
ISPRS Int. J. Geo-Inf. 2013, 2, 645-664; doi:10.3390/ijgi2030645 

 

ISPRS International 

Journal of  

Geo-Information 
ISSN 2220-9964 

www.mdpi.com/journal/ijgi/ 

Article 

Spatially-Explicit Simulation Modeling of Ecological Response to 

Climate Change: Methodological Considerations in Predicting 

Shifting Population Dynamics of Infectious Disease Vectors 

Radhika Dhingra 
1
, Violeta Jimenez 

1
, Howard H. Chang 

2
, Manoj Gambhir 

3
, Joshua S. Fu 

4
, 

Yang Liu 
1
 and Justin V. Remais 

1,5,
* 

1 
Department of Environmental Health, Rollins School of Public Health, Emory University,  

1518 Clifton Rd. NE, Atlanta, GA 30322, USA; E-Mails: rdhingr@emory.edu (R.D.);  

violeta.jimenez@emory.edu (V.J.); yang.liu@emory.edu (Y.L.) 
2 

Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, 

1518 Clifton Rd. NE, Atlanta, GA 30322, USA; E-Mail: howard.chang@emory.edu 
3
 MRC Centre for Outbreak Analysis and Modeling, Department of Infectious Disease Epidemiology, 

Imperial College London, London, SW7 2AZ, UK; E-Mail: m.gambhir@imperial.ac.uk 
4 

Department of Civil and Environmental Engineering, University of Tennessee, Knoxville,  

62 Perkins Hall, Knoxville, TN 37996, USA; E-Mail: jsfu@utk.edu 
5 

Program in Population Biology, Ecology and Evolution, Graduate Division of Biological and 

Biomedical Sciences, Emory University, 1510 Clifton Rd., Atlanta, GA 30322, USA 

* Author to whom correspondence should be addressed; E-Mail: justin.remais@emory.edu;  

Tel.: +1-404-712-8908; Fax: +1-404-727-8744. 

Received: 18 May 2013; in revised form: 17 June 2013 / Accepted: 27 June 2013 / 

Published: 22 July 2013 

 

Abstract: Poikilothermic disease vectors can respond to altered climates through spatial 

changes in both population size and phenology. Quantitative descriptors to characterize, 

analyze and visualize these dynamic responses are lacking, particularly across large 

spatial domains. In order to demonstrate the value of a spatially explicit, dynamic 

modeling approach, we assessed spatial changes in the population dynamics of Ixodes 

scapularis, the Lyme disease vector, using a temperature-forced population model 

simulated across a grid of 4 × 4 km cells covering the eastern United States, using both 

modeled (Weather Research and Forecasting (WRF) 3.2.1) baseline/current (2001–2004) 

and projected (Representative Concentration Pathway (RCP) 4.5 and RCP 8.5; 2057–2059) 

climate data. Ten dynamic population features (DPFs) were derived from simulated 
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populations and analyzed spatially to characterize the regional population response to 

current and future climate across the domain. Each DPF under the current climate was 

assessed for its ability to discriminate observed Lyme disease risk and known vector 

presence/absence, using data from the US Centers for Disease Control and Prevention. 

Peak vector population and month of peak vector population were the DPFs that performed 

best as predictors of current Lyme disease risk. When examined under baseline and 

projected climate scenarios, the spatial and temporal distributions of DPFs shift and the 

seasonal cycle of key questing life stages is compressed under some scenarios. Our results 

demonstrate the utility of spatial characterization, analysis and visualization of dynamic 

population responses—including altered phenology—of disease vectors to altered climate. 

Keywords: vector-borne disease; spatially-explicit; dynamic; population model; 

Ixodes scapularis; climate change; temperature; population response; deer ticks 

 

1. Introduction 

Understanding the ecological response to anthropogenic environmental changes, including changes 

in climate, land use, land cover and other factors, requires quantitative tools to characterize, analyze 

and visualize dynamic changes in the populations of key organisms of interest. Developing such tools 

is made difficult by the fact that population responses to environmental change are spatially and 

temporally complex, particularly for organisms with multiple environmental life stages, such as those 

that participate in the transmission of vector-borne diseases (VBD). Disease vector populations may 

exhibit variations in seasonal timing and duration, and their generally non-linear response to 

environmental signals makes prediction of the risk posed by VBD under altered environmental 

conditions challenging [1–3]. When exposed to changing climatic conditions, vector distribution and 

the risks of VBD may shift substantially across time and space [1,4,5]. Yet, a great deal of uncertainty 

remains for many VBD systems [4,6–8], and little is known regarding the dynamic nature of the 

population response to climate change, particularly vector phenology (timing of life stages), 

seasonality and the duration of key population events. 

While some ecological analyses have characterized the dynamic population response of various plant 

and arthropod species to external forcings in a spatially explicit fashion (e.g., [9–12]), much analogous 

work on VBD has neglected the spatial domain [13,14]. Still, other work forgoes system dynamics, 

instead investigating the spatial patterns of static population measures, such as presence/absence or mean 

abundance (see, for instance, [15] for Lyme disease and [16] for hantavirus). Such analyses make use of 

statistical relationships between climate and habitat suitability to estimate, for instance, the potential 

changes in the distribution of habitat suitability for, or nymphal density of, Ixodes scapularis, the vector 

of Lyme disease [17,18]. This approach offers little insight into the nature of the population’s response 

over time, such as shifts in peak population timing or variability in population density during key 

exposure periods (e.g., high season for recreational activities). Given the substantial and continuing 

disagreement regarding how climate may change the distribution of VBD (e.g., [4,7]), analyses 
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capable of assessing the relationship between exogenous forcings and population dynamics in space 

and time may provide such insights. 

