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Abstract: In this paper, we explore spatio-temporal clusters using massive floating car 

data from a complex network perspective. We analyzed over 85 million taxicab GPS points 

(floating car data) collected in Wuhan, Hubei, China. Low-speed and stop points were 

selected to generate spatio-temporal clusters, which indicated the typical stop-and-go 

movement pattern in real-world traffic congestion. We found that the sizes of  

spatio-temporal clusters exhibited a power law distribution. This implies the presence of a 

scaling property; i.e., they can be naturally divided into a strong hierarchical structure: long 

time-duration ones (a low percentage) whose values lie above the mean value and short 

ones (a high percentage) whose values lie below. The spatio-temporal clusters at different 

levels represented the degree of traffic congestions, for example the higher the level, the 

worse the traffic congestions. Moreover, the distribution of traffic congestions varied 

spatio-temporally and demonstrated a multinuclear structure in urban road networks,  

which suggested there is a correlation to the corresponding internal mobile regularities of 

an urban system. 
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1. Introduction 

Real-world traffic flow data play a key role in traffic system analysis and have attracted the 

attention of researchers from various fields. For example, some studies were focused on modeling traffic 

models and theories from both microscopic and macroscopic perspectives, (e.g., [1–8]), while other 

studies concentrated on the theoretical urban mobility analysis (e.g., [9]). However, because of data 

concerns, many of the early studies were limited to either small scales (small areas in a city or small 

number of mobile objects) or theoretical levels. That is, such studies could not reach the whole urban 

scale and are not suitable for overall analysis of a city. Due to recent advances in information 

technology, particularly with the development and widespread adoption of location-aware devices such 

as GPS and cell phones, it has become feasible and easier to collect moving object data in a flexible 

and cost efficient manner. Consequently, many studies have been conducted to capture the 

characteristics of mobility patterns using such mobility data sets (e.g., [10–12]).  

The trajectory method is perhaps the most frequently used method under Hägerstrand’s [4] time 

geography framework. For example, Spaccapietra et al. [11] proposed a conceptual model to structure 

the whole trajectory of a moving object into countable semantic units, such as moves and stops, where 

more semantic annotations can be attached. Based on this conceptual model, Bogorny et al. [10] 

aggregated the GPS points at important geographic places as stops, and then aggregated the GPS 

points between two consecutive stops as moves. In doing so, raw trajectories are decomposed into 

semantic segments, based on which the authors proposed a data mining query langue to extract 

meaningful, understandable and useful patterns. Yan et al. [12] presented a hybrid model and 

computing platform to extract and understand the spatio-semantic patterns of whole trajectories. 

Although the trajectory method is successful in some aspects, when the GPS points are connected 

together to form one trajectory object, in most existing studies, only the start and end time and spatial 

attributes of the trajectory were emphasized, while the temporal dimension in other GPS points was 

not well considered. Thus, the temporal dimension is neglected to some extent. Therefore, this method 

is unsuitable for spatio-temporal clustering analyses, which dynamically take into account the time 

dimension of each GPS point [6].  

There has been much research dedicated to generating spatio-temporal clusters. For example, 

Kalnis et al. [6] formally defined a spatio-temporal cluster as a sequence of spatial clusters that are 

continuous over time and consecutive in space (shares some moving objects). Based on this definition, 

the authors provided three methods and algorithms to identify spatio-temporal clusters in mobility data 

set. Hwang et al. [13] claimed that the physical meaning of such spatio-temporal clusters could be 

unclear in cases where the spatial clusters located near the start and end of these spatio-temporal 

clusters contain totally different sets of objects. Thus, the authors proposed a semantically clear 

definition of spatio-temporal clusters as well as corresponding approaches to identify them. Rather 

than to create clusters based on traditional distance, the authors [14] proposed an improved method to 

generate spatio-temporal clusters by extending the distance measure to be a function of the position 

history of the moving objects. However, these studies are limited in applications specific to their 

methodologies, and do not attempt to analyze urban mobility.  

Studies that attempt to analyze spatio-temporal clusters and urban mobility patterns using mobility 

data set are becoming more prominent. For instance, Cao et al. [15] defined the problem of mining 
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periodic patterns and proposed corresponding algorithms to retrieve the periodic patterns in mobility 

data set. Bazzani et al. [16] analyzed the issue of urban mobility by testing the probability distribution 

of path lengths, the activity downtime and degree of mobility data set in the Florence urban area. Their 

study found the emergence of robust statistical laws. Hoque et al. [17] explored taxicab mobility 

patterns by analyzing some attributes of yellow cab GPS data in the San Francisco area, such as 

instantaneous velocity profile, spatio-temporal distribution, clustering and hotspots. However, the 

instantaneous velocity analysis is based on a single taxicab and cannot reflect the overall traffic trend. 

