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Abstract:  Globally, most weather-related damages are caused by thunderstorms. Besides 

floods, strong wind, and hail, one of the major thunderstorm ground effects is lightning. 

Therefore, lightning investigations, including detection, cluster identification, tracking, and 

nowcasting are essential. To enable reliable decisions, current and predicted lightning 

cluster- and track features as well as analysis results have to be represented in the most 

appropriate way. Our paper introduces a framework which includes identification, tracking, 

nowcasting, and in particular visualization and statistical analysis of dynamic lightning 

data in three-dimensional space. The paper is specifically focused on enabling users to 

conduct the visual analysis of lightning data for the purpose of identification and 

interpretation of spatial-temporal patterns embedded in lightning data, and their dynamics. 

A graphic user interface (GUI) is developed, wherein lightning tracks and predicted 

lightning clusters, including their prediction certainty, can be investigated within a 3D view 

or within a Space-Time-Cube. In contrast to previous work, our approach provides insight 

into the dynamics of past and predicted 3D lightning clusters and cluster features over 

time. We conclude that an interactive visual exploration in combination with a statistical 

analysis can provide new knowledge within lightning investigations and, thus, support 

decision-making in weather forecast or lightning damage prevention.  
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1. Introduction  

Visualization is an enabling mechanism that helps to understand and explore complex relationships 

in a spatial context. It does not necessarily improve information communication, but it aims to increase 

the probability of doing so. Maps are among the most popular visualization. They are typically used to 

represent geographic information in an abstract form that may facilitate the identification of spatial 

patterns at various levels and emphasize characteristic features belonging to the respective spatial 

phenomena. In todayôs society, the amount of shared information and data is constantly increasing. 

Thus, there is a growing need for data abstraction [1]. A straightforward projection of digital data on a 

display surface does not make sense from cartographic perspective. Instead, maps are elaborately 

designed to reveal patterns that may not be immediately recognized in the real world [2]. The rapid 

increase of data amount and complexity that now requires both visual representation and analysis has 

given rise to the new scientific discipline of Visual Analytics [3] and conventional maps have been 

considerably extended and elaborated to embrace further graphic presentations. In this paper, maps are 

treated as a subset of visualizations.  

Research in the area of interactive visual analysis draws on expertise in visual analytics, exploratory 

data analysis, interface design, and cognitive ergonomics. The theories of cognitive ergonomics can 

support the identification of constraints for visualizations and their interpretations [4]. From these 

constraints and viewersô roles and characteristics, parameters for the visualization design can be 

derived. If the visualization is embedded in an interactive system, it will possess a two-fold added 

valueðempower users and learn from userôs behavior. Previous studies of visual analysis and 

exploratory tools for point datasets can be found in [5ï11]. Further theoretical foundations in 

geospatial and temporal visual analytics are provided in [2,3,12ï16]. Investigations summarized in this 

paper support visual data analysis and visual analytics approaches that have been examined in a 

number of research projects. In 2004, for example, the National Visualization and Analytics Center 

(NVAC) was founded [17]. NVAC gathered experts from different disciplines and proposed a research 

agenda for visual analytics. The VisMasterða European Coordination Action Projectðis also focused 

on the research discipline of Visual Analytics [18]. Moreover, a working group of the MOVE project 

is focused on Visual Analytics for Movement and Cognitive Issues [19]. The main objective of MOVE 

(COST Action IC0903) is to develop improved methods for knowledge extraction from massive 

amounts of data about moving objects. The demand to make full use of technical progress that enables 

personalized illustration, multifaceted displays (dynamic, connected, multidimensional), combinations 

of reality and visualization, and benefits from non-visual perceptual channels was emphasized in [20]. 

According to the International Cartographic Association research agenda, an important issue in 

Geovisualization and Visual analytics is that ñGeovisualization techniques have extended the map 

medium to embrace dynamic, three- and four-dimensional data representationò [21].  
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Furthermore, in [2] it is stated that efficient visual exploration might enable the possibility of 

analyzing data sets in time. As such, the need to incorporate large data commonly increases, but up to 

date methods might not be effective enough for a visual analysis. Considerable overplotting and visual 

disorder may lead to illegible data representation. In addition, it is not always easy to recognize, track 

and interpret abundant simultaneously changing visual components [2]. In [22], the challenges in 

extreme-scale visual analytics are described, whereby in particular two of these challenges are also 

dealt with in this work: the analytics of temporally evolved features; data summarization and triage for  

interactive query.  