What is more, geovisualization of the dynamic VBD response to environmental change could 

provide key information (e.g., maps summarizing complex spatio-temporal phenomena) for 

developing policies to respond to shifting risk. Thus, geospatial tools for characterizing, analyzing and 

predicting the response of VBD to future changes are desirable, and these should emphasize dynamic 

phenomena known to be important for understanding risk, such as vector phenology and seasonality.  

Phenology—the timing of life stages—is known to be sensitive to climatic change and is an important 

determinant of the spatial distribution of arthropods [19,20]. Current models investigating arthropod 

distribution under future climates generally ignore phenology, instead, establishing a relationship 

between a vector’s current abundance and key habitat characteristics and, then, applying that model to 

projected future conditions [21,22]. An examination of an organism’s phenological response can reveal 

important, but subtle, impacts of changing climate. For instance, the date of flowering and fruiting have 

been shown to be important determinants of aspen distribution [23], and the date of first oviposition has 

been shown to be important for gypsy moth distribution [24]. Characterization of life stage-specific 

dynamic responses can highlight such subtle determinants of the distribution of vectors under the 

future climate. 

The seasonality of events may also shift under future conditions, with important consequences for 

VBD risk. For instance, vector populations may peak at certain times of the year, with peak incidence 

of disease occurring at other times (e.g., see [25] for Lyme disease). Some models of VBD response to 

climate change attempt to roughly characterize changes in seasonality (e.g., [26]); some integrate 

seasonal elements, such as temperature, humidity and daytime hours, through degree-day models 

(e.g., [27–30]), and still, others do not explicitly account for seasonality (e.g., [31]). A more detailed 

spatial representation of seasonal shifts would make it possible to characterize the potentially profound 

effect that environmental change may have on the length and timing of VBD transmission seasons. 

Here, we develop a spatially-explicit modeling approach for investigating the dynamic population 

responses of a disease vector of interest, with the goal of enhancing our understanding of future VBD 

risk. We introduce the concept of dynamic population features (DPFs), which provide information on 

population cycling, seasonal timing and phenological events across vector life stages. Importantly, we 

describe how analysis of such features—such as number and timing of population peaks (Table 1)—may 

be used to predict disease risk. 

To demonstrate the utility of this modeling approach, we examine the responses of the black-legged 

deer tick (Ixodes scapularis), the vector for Lyme disease, to changes in temperature across the eastern 

United States. I. scapularis is an excellent model organism with which to examine the influence of 

climate change on phenological and seasonal characteristics: it is known to be highly sensitive to 

environmental conditions, including temperature [6,15,25,32]. Furthermore, the three I. scapularis life 

stages (larva, nymph and adult) require different temperature conditions to support host finding or 

progress to the next life stage [28]. 
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Table 1. Dynamic population features (DPFs) of population response. 

Absolute Population Features 

Mean & 

Median 
Avg. and median population (3yr) 

 

Peak Pop. Avg. of maximum yearly population 

Peaks per 

Year 
Avg. no. of peaks per year 

Timing Population Features 

Peak 

Month 
Month of the yearly peak 

 

Peak to 

Trough 

No. of days between yearly peak and 

yearly trough 

IP to IP 
Time between inflection points (IP) on 

either side of yearly max. pop. 

UQ/IQR 

Avg. of month during which the  

inter-quartile range (IQR) of the upper 

quartile (UQ) occur 

Wave 

Angle 

Wave angle for period = 90.5 days, 

from continuous wavelet analysis 

using a complex Morlet waveform 

(after [33]).  

Exposure Population Features 

IP Pop 

The summation of tick population for 

all days included in the IP to IP 

calculation 
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We explore the Lyme disease system as a case study, simulating I. scapularis population dynamics 

over the eastern United States using modeled climate data, and spatially characterize, analyze and 

visualize key DPFs for each tick life stage. We examine DPFs from simulated dynamics under current 

climate conditions and compare these to observed data to ascertain which features best predict current 

levels of disease risk. We then project DPFs under two future climate scenarios and provide key 

geovisualizations of projected vector dynamics over the spatial range. We show, by characterizing and 

visualizing DPFs, how we can determine which population features best predict disease risk under 

current conditions and can then explore how future conditions may lead to shifts in these same DPFs in 

the future. We analyze DPFs in the context of I. scapularis and Lyme disease risk, but note that the 

approach shows promise for other organisms and disease systems. 

2. Methods 

2.1. Modeling Methodology 

The overarching analysis involved four key steps. First, a deterministic, dynamic population model 

was run, in parallel, over a large geographic area to generate spatially explicit simulations of 

population density in response to temperature variation. A daily time step was used in conjunction with 

the smallest grid cell size for which temperature data were available from a global circulation model. 

Second, simulated population dynamics were recorded at each grid cell for each vector life stage under 

current and future climate scenarios, and these were characterized in terms of their dynamic population 

features (DPFs), which were chosen to highlight population trends, seasonality or a combination of 

both. Third, DPFs were evaluated for their ability to predict the current distribution of vectors or 

human disease risk, using publically available data. Finally, DPF values found to be important 

determinants of current vector or disease distributions were visualized across the spatial domain for a 

range of future climate scenarios. We describe each of these steps in detail, with the application to 

Lyme disease, next. 