Moreover, the clusters were not spatio-temporal because the points were wireless connectivity between 

mobile taxicabs, pickup and drop off locations. 

Although some of the previously mentioned studies were involved in the analysis of traffic mobility 

patterns, the spatio-temporal clustering method was seldom adopted, especially from the perspectives 

of traffic congestion and scaling law. Furthermore, the size of collected mobility data set is limited and 

the taxicabs always stay at preferred locations waiting for phone calls from customers. In this paper, 

we use an intensive mobility data set, which includes more than 85 million taxicab GPS points. These 

data were collected from over 11 thousand taxicabs during six days in Wuhan city, Hubei, China. The 

taxicabs are continuously driven on the road 24 h per day (with drivers changing shifts) to maximize 

profits for the company. Thus, the mobility data set used in this study are very reliable sensors to 

traffic behavior and are more unique than previously used data in terms of mobility analysis. We 

analyzed the overall speed pattern of all taxicabs and selected low-speed and stop taxicab GPS points 

to generate spatio-temporal clusters. This indicated the stop-and-go movement pattern in real-world 

traffic congestions. These spatio-temporal clusters were found to demonstrate a scaling property. It 

means the traffic behavior is a self-organized complex system ([18–20]), where global complex 

mobility patterns are derived from the bottom at the level of the vehicles. The spatio-temporal clusters 

in the scaling hierarchies indicate the degree of traffic congestions. Combining the scaling law and 

spatio-temporal clusters, we further analyzed the traffic mobility patterns in a quantitative manner.  

The remainder of the paper is organized as follows: in Section 2, the floating car data is described and 

the conceptual data model presented; we then conduct GPS error analysis and elimination. In Section 3, the 

temporal patterns of the floating car data are analyzed and then the low-speed taxicab GPS points for 

generating spatio-temporal clusters separated. Section 4 provides the methodology on how to measure 

the degree of traffic congestion from the spatio-temporal clusters. In Section 5, the model is applied to 

real data and followed by a discussion of the results. Lastly, Section 6 presents the paper’s conclusions 

and points to future work. 

2. Floating Car Data 

Real-world mobility datasets play a key role in this research. The original floating car data were 

collected from over 11 thousand taxicabs in Wuhan, Hubei, China, at regular intervals (average  

20–60 s) during the courses of six days (c.f., [21] for more details). There are more than 85 million 

records in total (over 14 million per day), with attributes of timestamp, car ID, x, y, speed and angle. 

According to the description of the original mobility dataset, the speed is the instant speed of the 

taxicab, recorded by the machine equipped on the taxicab. The angle is the azimuth angle of the 

taxicab, and it is not used in this paper. Because human movement at the city level is constrained by 
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road networks, the urban free space at the city level refers to the space connected by road networks and 

reached by automobiles. As all the taxicabs are continuously being driven, each road segment in the 

road network will be passed. Thus, the whole urban free space will be finally covered by the 

movement of taxicabs. This can be visualized and justified by overlapping all road segments with all 

GPS points in the city using a GIS spatial analytical function. 

2.1. Data Models 

The original floating car data are stored in self-defined text files. Based on the car ID and timestamp, 

it is simple to filter the sequence of records for each taxicab. The GPS points are strictly sorted by 

timestamp and connected one by one from the first record. The sorted and connected sequence of 

records (GPS points) for one taxicab indicate evolving positions in both time and space and is referred 

to as a trajectory or spatio-temporal path. A spatio-temporal path based on a slice of real taxicab 

trajectory is visualized in Figure 1. The green and red points are taxicab GPS points whose 

instantaneous velocity is greater than and equal to zero, respectively. Accordingly, the three green and 

three red segment lines represent the aggregated/semantic moves and stops, respectively. For the sake 

of intuitive visual effects, they are simplified as segment lines.  

Figure 1. Data model representation of a spatio-temporal path of taxicab. 