Investigations of dynamic patterns also aim to detect location based-events that appear over time 

and help to find time, location, and reasons of events. Events and their pattern behavior represent a 

higher level of knowledge in comparison to changes [23]. Therefore, they are more valuable for 

decision makers. An event can be understood as a significant change within a specific time period or 

which happens at a certain moment of time. Furthermore, pattern behaviors can be very complex and 

irregular. Nevertheless, they can be visually represented for further analysis [23].  

Lightning is a very complex event. A flash is a lightning discharge in its totality; the average 

duration of a flash is 0.5 s. A stroke is a partial discharge consisting of a downward-moving leader 

streamer of low luminous intensity followed by an up-ward-moving return streamer of high luminous 

intensity. One flash may consist of one single stroke or a series of strokes in the same or adjacent 

channels [24]. In this work we only use the term lightning. The data used are detected lightning points, 

whereby every lightning point corresponds to an individual discharge (single stroke). 

Within this study, ñeventò refers to the occurrence and prediction of thunderstorms represented by 

tracked and nowcasted lightning clusters. We investigate a concept for visual analytics of dynamic 

lightning clusters in 3D. We briefly describe how to detect lightning data and how to track and 

nowcast lightning clusters. The term lightning cluster is used to define lightning detections clustered in 

time and space to represent the part of a thunderstorm with lightning activities. The term ñnowcastingò 

refers to lightning cluster predictions for time periods of less than a few hours. 

The paper is focused on the visualization of experimental dynamic lightning position data. We do 

not intend to provide any analysis of the meteorological implications of thunderstorms. Furthermore, 

we do not consider the degree of applicability of the presented visualization to different types of 

storms. Our aim is to provide a computational framework for 3D lightning stroke visualization of 

given historical data in the form of a GUI tool, including its mathematically based geometrical 

extrapolation in space and time to the extent allowed by the data. The goal of this work is not to 

develop a perfect tracking and nowcasting solution. Instead, we aim to enable users to accomplish 

visual and statistical analysis of tracked and nowcasted lightning cluster features in an integrated system. 

2. Methodological FrameworkðState of the Art  

2.1. Lightning Data Detection and Position Accuracy 

The 3D lightning test data are provided by lightning detection network (LINET) [25], a lightning 

detection network in Europe. LINET was established at the University of Munich (Department of 

Physics) and put into permanent operation by nowcast GmbH in 2006. The network currently contains 
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130 sensors distributed over 30 European countries. The acquisition of the emission altitude in-cloud 

(IC) lightning is unique. As stated in [26,27] the 2D-location accuracy amounts to about 150 m. The 

accuracy of in-cloud lightning point altitudes is about 10%; for example, an IC lightning at 10 km 

height has its accuracy of +/ī1 km.  

2.2. Thunderstorm and Lightning Cell Nowcasting 

A main part of thunderstorm investigation is to detect, track and nowcast lightning cells. 

Thunderstorm nowcasting algorithms consist of three steps: cell identification, cell tracking, and cell 

prediction. Nowcasting comprises the detailed description of the current weather along with forecasts 

obtained by extrapolation for a period of up to six hours in advance [28].  

Theories of crowd or herd movement analysis are only of limited utility for lightning cells. On the 

one hand, lightning points can be described as dynamic collectives within the same moving 

thunderstorm cell. On the other hand, lightning points are not discrete dual-aspect phenomena as 

crowd events [29].  

2.2.1. Cell Identification and Tracking 

Existing methods are based on satellite data, radar data, lightning data, microwave-based 

temperatures, or a combination of them. In [30], a comprehensive overview about existing 

thunderstorm nowcasting methods is provided. In [31ï34], different methods based on satellite image 

data are described. In [35ï37], solutions based on radar data are introduced. The methods in [38,39] 

provide a solution using both radar data and lightning data. In [26], a cell identification and tracking 

approach based only on lightning data derived from the LINET network was introduced.  

Cell tracking techniques can be divided into overlapping techniques as reported in [34,37],  

pattern-oriented correlation techniques in [40], and cost functions techniques in [35,39]. Some of the 

tracking approaches consider the cell splitting and merging behavior. 

To track lightning data, cells first have to be identified based on spatial-temporal clustering of the 

detected lightning point data. Usually, time intervals of 10ï15 min are applied to divide lightning point 

data sets into temporal frames [27].  