2.2. Lyme Model 

A twelve-stage temperature-driven life cycle model of black-legged deer ticks (I. scapularis) 

(described in [28]) was adapted for high-performance simulation using Simulink (v. 7.0) and Matlab 

(R 2011b) and executed across a cluster of 48 nodes. The model was run using daily (rather than 

monthly) mean temperatures, and the model was coded to be spatially explicit, executed in parallel at 

each grid cell across a large spatial domain. Temperature drivers shape simulated tick populations 

through degree-day functions, which model development delays, and through temperature-dependent 

activity parameters, which model host-seeking behaviors (see Supplementary Information, Table S1). 

Using a daily time step, model simulations at each cell were carried out over the domain under both 

the baseline and projected climate periods. Time series outputs, recorded daily, included questing adult 

(QA), questing nymph (QN), and questing larva (QL) populations. Given the rather large spatial 

resolution simulated from the perspective of Ixodes ecology (e.g., [34,35]), populations do not interact 

between grid cells (i.e., im/emigration are not modeled). 
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2.3. Domain and Climate Data 

Simulation and subsequent analyses were conducted in the eastern United States across a domain of 

4 × 4 km grid cells. Customized climate data across this grid were obtained from the Regional Climate 

Model (Weather Research and Forecasting (WRF) 3.2.1) simulated at the University of Tennessee/Oak 

Ridge National Laboratory [36]. Daily temperatures at each cell were calculated as an average of daily 

minimum and maximum temperatures produced by climate simulations for a baseline time period  

(2001–2004) and two projected scenarios of differing severity (for 2057–2059). Projected scenarios, 

Representative Concentration Pathway (RCP) 4.5 and RCP 8.5, correspond to a continuous rise in 

radiative forcing to 4.5 W/m
2
 (moderate scenario) and 8.5 W/m

2
 (severe scenario), respectively,  

in 2100 [37]. 

2.4. Dynamic Features of Ixodes Population Response to Seasonality Shifts 

Dynamic population features, chosen to highlight Ixodes population phenology and seasonality, 

were determined as described in Table 1 for each year. These were used to compare simulated 

population dynamics for each life stage at the grid cell level for three years of simulation under both 

the baseline and projected climate conditions. With the exceptions of the Mean or Median, calculated 

as the three-year mean or median of the simulated daily population, DPFs were calculated for each 

year of the simulation period and averaged to produce a final DPF value at each cell for each  

climate scenario. 

Population response DPFs included three-year Mean and three-year Median populations; the 

maximum population during each year (Peak Population); and the average number of local maxima 

per year (Peaks per Year). A 90-day moving window was used to identify each local peak through the 

course of the year. In order to identify peaks in the first 90 days of the simulation output, the last 89 

days of simulation output were prepended to the output to provide a 90-day window. Similarly, the 

first 89 days of simulation output were appended to the simulation in order to aid identification of 

peaks in the final 90 days of the simulation. 

Seasonality DPFs, which were defined for each life stage, included two quantifications of season 

length and one of season timing. One classification of season length, termed IP to IP, was defined as 

the number of days between inflection points on either side of the annual maximum population. 

Inflection points were defined as changes in the concavity of the loess-smoothed (30-day window) 

population time series; changes in concavity were determined using a 3-point central difference 

equation on the smoothed time series. The second season length quantification was defined as the 

number of days from the annual maximum population to the annual minimum population, termed Peak 

to Trough. Wave Angle may be understood as the relative timing of each cell’s season. To determine 

Wave Angle, continuous wavelet analysis was carried out using a Morlet wavelet [38] for the period of 

maximum power, ~90.5 days (see Supplementary Information). DPFs combining seasonality and 

absolute population included IP Pop is the number of tick-days during each life stage’s season (that is, 

the summation of the tick population for all days included in the IP to IP calculation). Additionally, 

UQ/IQR is used to estimate the period within the calendar year where the highest quartile  

simulated populations occur. Thus, UQ/IQR is defined by selecting the time points (days) in which the  



ISPRS Int. J. Geo-Inf. 2013, 2 

 

 

651 

upper quartile populations occur, then taking the mean of the interquartile range of these  

time points (Table 1). 

2.5. Comparison of DPFs to Observed Data 

DPFs obtained from the model as described above were fit to observed county-level I. scapularis 

presence (coded in three levels as absent, reported and established) and Lyme disease incidence (coded 

in four levels as none/minimal, low, medium and high) obtained from the Centers for Disease Control 

and Prevention (CDC) [33,39]. For all analyses, the four reported classifications were grouped into all 

possible dichotomizations (e.g., for Lyme disease, dichotomizations included minimal/none vs. low, 

medium and high; minimal/none and low vs. medium and high; and minimal/none, low and medium vs. 

high). DPFs were spatially averaged to the county level and compared to the observed (CDC) data 

using both area under the receiver operating characteristic curve (AUC) and logistic regression to 

ascertain each DPF’s predictive ability. AUC (range: 0 to 1) quantizes model predictive accuracy for a 

dichotomous outcome, where a value of 0.5 indicates no predictive ability, a value of 1 indicates 

perfect discrimination and a value of 0 indicates lack of discrimination. To assess potential spatial 

variation in the ability of DPFs to predict Lyme disease risk, AUCs for selected DPFs were also 

determined for counties in three regions (Northeast, South and Midwest), as defined by the US census. 