 

It is evident that every aggregated stop or move has a lifetime with two time tags (begin time and 

end time), which are continuous in time during the entire spatio-temporal path (Figure 1). For single 

stop or moving GPS points, there are many coexisting points from floating car data at each time slice 

of a day, which can be presented in snapshots. Figure 2 shows five snapshots, where the black points 

represent coexisting GPS points. 
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Figure 2. Notational process of spatio-temporal clustering (Note: the blue, green, pink and 

orange represent different lifetimes of stops that start from t0, t1, t2 and t3, respectively). 

 

It is easy to understand spatial clusters of static geometric points [22]: given a prescribed 

distance/radius, one begins from any geometric point and continues searching for neighbors within the 

distance until no neighbors remain. In this way, we obtain a serial of grouped points, i.e., a spatial 

cluster. By applying this cluster algorithm to the GPS points in each snapshot, we can obtain six spatial 

clusters at timelines t1, t2, t3 and t4 (Figure 2) on the left and right, respectively. These spatial clusters 

are Ct1, Ct2–1, Ct2–2, Ct3–1, Ct3–2 and Ct4, where C represents cluster and subscript l and r indicate clusters 

on the left and on the right, respectively. Obviously, clusters [Ct1, Ct2–1, Ct2–2] and [Ct3–1, Ct3–2, Ct4] are 

not only continuous over time but also overlap in space. The boundaries of spatial clusters can be 

defined by using the convex hull method. Such groups of clusters are called spatio-temporal clusters. If 

we connect the boundaries of spatio-temporal clusters, it is similar to distorting three-dimensional 

cylinders. The evolution of the spatio-temporal cluster can be trackable based on a simple tree-like 

data model, where the root is the spatio-temporal cluster and the leaves are the sorted spatial clusters.  

2.2. GPS Error Analysis and Elimination 

The ideal floating car data should be continuous in terms of time intervals between each pair of 

continuous GPS points and the coordinates of each GPS point should be accurate compared with the 

actual position of the taxicab. However, there exist GPS errors caused by either blockage of the GPS 

signal or hardware/software bugs during the data collection process. To eliminate such errors, the 

following measures were taken.  

The GPS points were first filtered that deviate far away from the bounding box of the study area 

(Wuhan, China). Such error points are outliers and there were 66,658 of them (0.078% of all) in total. 

Such errors could be caused both by blockage of GPS signal and hardware/software bugs. Then, the 

GPS points with speed greater than a set limit (such as 150 km/h) were removed, which are obviously 

errors. There were only 4,174 records (0.005% of all) in six days attributed to high speeds. Although 
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the percentage of such error associated with the GPS points varies with the selection of a different 

speed limit, the change is too small to be expected to affect the overall analysis significantly. 

The sampling time interval for the floating car data is 20–60 s on average. If the time interval 

between two consecutive GPS points is greater than 60 s, then it could be due to either the loss or delay 

of a GPS signal, or the driver turning off their GPS device or taxicab. If the time interval between two 

consecutive GPS points is too long (i.e., greater than a time threshold), then one cannot know the 

movement of the taxicab during this time period. Therefore, the trajectory should be split into different 

parts at such GPS points. In order to decide what values to choose for such thresholds, we calculated 

all the time intervals and geometric distances between all pairs of two consecutive GPS points in the 

trajectories of taxicabs. The mean value of all time intervals is 65 s. It was found that the percentages 

of the time intervals that were less than 60, 120, 180 and 240 s (i.e., 1, 2, 3 and 4 min) were 82.2%, 

95.8%, 97.8% and 98.4%, respectively. Similarly, the mean value of all geometric distances is 308 m, 

and the percentages of geometric distances that were less than 300, 500, 800 and 1,000 m were 50.0%, 

85.0%, 98.6% and 99.6%, respectively. Obviously, the percentages around the thresholds of 4 min and 

1 km are very stable and absolute majorities (Figure 3). 

Figure 3. Histogram of distances (left panel) and time intervals (right panel) of all pairs 

of consecutive GPS points less than thresholds. 

  

According to the above analysis, we set up a standard and developed a simple program to eliminate 

such errors. For instance, if the time interval and geometric distance between two consecutive GPS 

points were greater than 4 m and 1 km respectively, then it meant that the GPS signal was 

discontinuous during this time period. If so, then the trajectory was split into different parts, because 

movement of the taxicab during this time period was unknown. Vice versa, if both time interval and 

geometric distance are less than their threshold, then they are considered continuous points over time 

and space. In doing so, the errors in floating care data can be efficiently and effectively reduced. 

