtained by extrapolation for a period of ugbohoursin advancd28].

Theories of crowd or herd movement analysis are only of limited utility for lightning Ggllshe
one hand lightning points can be described as dynamic collectiwéhin the same moving
thunderstorm cellOn the other handightning pointsare not discrete dualspect phenomenas
crowd event$29].

2.2.1 Cell IdentificationandTracking

Existing methods are based on a&ellite data, radar data, lightning data, microwhased
temperatures or a combination of themiIn [30], a comprehensiveoverview about existing
thunderstorm nowcasiy methodss provided In [311 34], differentmethods based on satellite image
dataare describedn [35i 37], solutions based on radar datee introducedThe methodsn [38,39]
provide a solution using bottadar data and lightning datia. [26], a cell identification andtracking
approach baseohly on lightring data derived frorthe LINET networkwas introduced

Cell tracking techniques can hdivided into overlapping techniquess reportedin [34,37],
patterroriented correlation techniqués [40], and cost functiontechniques irf35,39]. Some of the
tracking approaches consider the cell splitting and merging behavior.

To track lightningdata cellsfirst have to be identified based on spatehporal clustering of the
detected lightning point data. Usualtyne intervals of 1015 min areapplied to divide lightning point
data sets into temporal framgsy].

Spatialpoint clustering methods can be classified itm@emajor typesdensitybasedhierarchical
and partitioning methods. An overviewf existing point clustering methods isoprded by[41]. For
spatial clustering of lightning datasually a simple partitioning method based on distastetween
lightning cells is usedTheeby, the basiddea is to expand the given cluster as long as thtarntie
towards aneighborhoodoint does noexceed some threshold. Sugimethod caread to arbitrarily
shaped clusters and can abeused to filter out noise or outlidr?].

If lightning cells are identified within each time interval, connected cells can be allocated to
enablecell tracking. Thus appearance, changesize/shape/location/density, merging, splitfiagd
disappearing of each cell can be investigggl.



ISPRS Int. J. Getnf. 2013 2 821

2.2.2. Cell Nowcasting

Most nowcasting or extrapolation methods appliedon radar or satellite data. Some of them
can be appliedn thecells derived from lightning point data. Basicaltwo principal extrapolation
techniques can be distinguishedeaand cell trackers. Area trackers suchTaacking Radar Echoes
by Correlaion (TREC) [33] and continuity of TREC vectorgCOTREQ [31] use cross correlations
between temporally separated consecutive pattern maps to find rfietds It is commonfor cell
trackersto extrapolate the cell centroid into the future based on tiiteoods of the past cells.

The simplest method for cell trackers to generate a forecast is to predict future cells from past cell
positions. Here it is common to extrapolate @ehtroid positionsA fipersistennowcasb does not
assumeany route tendency whereas ditrend nowcasb uses trend models iarderto capture cell
trendsfrom the latest cell histy; for exampleTITAN (thunderstorm identification, tracking, analysis,
and nowcasting)35]. GANDOLF (Generating Advanced Nowcasts for Deploymna Operational
Land-based Flood forecastg®3] and SWIRLII (Short-range Warning of Intense Rainstorms in
Localized Systems)[44] employ a conceptual modé&b consider nowcast trends &ghtning cell
objects. Therehyphysical knowledge about ce&Volution is taken into account

With regardto cell tracking with lightning data, simple extrapolation based on three or four
consecutive timéntervals of, say, five or ten minute intervals often produces useful results, especially
when cells are not toshortlived [26].

2.3. ExplorativeVisualizationof Lightning Data

Earlierworksdealing with tracking and nowcastinglafhtning dataconsideronly simple 2D plots
Lightning clustersare either displayed as 2D convex hwisth or without the underlying lightning
point dataWith therecent improvements lightning data detection and accuracy, there is a growing
demandfor multidimensional and interactive visualizatidn.our previous worK27] afirst approach
for an inkeractive explorative 3D visualization of lightning data was introdugéds work aims to
improve the approach ¢27] and extend it with a visual and statistical analysis of nowcasted lightning
clustes andclusterfeatures for th@redictedl0to 60min.