2.6. Spatial Sensitivity Analysis 

To assess DPF sensitivity to spatial autocorrelation, the above-defined model outputs were also fit 

to observed Lyme disease and tick prevalence data using both a (non-spatial) logistic model and a 

spatial logistic model. The spatial regression model is defined as follows:  

                        (1) 

where yi is the dichotomized observed Lyme disease category, α is the overall baseline risk, λi is the  

county-specific spatial random effects and β represents the log odds ratio associated with DPFs of 

population response (  ). The model used controls for the effects of spatial autocorrelation using an 

intrinsic conditional autoregressive (CAR) model [40]. The CAR model, often formulated by the 

conditional distribution of λi, given its neighbors, assumes that λi, for each county, i, is a spatial average 

of its neighbors. The conditional distribution is Gaussian, with mean 
 

  
        and variance      , 

where      denotes that county,  , shares a boundary with county   , and    is the number of  

boundary-sharing neighbors for county  . The percent change in   and the magnitude of parameter,   , 

which controls the degree of spatial similarly, were used to assess the improvement in fit provided by the 

addition of the spatial term to the logistic regression model. 

3. Results 

Simulated population dynamics for the three questing tick life stages were obtained from a  

temperature-forced model simulated across a grid of 4 × 4 km cells covering the eastern United States 

under both baseline and projected climate. Based on these simulated population dynamics, ten 

dynamic population features (DPFs) were derived and analyzed spatially to characterize the population 
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response to current and future climate across the domain. Pairwise correlations between DPFs were 

determined, and each DPF under the current climate was assessed for its ability to discriminate Lyme 

disease risk and vector presence/absence using observed data from the US CDC. 

3.1. Correlation among DPFs 

To determine the degree to which DPFs are collinear and, thus, to quantify related aspects of the 

population curve, correlations were calculated for all pairs of DPFs. There was strong correlation 

between different DPFs of absolute population (Mean, Median, and Peak Population) in all questing 

life stages over the spatial extent of analysis (rs ≥ 0.96; see Table 2). Peaks per Year and IP Pop were 

also highly correlated (rs ≥ 0.88) with absolute population DPFs and each other in the questing adult 

stage, while Peaks per Year was also highly correlated (rs ≥ 0.90), with absolute population DPFs and 

IP to IP in the questing nymph and larval stages. Only Wave Angle was inversely correlated with all other 

DPFs in the nymph and adult stages. With the exception of its correlation with UQ/IQR (QA: rs = −0.77; 

QN: rs = −0.81), this inverse relationship was weak (rs ≥ −0.63). In the questing larval stage, only IP to 

IP showed a weak inverse correlation with other DPFs (save for its correlation with UQ/IQR). No 

timing DPF was strongly associated with any other timing DPF in any life stage.  

Table 2. Spearman correlation coefficients (rs) * were assessed between DPFs at each cell 

for each questing life stage under the baseline climate scenario.  

 
Mean Median 

Peak 
Population 

Peaks per 
Year 

Peak 
Month 

Peak to 
Trough 

IP to 
IP 

IP 
Pop 

UQ/IQR 
Wave 
Angle 

Questing Adult 

Mean 1 0.98 −0.48 0.99 −0.47 0.25 0.26 0.98 0.55 −0.34 

Median 0.98 1 −0.47 0.96 −0.46 0.24 0.19 0.94 0.47 −0.24 

Peak 
Population 

−0.48 −0.47 1 −0.46 0.86 0.11 −0.17 −0.48 −0.11 0.10 

Peaks per 
Year 

0.99 0.96 −0.46 1 −0.44 0.26 0.29 0.99 0.60 −0.38 

Peak Month −0.47 −0.46 0.86 −0.44 1 0.08 −0.19 −0.47 −0.14 0.08 

Peak to 
Trough 

0.25 0.24 0.11 0.26 0.08 1 0.09 0.23 0.47 −0.33 

IP to IP 0.26 0.19 −0.17 0.29 −0.19 0.09 1 0.40 0.48 −0.38 

IP Pop 0.98 0.94 −0.48 0.99 −0.47 0.23 0.40 1 0.63 −0.41 

UQ/IQR 0.55 0.47 −0.11 0.60 −0.14 0.47 0.48 0.63 1 −0.77 

Wave Angle −0.34 −0.24 0.10 −0.38 0.08 −0.33 −0.38 −0.41 −0.77 1 

Questing Nymphs 

Mean 1 1.00 −0.42 0.99 0.20 0.17 0.99 0.37 0.60 −0.45 

Median 1.00 1 −0.41 0.98 0.21 0.18 0.98 0.38 0.62 −0.47 

Peak 
Population 

−0.42 −0.41 1 −0.43 −0.59 −0.01 −0.43 −0.11 −0.10 0.02 

Peaks per 
Year 

0.99 0.98 −0.43 1 0.19 0.14 0.99 0.35 0.55 −0.40 

Peak Month 0.20 0.21 −0.59 0.19 1 −0.25 0.17 0.12 0.03 0.17 

IP to IP 0.17 0.18 −0.01 0.14 −0.25 1 0.26 0.49 0.58 −0.63 

IP Pop 0.99 0.98 −0.43 0.99 0.17 0.26 1 0.40 0.61 −0.46 

Peak to 
Trough 

0.37 0.38 −0.11 0.35 0.12 0.49 0.40 1 0.71 −0.51 

UQ/IQR 0.60 0.62 −0.10 0.55 0.03 0.58 0.61 0.71 1 −0.82 

Wave Angle −0.45 −0.47 0.02 −0.40 0.17 −0.63 −0.46 −0.51 −0.82 1 

* All values are significant at p < 0.0005. 
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Table 2. Cont. 