Spatial point clustering methods can be classified into three major types: density-based, hierarchical 

and partitioning methods. An overview of existing point clustering methods is provided by [41]. For 

spatial clustering of lightning data, usually, a simple partitioning method based on distances between 

lightning cells is used. Thereby, the basic idea is to expand the given cluster as long as the distance 

towards a neighborhood point does not exceed some threshold. Such a method can lead to arbitrarily 

shaped clusters and can also be used to filter out noise or outliers [42].  

If lightning cells are identified within each time interval, connected cells can be allocated to  

enable cell tracking. Thus appearance, changes in size/shape/location/density, merging, splitting, and 

disappearing of each cell can be investigated [27]. 
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2.2.2. Cell Nowcasting 

Most nowcasting or extrapolation methods are applied on radar or satellite data. Some of them  

can be applied on the cells derived from lightning point data. Basically, two principal extrapolation 

techniques can be distinguished: area and cell trackers. Area trackers such as Tracking Radar Echoes 

by Correlation (TREC) [33] and continuity of TREC vectors (COTREC) [31] use cross correlations 

between temporally separated consecutive pattern maps to find motion fields. It is common for cell 

trackers to extrapolate the cell centroid into the future based on the centroids of the past cells.  

The simplest method for cell trackers to generate a forecast is to predict future cells from past cell 

positions. Here it is common to extrapolate cell centroid positions. A ñpersistent nowcastò does not 

assume any route tendency, whereas a ñtrend nowcastò uses trend models in order to capture cell 

trends from the latest cell history; for example TITAN (thunderstorm identification, tracking, analysis, 

and nowcasting) [35]. GANDOLF (Generating Advanced Nowcasts for Deployment in Operational 

Land-based Flood forecasts) [43] and SWIRLII (Short-range Warning of Intense Rainstorms in 

Localized Systems) [44] employ a conceptual model to consider nowcast trends of lightning cell 

objects. Thereby, physical knowledge about cell evolution is taken into account.  

With regard to cell tracking with lightning data, simple extrapolation based on three or four 

consecutive time-intervals of, say, five or ten minute intervals often produces useful results, especially 

when cells are not too short-lived [26]. 

2.3. Explorative Visualization of Lightning Data 

Earlier works dealing with tracking and nowcasting of lightning data consider only simple 2D plots. 

Lightning clusters are either displayed as 2D convex hulls, with or without the underlying lightning 

point data. With the recent improvements in lightning data detection and accuracy, there is a growing 

demand for multidimensional and interactive visualization. In our previous work [27] a first approach 

for an interactive explorative 3D visualization of lightning data was introduced. This work aims to 

improve the approach of [27] and extend it with a visual and statistical analysis of nowcasted lightning 

clusters and cluster features for the predicted 10 to 60 min. 

A similar work which focuses on precipitating clouds can be found in [45]. The initial data in [45] 

is a set of satellite images (2D) whereas the initial data in our work are lightning point coordinates in 

3D. In [15], it is stated that one of the challenges for researchers within geovisualization and geovisual 

analytics is to deal with different spatio-temporal data and find appropriate solutions for the respective 

data. In [45], a Space-Time-Cube (STC) with icons is presented, whose radius is proportional to the 

size of the precipitating cloud region. With our work we want to provide not only a STC, but also a 3D 

view within an interactive exploring tool, which intends to offer different lightning cluster/track 

presentations to the user (see Section 4.4.1). While the concept of cloud cell tracking in [45] is similar 

to our lightning cluster tracking approach, we wanted to introduce a variety of visual and statistical 

representations of lightning clusters and tracks. Furthermore, we aimed to provide a lightning cluster 

prediction approach including visualization of future clusters and their uncertainties.  
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3. Lightning Points Test Dataset 

We used lightning points detected by LINET on 22.07.2010 in the region of Upper Bavaria, 

Germany. The geographic range of our test data set includes the region of 47°Nï50°N  Latitude and 

10°Eï13°E  Longitude. A large thunderstorm crossed Upper Bavaria between 1 pm and 12 pm. The 

investigated storm was a pre-frontal thunderstorm cluster with strong cell interactions. Within our 

work, we only used in-cloud (IC) lightning. Altogether, 35,087 IC lightning points were detected. In 

the area of Munich airport about 8,750 IC lightning were detected between 18:50 and 20:00. LINET 

provided the 3D position (Latitude, Longitude, and Altitude) and the exact lightning occurrence time 

(at the lightning peak radiation), shown with an example in Table 1. 