A similar work which focuses on precipitating cloudsan be found ij45]. The nitial data in[45]
is a set of satellite images (2D) wherdasinitial data in our work are lightning point coordinates in
3D.In [15], it is stated thabne of the challenges for researchers within geovisualization and geovisual
analytics is to deal with different spatiemporal data and find appropriate solutions for the respective
data.In [45], a SpaceTime-Cube (STC) with iconss presentedwhose rdius is proportional to the
size of the precipitating cloud region. With our work we wargrovide not only a STC, but also a 3D
view within an interactive exploring toolvhich intends to offer different lightning wdtertrack
presentation$o the use(seeSection 4.4.1 While the concept of cloud cell tracking[#5] is similar
to our lightning dlistertracking approach, we waet to introduce a variety of visual and statistical
representationof lightning clustes and tracks. Furthermmrweaimed to provide lightningcluster
prediction approach including visualization of futghestes and their uncertainties.
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3. Lightning Points Test Dataset

We usedlightning points detected by LINEDn 22.07.2010in the region of Upper Bavaria,
Germany The geographiaangeof our test data sencludes the region of 47MN50N Latitude and
10E713E Longitude A large thunderstorm crossed Upper Bavaria betwggmm and 12pm. The
investigated storm was a pi®ntal thunderstorm cluster with strong cell interactiowéthin our
work, we only used incloud (IC) lightning. Altogether 35,087 IC lightning points were detectdd.
the area of Munich airport abouf780 IC lightning were detected between 18:50 and 2Q:IDET
providedthe 3Dposition(Latitude, Longitude, and Altitudg and the exadightning occurrencedime
(at the lightning peak radiationrghown with an example ifable 1

Table 1.Example oftheprovidedlightning dat@.

Date Time Latitude (°) Longitude (°) Altitude (km)
20100722 17:45:35.9266801 49.0177 12.8592 9.7
20100722 18:13:12.8011952 50.4351 11.6775 0

The locations of the entire test data set (IC lightning) are presented as blueFigtged, in 3D
and 2D.Base data (Upper Bavaria districts) are illustratedrethlines on the groundidditionally,
the location of Munich Airport is shown (red circle)

Figure 1.IC lightning data(Left: 3D plot; Right: 2D plot).
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The static plot oflightning dataas shown in Figure 1 is limited fdahe understandingof the
dynamics in lightning dataTo overcome this drawback and to answer questions about past and
predicted lightning cluster and track features, we deeeloppteractive visual and atistical
explorative tools.
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4. Development of arinteractive Tool for Lightning Data Analysis
4.1.Workflow Lightning DetectionClustering Tracking Prediction andVisualization

The test data set (lightning in Upper Bavaria dug@guly 2010, see&section3) was preprocessed
first. Following this,lightning clusters were identified, trackexthd nowcasted. Afterwards lightning
GUI was established which enables the user to explore all results of cluster tracking and nowcasting
together with rests from the statistical analysis.

As illustrated in Figure, our approach can be divided irftee main steps: (1) Lightning point data
acquisition and prprocessing (2) Temporal and spatial clustering towards lightnicigstes;
(3) Lightning clustertracking (4) Predictionof lightning clustes andclusterfeaturesand (5) Visual
and statistical analysis. Figur@ provides an overviewof all adjustable parameters witholuster
identification, tracking and nowcastinjhe parameter values used tbe test data in this work are
shown in red color.

Figure 2. Overall workflow: from data detection to visual analysis
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4.2.Lightning Cluster Identificatiorand Tracking

First of all lightning point data, detected by LINET netwowere separated into clougrourd
lightning (CG) and ircloudlightning data (IC). To eliminate outliersnly IC datawith an altitude
between2 km and18 km were used If needed the lightning point data set can be confined by
temporal or spatial range limitations.

In the second step, lightning point datere separatednto 10 min time intervalsEach time
interval contaiedat least 10 pointAfterwards all points within each time intervateregrouped into
lightning clusters using thesimple distance based clusteringethodas described if46] with a
distancethreshold o6 km. Thus a buffer with a radius of 6 km was applied to each point. All points
within overlapping buffers were aggl@mated towards the sargeoup The resultinggroupsrepresent
lightning dusterswithin the according time interval

In the third stepidentified clustes weretracked Clustes, which spatiallyoverlaptheir 2D convex
hulls within two time sequencewere detected and allocated.i§ trackingapproachwasbased on the
method of[34,37]. Clustersplitting and mergingvereconsidered as wel”A minimum clusternumber
size of 10 points was defined. Increasing this threshold leatis étimination of smaller clustes.

For clusteridentification andclustertracking we only took the IC points into account. The model
might be improvedby considering CG pointas well However with our interactive tool CG point data
can be visualizedVe do not use the terfiightning celb, because determined clusters differ from the
term ficelld which refers tahunderstorm cloudsm meteorology. Within a storm track several cells can
appear and disappear in connection with strong and spatial naweractions. Thus, the cluster itself
cannot always be seen asgeoup of lightning produced from the same cell due to the temporal
sampling in the determination of a cluster.