 
Mean Median 

Peak 

Population 

Peaks per 

Year 

Peak 

Month 

Peak to 

Trough 

IP to 

IP 

IP 

Pop 
UQ/IQR 

Wave 

Angle 

Questing Larvae 

Mean 1 0.96 −0.43 0.98 0.20 −0.52 0.97 0.50 0.55 0.36 

Median 0.96 1 −0.37 0.90 0.17 −0.65 0.88 0.44 0.70 0.27 

Peak 

Population 
−0.43 −0.37 1 −0.43 −0.57 0.17 −0.43 0.03 −0.09 0.13 

Peaks per 

Year 
0.98 0.90 −0.43 1 0.20 −0.44 0.99 0.55 0.46 0.45 

Peak Month 0.20 0.17 −0.57 0.20 1 −0.11 0.19 −0.03 0.00 −0.06 

IP to IP −0.52 −0.65 0.17 −0.44 −0.11 1 −0.39 −0.38 −0.92 −0.16 

IP Pop 0.97 0.88 −0.43 0.99 0.19 −0.39 1 0.55 0.42 0.46 

Peak to 

Trough 
0.50 0.44 0.03 0.55 −0.03 −0.38 0.55 1 0.41 0.74 

UQ/IQR 0.55 0.70 −0.09 0.46 0.00 −0.92 0.42 0.41 1 0.17 

Wave Angle 0.36 0.27 0.13 0.45 −0.06 −0.16 0.46 0.74 0.17 1 

* All values are significant at p < 0.0005. 

3.2. Comparison of DPFs to Observed Data 

Each DPF was fit to observed tick presence or to Lyme disease risk from the US CDC, producing 

an AUC value, a discriminatory index that allows comparison of continuous predictions to 

dichotomous observations without requiring subjective cut points. Peak Month and Peak Population 

showed the greatest discriminatory ability across all life stages when compared with CDC Lyme 

disease risk data (Table 3; AUC = 0.54 to 0.90). Among most DPFs, the minimal vs. high or the 

minimal/low/medium vs. high dichotomizations gave higher AUC values than the remaining 

dichotomizations. The dichotomization of minimal vs. low/medium/high performed worst in AUC 

analyses across all questing life stages. Peak to Trough, IP to IP, IP Pop, UQ/IQR, and Wave Angle 

showed inconsistent predictive ability over all three life stages. Of these, only IP Pop in the QN life 

stage showed some improved discriminatory ability. 

Comparison of DPFs to CDC tick presence data showed markedly less discriminatory ability. Peak 

Population, Peak Month, Peak to Trough and UQ/IQR were statistically significant predictors of tick 

presence across all questing life stages and dichotomizations of CDC data, but AUC values were low 

and ranged from 0.53 to 0.71 for QA, from 0.54 to 0.69 for QN, and from 0.52 to 0.69 for QL. For QL 

Wave Angle and tick presence, AUC ranged from 0.66 to 0.7. Along with QA Peak Month and QA 

Peak Population, this was among the strongest predictors of tick presence. However, for the 

dichotomization minimal/none vs. low/medium/high, DPFs, Mean, Median, Peaks per Year, IP to IP, 

IP Pop and UQ/IQR, were uniformly non-significant across all questing life stages. Peak Month AUC 

values were very similar for QN and QL, and slightly lower for QA. 
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Table 3. Area under the receiver operating characteristic curve (AUC) analysis comparing dynamic population features (DPFs) to 

observed Lyme disease incidence and tick presence. 

Observational Data Set / 

Dichotomization 
N Mean Median 

 Peak 

Population 

Number  

Peaks/Yr 

Peak 

Month 

Peak to 

Trough 

IP to 

IP 

IP  

Pop  

UQ/ 

IQR 

Wave  

Angle 

Questing Adults                       

Lyme disease risk             

 Minimal vs. Low/Medium/High 1,683 0.47 0.48  0.73 0.45 0.70 0.60 0.56 0.45 0.62 0.51 

 Minimal/Low vs. Medium/High 1,683 0.64 0.67  0.81 0.62 0.82 0.53 0.48 0.60 0.58 0.59 

 Minimal/Low/Medium vs. High 1,683 0.72 0.74  0.83 0.72 0.84 0.74 0.63 0.71 0.68 0.61 

 Minimal vs. High 844 0.71 0.73  0.90 0.70 0.89 0.69 0.61 0.68 0.63 0.60 

Tick presence             

 None vs. Reported/Established 1,683 0.52 0.52  0.69 0.54 0.67 0.60 0.54 0.54 0.61 0.53 

 None/Reported vs. Established 1,683 0.48 0.49  0.67 0.47 0.67 0.53 0.52 0.46 0.57 0.52 

 None vs. Established 1,305 0.47 0.49  0.71 0.46 0.70 0.56 0.53 0.45 0.60 0.52 

Questing Nymphs                       

Lyme disease risk             

 Minimal vs. Low/Medium/High 1,683 0.46 0.45  0.70 0.46 0.54 0.57 0.53 0.47 0.60 0.56 

 Minimal/Low vs. Medium/High 1,683 0.70 0.70  0.79 0.68 0.76 0.61 0.71 0.71 0.76 0.79 

 Minimal/Low/Medium vs. High 1,683 0.75 0.74  0.80 0.75 0.90 0.40 0.56 0.75 0.61 0.69 

 Minimal vs. High 844 0.73 0.73  0.86 0.73 0.92 0.65 0.56 0.74 0.55 0.67 

Tick presence             

 None vs. Reported/Established 1,683 0.53 0.53  0.67 0.53 0.55 0.54 0.54 0.52 0.55 0.51 