3. Temporal Patterns of Floating Car Data 

Based on the data models in the previous section, it was straightforward to develop a method to 

generate spatio-temporal clusters. As mentioned previously, low-speed and stop taxicab GPS points 

were chosen to generate spatio-temporal clusters, which indicated the stop-and-go movement pattern 
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and are suitable for identifying traffic anomalies. In this paper, traffic anomalies refer specifically to 

the identified traffic congestions based on the scaling property of spatio-temporal clusters in a traffic 

system in the urban environment. The first question is how to choose the low-speed and stop GPS 

points. For the stop GPS points, GPS points whose speed was equal to zero were selected. To separate 

the low speed points for other moving GPS points, the mean speed of taxies was plotted against the 

time of day (Figure 4). A pattern with two-valleys was discovered: during weekdays (on the left panel 

of Figure 4), the plots indicated two rush hours: 7:00–9:00 AM and 5:00–7:00 PM; while during 

weekends (on the right panel of Figure 4), the rush hours were 10:00–12:00 AM and 2:00–4:00 PM. 

The mean speed during rush hour was around 20 km/h, which is much lower than that of non-rush 

hours. Therefore, the low-speed GPS points were determined as less than 20 km/h.  

Figure 4. Mean speed of taxies during workdays (left panel) and weekends (right panel). 

  

From Figure 4 we can see that weekdays and weekends present two typical representative patterns. 

Moreover, the taxicabs in the study area (Wuhan, China) are continuously being driven for more 

pickups to maximum profits. Therefore, the pure numbers of stop, moving and total taxies at different 

speeds barely vary from 7:00 AM to 7:00 PM during the daytime, and the movements of taxicabs 

cover the entire urban space. Conversely in many other areas (e.g., some European countries), taxicabs 

always stay at preferred locations waiting for phone calls from customers. 

4. Geographic Hierarchical Structures and Their Implications 

In this section, we briefly introduce the concepts of and relationships among heavy-tailed 

distributions, scaling property and geographic hierarchical structures, with particular focus on how 

they can be applied to this research. In this paper, heavy-tailed distributions are restricted to some 

special nonlinear relationships between a quantity and its probability, which can be described as power 

law, lognormal, exponential, power law with an exponential cutoff and stretched exponential [23]. In 

essence, the physical meaning behind a heavy-tailed distribution is that objects with small size are 

extremely common, while things with large sizes are extremely rare [24]. The sizes mean the 

quantified attributes of the objects in a scaling phenomenon. For example, the magnitude of 

earthquakes. The large and small objects indicate different groups in the head and tail, respectively. As 

what Adamic [25] noted, the shared feature of heavy-tailed distributions describes the division of 

objects into groups, which suggest a hierarchical structure from a statistical perspective.  
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More specifically, Jiang and Liu [26] proposed that, in the urban environment, if all values of 

measured geographic objects follow a heavy-tailed distribution, then “the mean (m) of the values can 

divide all the values into two parts: a high percentage in the tail, and a low percentage in the head”. 

The regularity is termed as the head/tail division rule. Based on this rule, the two-tier hierarchical 

structure (head and tail) of geographic objects (or representations) can be objectively and naturally 

obtained in an iterative way (Figure 5). The obtained two-tier hierarchical structures (Figure 5) can 

reveal geographic implications in different urban environmental contexts. For instance, Liu and Jiang [27], 

found that the area and dangling lines of blocks (cellular structure) of road networks in a city followed 

a heavy-tailed distribution, and thus can be grouped into two-tier hierarchical structures at different 

levels. The larger the area and more dangling lines a block has, the lower the density and more 

inconvenient transportation will be, which means urban sprawl is occurring. In doing so, the location 

of the urban sprawl patches (blocks) and the level of sprawling degree were identified.  

Figure 5. The two-tier hierarchical structure in heavy-tailed distributions. 

 

In this paper, spatio-temporal clusters were generated as geographic representations to represent 

real-world traffic congestion. The attributes of the spatio-temporal clusters are found to follow a power 

law distribution (for more details, please refer to the middle of next section), which indicated the 

presence of scaling from a statistical physics perspective [23]. Therefore, we can obtain the hierarchies 

of spatio-temporal clusters, and relate them to urban infrastructure such as road networks to explore 

underlying implications for further analysis in the next section.  