4.3. LightningNowcastingand Evaluation

In the fourth stepclustes and cluste featureswere nowcasted. We decided to project the
prospective situatioof the clustersn 10, 2Q and 30 min(gd). Our approach is purely geometfar
the demonstration purpasghe prediction of théuture clusterlocation was based on the extrapolated
clustercentroidas shown in Figuré andEquation(1). We established a simple method predicated on
velocity and direction changd@hereby we tookthe lastthreetrack centroids into accourBased on
the positionsof the previous cluster centroiB;; k), we determined the velogitvectorof thelast two
clustercentroics. We assume a currenlusterspeed calculated by the mean of the velogiyyof the
last twoclustercentroids.Furthermoredirection change(angleU) were considered-or the value of
U it is advisable to configure a threshold in order to atbatight curves of the nowcasteduster
track FurthermoreU (see Figure 4orrelates with the predicted future tirgee In other wordsthe
longer the nowcasted tintbe largerthe U. If only the lasttwo centroids of aclustertrack exist the
angleU will be given a value of 180The method is explained for the 2D case, but it was established
for the 3D scenario.
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Figure 4. Clustercentroid nowcasting conce(®@D example)
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Nowcasting ofclusterfeatures suchas clusterdensity,clusterarea and clusterextension can be
performed based on the feature val(@sof the lasttwo to fourtime stepsA possible extrapolation
methodfor lightning custerfeatures mighbe polynomial regressio(of the second order)

nNw N nNo p BNwn p 2
Equation(2) finds the coefficients of a polynomifinction p(x) of degreen which matcheghe given
data,p(x) to y;, in a least squares sense. Th#comep is a row vector of length + 1 containing the
polynomial coefficients in descending powemBisadvantages are resulting valuadich are
unrealisti@ally high orbelow zero

We decided toestablisha demonstrativerule based prediction method for cluster feature
nowcasting, which idased onclusterfeaturevalues of the last three time steps Thus only the
tendency of value chandmcreasing/decreasing of ca. 10/20%) is reflected in the predicteduster
feature values.

Extrapolated cluster centroidsin be evaluatednd improvedby establishing a learning model.
Such modetompaespredictedclustercentroid locations andusterfeatures with updated onesiter
eachupdate the model can adapt nowcast paramégeg, threshold forU) in order to improve
prediction accuracyl he mean ifferences of centroid positions achlisterfeatures between predicted
and updated datiead to & uncertainy for the prediction Furthermore measurement errors can be
incorporated in the certainty model. We assume the samac@dacy forcluster centroids as for
detectedightning (acc = 150 m). It therefore follows thatn uncertainty(u) for nowcasted centroids
(P:+«) can be ahieved with a basic gpoach considering the future time st€k), and the maximum
inaccuracybetween the last twdustercentroidsas shown irEquation(3):

60 WO Q ¢ (3)

As a result, the 2fincertainty for nowcastedluster centroidsassumes a value @50 m for a
10 min predictionK = 1), 600 m for 20 mk(= 2), and so forth.

For the altitude average the samguationcould be appliedwherebya centroid average of about
10 km leads to an altitude accuracy of 1 land.

We appied our basic tracking and nowcasting approach (as descrilfeections4.1i 4.3) to the
test data set. Altogethet9 lightning tracks were detected. Nowcasting can be performed for any
moment of time within the temporal range which is definedrasvo. To evaluate the results a past
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analysis was done whereby the test data were separated into 10 min steps and nowcasted centroi
were determined.Subsequently,predicted cluster centroid locations and cluster features were
compared with updated ones.

4.4.InteractiveVisualand Statistical Analysi®f Dynamic Lightning Cluster Features

In the fifth step of our workflonan analysis concept for visual and statistical exploratiopast
and nowcastedlusterfeaturess establishedlt should be mentioned d&h the main focus of this work
is not on achieving a perfect tracking and nowcasting solutigndibier on enabling users to conduct
visual and statistical analysis of tracked and nowcasted lightning cluster features in an integrated system

4.4.1.Lightning GraphicUserInterface(GUI)

To provide an explorative analysis of the dynamic lightrulugterdatg an interactive graphic user
interface (GUI) was designed. The lightni@dJ! including a3D-view and aSTC approachvasfirst
introduced in[27] and within this workthe visualization of nowcasted cluster features improved
and extended.

A lightning or thunderstorm expert needs to have visual and statistical information about the dynamic
each lightningclusterand its features within a teromal and spatial range of interest. Releweoster
and traclkieatures eelisted in Table2 together with information about 2D/3D appearance