 None/Reported vs. Established 1,683 0.49 0.49  0.65 0.49 0.69 0.58 0.54 0.50 0.53 0.48 

 None vs. Established 1,305 0.48 0.52  0.69 0.48 0.68 0.58 0.55 0.49 0.54 0.49 

Questing Larvae                       

Lyme disease risk             

 Minimal vs. Low/Medium/High 1,683 0.46 0.54  0.70 0.45 0.54 0.73 0.58 0.46 0.58 0.75 

 Minimal/Low vs. Medium/High 1,683 0.69 0.73  0.79 0.66 0.76 0.52 0.75 0.65 0.78 0.46 

 Minimal/Low/Medium vs. High 1,683 0.74 0.72  0.80 0.75 0.90 0.52 0.62 0.73 0.63 0.58 

 Minimal vs. High 844 0.73 0.71  0.85 0.72 0.92 0.37 0.58 0.71 0.61 0.58 

Tick presence             

 None vs. Reported/Established 1,683 0.53 0.53  0.68 0.54 0.55 0.66 0.55 0.53 0.54 0.70 

 None/Reported vs. Established 1,683 0.49 0.49  0.65 0.48 0.69 0.65 0.53 0.48 0.52 0.66 

 None vs. Established 1,305 0.52 0.52  0.69 0.47 0.68 0.69 0.55 0.47 0.53 0.71 

* Bold indicates significance; orange indicates AUC > 0.8 and p < 0.05; blue indicates 0.8 > AUC > 0.7 and p < 0.05. 
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3.2.1. Regional Analyses 

A regional analysis, analogous to the preceding AUC analysis, was carried out for Peak Month and 

Peak Population, to ascertain the degree to which discriminatory ability varies by location. In most 

cases, AUCs for Peak Month and Peak Population were observed to be highest (Table 4) in the 

Midwest region of the eastern United States (AUC: 0.80 to 0.96), where the AUC was most often 

statistically significant. AUC values in the North were consistently lower than the Midwest (AUC: 

0.71 to 0.78), for both DPFs. In the South, Peak Month usually demonstrated higher statistically 

significant predictive ability for QN and QL than Peak Population, while both DPFs demonstrated 

similar predictive ability for QA.  

Table 4. Regional AUC * sub-analyses. 

  Midwest North South 

Observational Data 

Set/Dichotomization 
N 

Peak 

Month  

Peak 

Population 
N 

Peak 

Month  

Peak 

Population 
N 

Peak 

Month  

Peak 

Population 

Questing Adults                   

Lyme disease risk            

 Minimal vs. 

Low/Medium/High 
461 0.82 0.81 214 0.68 0.67 1,008 0.60 0.64 

 Minimal/Low vs. 

Medium/High 
461 0.81 0.80 214 0.75 0.73 1,008 0.72 0.71 

 Minimal/Low/Medium 

vs. High 
461 0.89 0.92 214 0.72 0.71 1,008 0.70 0.70 

 Minimal vs. High 226 0.95 0.96 88 0.79 0.78 530 0.77 0.78 

Questing Nymphs 
         

Lyme disease risk 
         

 Minimal vs. 

Low/Medium/High 
461 0.82 0.81 214 0.66 0.67 1,008 0.53 0.62 

 Minimal/Low vs. 

Medium/High 
461 0.81 0.80 214 0.75 0.74 1,008 0.95 0.63 

 Minimal/Low/Medium 

vs. High 
461 0.91 0.91 214 0.72 0.72 1,008 0.94 0.62 

 Minimal vs. High 226 0.96 0.96 88 0.78 0.78 530 0.97 0.78 

Questing Larvae 
         

Lyme disease risk 
         

 Minimal vs. 

Low/Medium/High 
461 0.82 0.81 214 0.66 0.63 1,008 0.53 0.62 

 Minimal/Low vs. 

Medium/High 
461 0.81 0.80 214 0.75 0.71 1,008 0.95 0.61 

 Minimal/Low/Medium 

vs. High 
461 0.91 0.90 214 0.72 0.71 1,008 0.94 0.58 

  Minimal vs. High 226 0.96 0.96 88 0.78 0.76 530 0.97 0.63 

* Bold indicates significance; orange indicates AUC > 0.8 and p < 0.05; blue indicates 0.8 > AUC > 0.7 and p < 0.05. 
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3.2.2. Spatial Sensitivity Analysis 

Regression coefficients produced in conditional autoregressive models for each DPF at each life 

stage on CDC data were not substantively different from those produced by a non-spatial regression 

(not shown). Conditional autoregressive models exhibited low values of     (0.003, 0.06) relative to 

the intercept and/or the parameter value, indicating that the contribution of spatial autocorrelation 

is small. 

3.3. Shifts in Geographic Distribution of DPFs 

DPFs in all cells (N = 262,152) under future climate scenarios were significantly (p < 0.001) 

different than those from baseline simulations. Simulated mean, median and peak populations all show 

increases across most of the eastern United States, with the largest increases in the RCP 8.5 scenario. 

In particular, 18.8%, 7.7% and 4.1% of cells showed an increase of an order of magnitude or greater in 

peak QA, QN and QL population, respectively, in the RCP 8.5 scenario. Relative to baseline, regions 

of highest projected mean, median and peak tick population expanded both northward and southward 

to encroach upon the areas of low DPF values occurring across the Appalachian mountain range 

(e.g., Figure 1). 