Table 1. Example of the provided lightning data. 

Date Time Latitude (°) Longitude (°) Altitude (km)  

20100722 17:45:35.9266801 49.0177 12.8592 9.7 

20100722 18:13:12.8011952 50.4351 11.6775 0 

The locations of the entire test data set (IC lightning) are presented as blue dots in Figure 1, in 3D 

and 2D. Base data (Upper Bavaria districts) are illustrated via red lines on the ground. Additionally, 

the location of Munich Airport is shown (red circle).  

Figure 1. IC lightning data (Left : 3D plot; Right: 2D plot).  

 

The static plot of lightning data as shown in Figure 1 is limited for the understanding of the 

dynamics in lightning data. To overcome this drawback and to answer questions about past and 

predicted lightning cluster and track features, we developed interactive visual and statistical 

explorative tools. 
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4. Development of an Interactive Tool for Lightning Data Analysis 

4.1. Workflow: Lightning Detection, Clustering, Tracking, Prediction, and Visualization 

The test data set (lightning in Upper Bavaria during 22 July 2010, see Section 3) was pre-processed 

first. Following this, lightning clusters were identified, tracked, and nowcasted. Afterwards, a lightning 

GUI was established which enables the user to explore all results of cluster tracking and nowcasting 

together with results from the statistical analysis. 

As illustrated in Figure 2, our approach can be divided into five main steps: (1) Lightning point data 

acquisition and pre-processing; (2) Temporal and spatial clustering towards lightning clusters;  

(3) Lightning cluster tracking; (4) Prediction of lightning clusters and cluster features; and (5) Visual 

and statistical analysis. Figure 3 provides an overview of all adjustable parameters within cluster 

identification, tracking and nowcasting. The parameter values used for the test data in this work are 

shown in red color.  

Figure 2. Overall workflow: from data detection to visual analysis.  

 

Figure 3. Adjustable parameters (in red). 
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4.2. Lightning Cluster Identification and Tracking 

First of all lightning point data, detected by LINET network, were separated into cloud-ground 

lightning (CG) and in-cloud-lightning data (IC). To eliminate outliers, only IC data with an altitude 

between 2 km and 18 km were used. If needed, the lightning point data set can be confined by 

temporal or spatial range limitations. 

In the second step, lightning point data were separated into 10 min time intervals. Each time 

interval contained at least 10 points. Afterwards, all points within each time interval were grouped into 

lightning clusters, using the simple distance based clustering method as described in [46] with a 

distance-threshold of 6 km. Thus, a buffer with a radius of 6 km was applied to each point. All points 

within overlapping buffers were agglomerated towards the same group. The resulting groups represent 

lightning clusters within the according time interval. 

In the third step, identified clusters were tracked. Clusters, which spatially overlap their 2D convex 

hulls within two time sequences, were detected and allocated. This tracking approach was based on the 

method of [34,37]. Cluster splitting and merging were considered as well. A minimum cluster number 

size of 10 points was defined. Increasing this threshold leads to the elimination of smaller clusters. 

For cluster identification and cluster tracking we only took the IC points into account. The model 

might be improved by considering CG points as well. However, with our interactive tool CG point data 

can be visualized. We do not use the term ñlightning cellò, because determined clusters differ from the 

term ñcellò which refers to thunderstorm clouds in meteorology. Within a storm track several cells can 

appear and disappear in connection with strong and spatial narrow interactions. Thus, the cluster itself 

cannot always be seen as a group of lightning produced from the same cell due to the temporal 

sampling in the determination of a cluster. 

4.3. Lightning Nowcasting and Evaluation 

In the fourth step, clusters and cluster features were nowcasted. We decided to project the 

prospective situation of the clusters in 10, 20, and 30 min (ȹt). Our approach is purely geometric for 

the demonstration purpose. The prediction of the future cluster location was based on the extrapolated 

cluster centroid as shown in Figure 4 and Equation (1). We established a simple method predicated on 

velocity and direction change. Thereby, we took the last three track centroids into account. Based on 

the positions of the previous cluster centroids (Pt ī k), we determined the velocity vector of the last two 

cluster centroids. We assume a current cluster speed calculated by the mean of the velocity (v) of the 

last two cluster centroids. Furthermore, direction changes (angle Ŭ) were considered. For the value of  