Table 2. Visual presentation of past and predicted lightning information

2D | 3D | STC

point cloud 0| 0O 0

centroid point 0| 0O 0

convex hull 0| 0 0
cluster feature _ eII!pse. 0 -
extension |ellipsoid 0

visual presentatior rectangle 0

cuboid 0

* uncertainty buffer 0| O 0

track line 0| 0 0

track features| track lane 0| O 0

* uncertainty buffer 0| O 0

* only of nowcasted cluster/track

Representativevisualizationsof a trackedand nowcasted lightninglusterin 3D spaceare the
representation of thpoint cloud,the centroid and the 3Dclusterextensionin the form of. convex
hull, ellipsoid and cluster cuboid. Additionally an uncertainty buffer can bdlustrated for the
nowcasted clusterd he pastand predicted 3D lightning traskan be visualized by a line or a lane.
Furthermoredifferent visualclusterfeatures can bilustrated on the track.ikewise a presentation of
an uncertainty buffer can be applied for the nowcastak t

Graphic variables to cover all possible graphic variatmrs maphave already been delineated in [47]
Bertin distinguished between sewveisual variables: form, color, texture, size, position, orientation,
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and value. He combineddbe visual variables with a visual semantics in order to link data attributes to
visual elementsFurthermore in [12], geo analysis tasks antherefore specifies appropriate visual
variablesare describedTable 3 lists seven graphic variablessed orj47] which can be adjusteidr

an appropriatevisualization of lightningclusterandtrack featuresFor example, changeable graphic
variables of the corex hull surfacewWhich represents a lightning cluster in form ¢ polygon) are:
color, texture, luminance, transparenagd saturationThese variables have to be carefully chosen to
provide an appropriate presentation for the dawweranalyzer.In this context cartographic
principles (readable, correct, completadestheticvisualizatior) have to be compliedith asmuchas
possible It should be noted that thgraphic variablef the cluster centroid can depend on the
guantityintensityof the clusterpoints.

Table 3.Graphic variables of cluster and track features

cluster features track features
S
= S| 9
(@] —
— = 0 (] [&)]
o E o o (] E © — .
S| S| 8| E| S| = | O
© = el = >
o > o] = = o o o] o )
© B = = a a 8 8 ‘B\ () = b
Blee| 3| 3|22 2| =L ol ol E
3|l S| | £ T Tl 2l &l 8|le| 2| 2|3
S| = > X < = = | O @ = [ [ ©
= 2G| 828|888 ¢|=|x|x|S8
S|Eg|E|l | 2| 2|8l B|5|¢| gl glse
2| 85/ 8|1 8| Tl T | |l 1 E]l s 5] 2
Form 0
Color o] o] 0 0 o] o] o] o] o] o] o]
Texture o] o] o] o] 0 0 o] o] o] o] o] o] 0
Luminance 0 0 0 0 0 0 0 0 0] 0] 0 0 o]
Size o] o] o] 0 o] 0] o]
Sharpness 0 o} 0 0 0 0
Transparency o] 0 o] 0 o] o]
Saturation 0 0 o] 0 0 o] o] o] o] o] o] o]

0
* only for nowcasted cell/track

An interactive GUI enablethe userto explore and analyze data. Within d@tJI-concept for
lightning clustes the user should be able to:

1 load in lightning point data (x,y,z,t)

choose betweeBD-view (x-y-z) andSTC (x-y-t)

choosécombinebetween differentlusterand track feature visualizations, see Table 2
enable nowcdmg for the next 10, 20, 3@, , 60 min

adapt graphic variables

set limits for temporal and spatial range

explore plotted data via zoom, pan, rotatgmate

= =4 =4 A4 A -

To provide the best performaned graphic featureshouldbe preprocessed before using the GUI.
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Two main visualization concepts are implemented: the 3D view and the STC. The 3D plot gives
altitude information, while time information is missirithe advantage of the STC is that it provides
the information which is missing in the 3D plot. Within the 3D plot, overlapping might arise when
clusters occur at different moment of times at the same location. The STC solves this problem and
provides the nssing insight. While the altitude information is missing in the STC, the combination of
both plots is complementary and provides, through its interactive user interface, a variety of
information about the lightning cluster dynamics. By changing the venspective within the STC,
an observation from above (2bew) enables the same view and information as the traditional 2D
plot, as shown in Figure 1. The GUI enables the user to combine or switch between different
visualization options for lightning clust and clustetrack features, demonstrated in FiggBe8.

Figure 5. Lightning GUI for explorative analysis of past and nowcasted data
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Figure 6. STC of lightning tracksl(eft), 3D view of lightning tracksRKight).
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Figure 7. Tendency of value change in nowcasted cluster features (extension and density)
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Figure 8. Probability buffer for nowcasted cluster centroids and cluster convex hulls

4.42. StatisticalAnalysisof Dynamic Lightning Cluster Features

In addition, essetial for lightning cluster feature analysis are statistical data derived from the
processedlustertrackingnowcasting Table4 lists all important statisticatlataof lightning clustes
and tracks These statistical data could be included in ftightning GUI, thus currently
highlighted/selecteddata (clusters or trackskould beillustrated and analyzedwith the help of
additional toolge.qg, by using diagrams).