While both projected scenarios showed simulated questing life stage average Peaks per Year that 

were significantly different from the baseline case and the two projected scenarios were significantly 

different from one another, there was no substantive change (<0.01 peaks per year) when these 

comparisons were made across the entire domain. Variations in population response between scenarios, 

as shown by Peaks per Year, demonstrate the lack of uniform response (Figure 1). The number of cells 

projected to have two or more population peaks per year for the QA life stage increased in northern 

regions, while there was a net decrease in the number of cells with more than one peak in southern 

regions. In contrast, for the QL and QN life stages, the number of cells experiencing more than one 

population peak per year decreased uniformly across the spatial domain. 

Under scenarios RCP 4.5 and RCP 8.5 compared to baseline, the season length for QA, as defined 

by IP to IP, has a pronounced increase from 50–70 day seasons to 60−90 and 80−100 day seasons, 

respectively, in the South. In the North, there is a net decrease in QA season length for both future 

scenarios (Figure 1). For QN, projected season length remained the same as baseline, though there was 

a slight decrease in season length for much of the northern portion of the study area in both projected 

scenarios, and an increase of approximately 40 days in season length in a small portion of the  

land-locked Midwest. Projected QL season length showed a decrease of approximately 10 days in 

southern areas, while the overall geographic area with higher season lengths decreased with increasing 

scenario severity. Changes in projected season length, as defined by Peak to Trough, were 

approximately uniform across the domain (not shown). QA Peak to Trough lengthened on average by 

eight days in RCP 4.5, and by 1.4 days in RCP 8.5, as compared to baseline. QN and QL Peak to 

Trough shortened by 56.6 and 31.1 days, respectively, in the RCP 8.5 scenario, and by 15 and 10 days, 

respectively, in the RCP 4.5 scenario. 
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Figure 1. (A) Log of Peak Population, (B) IP to IP, (C) log of IP Pop, (D) Peak Month, 

(E) UQ/IQR and (F) Peak to Trough for questing adults (QA), questing nymphs (QN) and 

questing larvae (QL). 

 

A B 
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The exposure DPF, IP Pop, which counts the number of tick-days during a season bounded by 

inflection points around the yearly maximum population, bears little similarity to IP to IP maps 

(Figure 1). IP Pop increases in exposure-time across the domain as the severity of the projected 

scenarios increases. The regions with the highest baseline number of ticks, present during the 

inflection point defined season, spread outward in both the north and south direction and center around 

the Midwest and the Northeast. 

Wave Angle results (see Supplementary Information; Figure S1) showed that the dynamics of all 

life stages under both projected climate conditions lag behind those at baseline climate by ≤4 days 

across the simulated domain. The projected month of peak population (Peak Month) and UQ/IQR for 

QA generally shifted to earlier months. However, with increasing scenario severity, QN and QL 

generally shifted to later months across the geographic area. 

Wave angle results (see Figure S1) showed that the dynamics of all life stages under both projected 

climate conditions lag behind those at baseline climate by ≤4 days across the simulated domain. The 

projected month of peak population (Peak Month) and UQ/IQR for QA generally shifted to earlier 

months. However, with increasing scenario severity, QN and QL generally shifted to later months 

across the geographic area. 

4. Discussion and Conclusions 

When examining the response of vector populations to climate change, shifts in phenology, 

seasonality and other dynamic characteristics can be anticipated across the spatial range and life stages 

of the organism of interest. Risk of VBD is dependent on both timing and probability of exposure to 

the vector, and thus, characterizing the dynamic population response over space is crucial in order to 

anticipate and manage potential future risks. Here, we provide a framework for evaluating both static 

and dynamic effects of climate change on populations over large geographic areas, using spatially 

explicit simulation of a climate-driven, stage-structured population model. 

Our findings with respect to Ixodes scapularis illustrate both the methodology and its utility. The 

derivation and analysis of dynamic population features are key to the analytical approach. DPFs 

provide quantitative information about a range of population characteristics and allow for comparison 

between dynamic simulation output and observed disease data, as well as between baseline and 

projected climates. Absolute DPFs, such as Mean, Median and Peak Population can be interpreted as 

indicators of survivorship, while timing DPFs, such as number of days from the yearly maximum 

population to the yearly minimum population (Peak to Trough) and month in which peak population 

occurs (Peak Month) characterize the timing and length of a given life stage’s season. 

In the case of Ixodes, DPFs associated with the peak of the simulated population curve, Peak 

Population and Peak Month, proved to be the most important in predicting high risk of Lyme disease, 

though all DPFs showed some level of discriminatory ability. AUC analyses showed that 

dichotomizations isolating high risk improved discriminatory ability across all DPFs and life stages. 

Aggregation of medium and high risk also showed improved discriminatory ability across life stages 

and DPFs as compared to the minimal vs. low/medium/high dichotomization. This trend of 

improvement, as high disease risk is progressively isolated into a single category, suggests strongly 

that these DPFs are useful in predicting the timing and location of higher Lyme disease risks. 
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When DPFs are examined for two projected climate scenarios, we show that the dynamic 

population response of I. scapularis is not uniform across life stages and varies over space. Spatial 

shifts in temporal features include geographic shifts in season, and these shifts are not consistently 

northward as one might intuitively hypothesize. While the month in which the greatest number of ticks 

are questing (Peak Month) is delayed for the adult life stage (Figure 1), QN and QL peaks do not show 

geographically uniform shifts to earlier questing season. Also, Peak to Trough and IP to IP indicate 

potential changes in season length in projected scenarios. Spatial shifts in absolute DPFs, such as Peak 

Population, vary by region. For instance, the peak populations in the Midwest and the Northeast 

regions are both expected to rise far more as compared to the Appalachian mountain range or the Gulf 

Coast, where these populations are expected to remain more stable. 