Ŭ, it is advisable to configure a threshold in order to avoid the tight curves of the nowcasted cluster 

track. Furthermore, Ŭ
*
 (see Figure 4) correlates with the predicted future time ȹt. In other words, the 

longer the nowcasted time the larger the Ŭ
*
. If only the last two centroids of a cluster track exist, the 

angle Ŭ
*
 will be given a value of 180°. The method is explained for the 2D case, but it was established 

for the 3D scenario. 
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Figure 4. Cluster centroid nowcasting concept (2D example). 
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Nowcasting of cluster features, such as cluster density, cluster area, and cluster extension, can be 

performed based on the feature values (p) of the last two to four time steps. A possible extrapolation 

method for lightning cluster features might be polynomial regression (of the second order): 

ὴὼ ὴὼ ὴὼ ρ  ȢȢȢ ὴὼ ὴ ρ (2) 

Equation (2) finds the coefficients of a polynomial function p(x) of degree n which matches the given 

data, p(xi) to yi, in a least squares sense. The outcome p is a row vector of length n + 1 containing the 

polynomial coefficients in descending powers. Disadvantages are resulting values which are 

unrealistically high or below zero.  

We decided to establish a demonstrative rule based prediction method for cluster feature 

nowcasting, which is based on cluster feature values of the last three time steps. Thus, only the 

tendency of value change (increasing/decreasing of ca. 10/20/é%) is reflected in the predicted cluster 

feature values. 

Extrapolated cluster centroids can be evaluated and improved by establishing a learning model. 

Such model compares predicted cluster centroid locations and cluster features with updated ones. After 

each update the model can adapt nowcast parameters (e.g., threshold for Ŭ
*
) in order to improve 

prediction accuracy. The mean differences of centroid positions and cluster features between predicted 

and updated data lead to an uncertainty for the prediction. Furthermore, measurement errors can be 

incorporated in the certainty model. We assume the same 2D-accuracy for cluster centroids as for 

detected lightning (acc = 150 m). It therefore follows that an uncertainty (u) for nowcasted centroids 

(Pt + k) can be achieved with a basic approach, considering the future time step (k), and the maximum 

inaccuracy between the last two cluster centroids as shown in Equation (3):  

όὖ  ὥὧὧὯ ς (3) 

As a result, the 2D-uncertainty for nowcasted cluster centroids assumes a value of 450 m for a  

10 min prediction (k = 1), 600 m for 20 m (k = 2), and so forth.  

For the altitude average the same equation could be applied, whereby a centroid average of about  

10 km leads to an altitude accuracy of 1 km (acc).  

We applied our basic tracking and nowcasting approach (as described in Sections 4.1ï4.3) to the 

test data set. Altogether, 19 lightning tracks were detected. Nowcasting can be performed for any 

moment of time within the temporal range which is defined as ñnowò. To evaluate the results a past 
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analysis was done whereby the test data were separated into 10 min steps and nowcasted centroids 

were determined. Subsequently, predicted cluster centroid locations and cluster features were 

compared with updated ones. 

4.4. Interactive Visual and Statistical Analysis of Dynamic Lightning Cluster Features 

In the fifth step of our workflow an analysis concept for visual and statistical exploration of past 

and nowcasted cluster features is established. It should be mentioned that the main focus of this work 

is not on achieving a perfect tracking and nowcasting solution but, rather, on enabling users to conduct 

visual and statistical analysis of tracked and nowcasted lightning cluster features in an integrated system. 

4.4.1. Lightning Graphic User Interface (GUI) 

To provide an explorative analysis of the dynamic lightning cluster data, an interactive graphic user 

interface (GUI) was designed. The lightning-GUI including a 3D-view and a STC approach was first 

introduced in [27] and within this work the visualization of nowcasted cluster features was improved 

and extended.  

A lightning or thunderstorm expert needs to have visual and statistical information about the dynamic of 

each lightning cluster and its features within a temporal and spatial range of interest. Relevant cluster 

and track features are listed in Table 2 together with information about 2D/3D appearance.  

Table 2. Visual presentation of past and predicted lightning information. 

    
2D 3D STC 

visual presentation 

cluster features 

point cloud ǒ ǒ ǒ 

centroid point ǒ ǒ ǒ 

extension 

convex hull ǒ ǒ ǒ 

ellipse ǒ 
 

 

ellipsoid 
 
ǒ  

rectangle ǒ 
 

 

cuboid 
 
ǒ  

* uncertainty buffer ǒ ǒ ǒ 

track features 

track line ǒ ǒ ǒ 

track lane ǒ ǒ ǒ 

*  uncertainty buffer ǒ ǒ ǒ 

* only of nowcasted cluster/track. 