Although the finding that QL Peak Month and Peak Population show high predictive ability for 

Lyme disease risk is significant, the causal implications of this finding, and others like it, must be 

interpreted cautiously. Disease risk is not directly related to the questing larval stage, which takes the 

first blood meal in the lifecycle, and thus, is responsible for Lyme transmission only under the rare 

circumstance that larvae are infected transovarially. Likewise, QN Peak Month and Peak Population 

have similar AUC values for all dichotomizations of Lyme disease risk, an effect driven largely by the 

similarity of tick response to temperature in these two life stages, rather than mutual causal 

relationships with disease. Complex temporal relationships are inherent in these populations: questing 

nymphs and questing larvae, for instance, peak at approximately the same time of year, and their 

populations in a given location are ostensibly correlated, though the QN population does not result 

from the QL population in the same year, but rather previous years’ QL. 

As in other ecological modeling analyses, data quality determines the utility of this analysis 

framework for a given system. In our analysis, CDC data quality may account for the lack of 

significant AUCs of DPFs in comparison to the observed tick data. Tick presence/absence data are 

collected using a variety of methods, such as dragging and deer surveys, often under serious resource 

constraints [33]. Rather than providing consistent, systematic information about tick presence and 

absence, the national tick dataset offers a coarse categorization derived from disparate information. 

This is in contrast to the national Lyme disease dataset, which is based on a consistent reporting 

standard. Given the higher quality of data collected, this dataset is more useful in substantiating the 

results of our model. 

Other climate factors besides temperature, such as humidity, have been shown to affect Ixodes spp. 

activity [41,42] and correlate with human Lyme disease risk [43]. The population model used here did 

not incorporate Ixodes’ response to humidity, and although our simulated population data 

demonstrated good correspondence with Lyme incidence, it is possible that including other key 

environmental variables may yield yet greater correspondence. Likewise, host and pathogen 

populations were not considered in our analysis, which was limited to vector dynamics. Relatively 

little research has been done on the potential population responses of Borrelia spp. under altered 

climate conditions. However, it has been suggested that changes in Ixodes phenology in response to 

climatic changes may affect the evolution of various tick-borne pathogens, so as to modify their 

lifespan, transmission and pathogenicity [44]. Host dynamics can also greatly impact infected vector 

density and consequent human risk in a variety of VBD systems [45–47]. In the case of Lyme disease, 

the abundance of key hosts, such as mice and chipmunks, has been shown to predict the density of 
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infected nymphs in eastern deciduous forests [48]; in other areas, such as the southern United States, 

lizards are believed to exert a dampening effect on the spread of Lyme disease, due to poor host 

competence or zooprophylactic effects [49,50]. Including host, vector and pathogen dynamics in a 

combined model would pose significant methodological and computational challenges, but is also 

likely to add greatly to our mechanistic understanding of shifting VBD risk under future environmental 

conditions. We note that a similar simulation, summarization (e.g., DPFs) and analysis approach can 

be pursued with such a combined model; yet, other summarizations (e.g., R0) become available for 

geovisualization in that context (e.g., [51,52]). 

The methodological contributions made by the modeling analysis described here are considerable. 

We provide a quantitative assessment of population dynamics—with potential consequences for 

disease risk—under future climates, which is made possible by use of a spatially-explicit, mechanistic 

model [53]. Our spatial characterization of DPFs allows a detailed visual assessment (e.g., Figure 1), 

alongside a quantitative analysis, of the dynamic population response to future climate, revealing 

potential changes that are non-intuitive. For instance, across the eastern United States, under projected 

temperatures as compared to the baseline scenario, nymphs and larvae are projected to arrive at their 

peak population earlier in the season, while adults are projected to reach peak population later in the 

season (Figure 1). The approach taken here also highlights the value of modeling abundance, which, 

unlike habitat suitability or other static measures, allows for the examination of phenology and 

seasonality among life stages and the potential implications for (and correlation with) disease risk. For 

instance, IP to IP indicates that the length of larval ―season‖ is stable across the three temperature 

scenarios, while the adult, and, to a lesser extent, the nymphal stages exhibit ―seasons‖ that are strongly 

sensitive to the projected increasing temperatures. Such life-stage-specific responses in time and space 

would be unapparent using traditional methods that examine, for instance, aggregate, annual effects. 

We caution above against a causal interpretation of a DPF’s predictive power. A strong correlation 

between a DPF and observed disease incidence may not represent a causal relationship, but such a 

finding can raise hypotheses that ultimately lead to greater mechanistic understanding of the 

relationship between vector populations and disease risk in space and time and, thus, an improved 

causal understanding. Finally, population models, such as the one examined here, can also be used to 

evaluate the efficacy and economy of potential public health interventions [53], such as vector or host 

control (e.g., [54–56] for Lyme disease). A coupled analysis of the effect of temperature in the 

presence of a vector control program would be an obvious extension of the approach, and such an 

application of this model is possible for many different vectors, interventions and diseases. 

We have demonstrated the ability of a spatially-explicit dynamic population model to discriminate 

between dynamic population features most strongly associated with disease risk, as well as to 

characterize the geographically varied response of I. scapularis life stages to climate dynamics. Use of 

such an approach to describe shifts in dynamics is not limited to Lyme disease. The technique may 

provide new insights into the dynamic responses of a range of disease vectors to environmental 

changes, particularly shifts in their seasonal and phenological features. Such analyses may provide 

helpful information about the consequent risk of vector-borne disease under future conditions. 
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