Representative visualizations of a tracked and nowcasted lightning cluster in 3D space are the 

representation of the point cloud, the centroid, and the 3D cluster extension in the form of: convex 

hull, ellipsoid, and cluster cuboid. Additionally, an uncertainty buffer can be illustrated for the 

nowcasted clusters. The past and predicted 3D lightning tracks can be visualized by a line or a lane. 

Furthermore, different visual cluster features can be illustrated on the track. Likewise, a presentation of 

an uncertainty buffer can be applied for the nowcasted track. 

Graphic variables to cover all possible graphic variations on a map have already been delineated in [47]. 

Bertin distinguished between seven visual variables: form, color, texture, size, position, orientation, 
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and value. He combined these visual variables with a visual semantics in order to link data attributes to 

visual elements. Furthermore, in [12], geo analysis tasks and, therefore, specifies appropriate visual 

variables are described. Table 3 lists seven graphic variables based on [47] which can be adjusted for 

an appropriate visualization of lightning cluster and track features. For example, changeable graphic 

variables of the convex hull surface (which represents a lightning cluster in form of a 2D polygon) are: 

color, texture, luminance, transparency, and saturation. These variables have to be carefully chosen to 

provide an appropriate presentation for the data viewer/analyzer. In this context, cartographic 

principles (readable, correct, complete, and esthetic visualization) have to be complied with as much as 

possible. It should be noted that the graphic variables of the cluster centroid can depend on the 

quantity/intensity of the cluster points.  

Table 3. Graphic variables of cluster and track features.  
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Form ǒ 
            

Color 
  

ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

Texture ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

Luminance ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

Size ǒ ǒ 
 

ǒ 
 

ǒ 
 

ǒ 
 

ǒ ǒ 
  

Sharpness 
 

ǒ 
 

ǒ 
 

ǒ 
 

ǒ 
 

ǒ ǒ 
  

Transparency 
  

ǒ 
 

ǒ 
 

ǒ 
 

ǒ 
  

ǒ ǒ 

Saturation ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ ǒ 

* only for nowcasted cell/track 

An interactive GUI enables the user to explore and analyze data. Within our GUI-concept for 

lightning clusters the user should be able to:  

¶ load in lightning point data (x,y,z,t) 

¶ choose between 3D-view (x-y-z) and STC (x-y-t) 

¶ choose/combine between different cluster and track feature visualizations, see Table 2 

¶ enable nowcasting for the next 10, 20, 30, é, 60 min 

¶ adapt graphic variables  

¶ set limits for temporal and spatial range 

¶ explore plotted data via zoom, pan, rotate, animate 

To provide the best performance, all graphic features should be preprocessed before using the GUI.  
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Two main visualization concepts are implemented: the 3D view and the STC. The 3D plot gives 

altitude information, while time information is missing. The advantage of the STC is that it provides 

the information which is missing in the 3D plot. Within the 3D plot, overlapping might arise when 

clusters occur at different moment of times at the same location. The STC solves this problem and 

provides the missing insight. While the altitude information is missing in the STC, the combination of 

both plots is complementary and provides, through its interactive user interface, a variety of 

information about the lightning cluster dynamics. By changing the view perspective within the STC, 

an observation from above (2D-view) enables the same view and information as the traditional 2D 

plot, as shown in Figure 1. The GUI enables the user to combine or switch between different 

visualization options for lightning cluster and cluster-track features, demonstrated in Figures 5ï8. 

Figure 5. Lightning GUI for explorative analysis of past and nowcasted data. 

 

Figure 6. STC of lightning tracks (Left ), 3D view of lightning tracks (Right). 

 



ISPRS Int. J. Geo-Inf. 2013, 2 829 

 

 

Figure 7. Tendency of value change in nowcasted cluster features (extension and density). 

 

Figure 8. Probability buffer for nowcasted cluster centroids and cluster convex hulls. 

 

4.4.2. Statistical Analysis of Dynamic Lightning Cluster Features 

In addition, essential for lightning cluster feature analysis are statistical data derived from the 

processed cluster tracking/nowcasting. Table 4 lists all important statistical data of lightning clusters 

and tracks. These statistical data could be included in the lightning GUI, thus, currently 

highlighted/selected data (clusters or tracks) could be illustrated and analyzed with the help of 

additional tools (e.g., by using diagrams). 

  