5. Results and Discussion 

The mean speed of all GPS points as well as the percentage of taxicabs at different speeds for the 

six days, were calculated per day. The mean speed (on the left panel of Figure 6) represents the 

average value of all GPS speed points in each day, where the ones on the weekends are higher than the 

ones during workdays. It could be the reflection of how traffic is congested. There is also a downward 

trend between Monday and Friday. We conjecture that it reflects the rhythm of city life: traffic 

congestion on Fridays is typically higher than that on Mondays. However, the percentage of taxicabs at 

different speeds during the weekdays (on the right panel of Figure 6) and weekends are very similar 

and stable, with no obvious trend. The low-speed GPS points (speed less than 20 km/h) occupied 

around 16% of all data. 
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Figure 6. Mean speeds and average percentages of taxicabs at different speeds.  

 

As analyzed in Section 2, a speed of 20 km/h was used as the threshold speed to separate  

low-speed GPS points from normal-speed ones. Noticeably, in terms of the transferability, the 

threshold speed is not expected to be universal. Instead, it depends on the result obtained via the above 

approach applied to the corresponding mobility data set in different urban environments. These  

low-speed GPS points are not simply selected from the GPS points whose speeds are less than  

20 km/h. As shown in Figure 1, the single GPS points can be aggregated into moves and stops, which 

are located alternately in the trajectory. If all the speeds of the GPS points in an aggregated move were 

less than 20 km/h, then these GPS points were selected as low-speed points. Such GPS points were 

accompanied by stop ones, and therefore reflected the stop-and-go traffic pattern. On the left panel of 

Figure 7 are the geometric points of low-speed and stop GPS points during the daytime on Monday 

9 March in Wuhan, China. Although the low-speed and stop points cover the urban space, due to the 

large amount of points (over 4.6 millions), it is hard to visually tell low-speed points (front in yellow) 

from the stop points (back in red). On the right panel of Figure 7 are the low-speed and stop points 

during rush hour at 8:00 AM at the city center area, where we can clearly see the low-speed and stop 

points closely accompany one another, indicating the stop-and-go traffic pattern. 

Figure 7. Low-speed (front in yellow) and stop (back in red) GPS points during the time of 

day on Monday (9 March) (left panel) and at 8:00 AM (right panel). 

  

Based on these stop and low-speed GPS points, spatio-temporal clusters can be generated in two 

steps: first generate spatial clusters based on coexisting GPS points at different time slices (snapshots, 

c.f., Figure 2), second connect spatial clusters which are continuous over time and space to form 

spatio-temporal clusters. Taxicabs drive and stop continuously 24 h (i.e., 24 × 3,600 = 86,400 s) per 
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day. Because the average sampling time interval for the floating car data is 20–60 s, therefore, 20 s is 

adopted as the minimum time resolution to divide the time of each day into 86,400/20 = 4,320 time 

slices. That is, all the GPS points in each day can be mapped to 4,320 snapshots according to their 

lifetime, each of which included a group of coexisting GPS points. Before applying the above algorithms 

to generate spatial clusters in each group of coexisting GPS points (snapshot), the clustering distance/radius 

must be defined. Twenty meters was empirically selected as the radius. This is because in real-world traffic 

congestion, vehicles are very close to each other, and besides taxicabs, there are also other vehicles on 

the road, such as public buses and personal cars. That is, if the distance between vehicles is longer than 

20 m, there is very small chance for vehicles to be congested. 

All spatial clusters were generated for Monday 9 March 2009. The maximum size of spatial clusters 

(i.e., the number of clustered taxicab GPS points) reached 215, which meant that 215 taxicabs stopped 

at the same time and place. Based on these obtained spatial clusters, we further generated the 

corresponding spatio-temporal clusters by connecting spatial clusters that were continuous over time 

and overlapped in space. Two measures can be used to describe a spatio-temporal cluster: (1) the time 

duration (lifetime), which begins from the timeline of the first spatial cluster and ends at the timeline 

of the last spatial cluster, and (2) the number of all taxicab GPS points, which is the sum of the number 

of GPS points of the consecutive spatial clusters inside the spatio-temporal cluster. Generally speaking, 

a low-density value of vehicles in a short time span implied a normal state of the traffic system. 

Considering that the average traffic light duration is 2 min, spatio-temporal clusters whose lifetimes 

are less than 2 min and are of a low density within a short time frame, are considered therefore to be a 

normal traffic state. Thus, the spatio-temporal clusters whose lifetimes are greater than 2 min were 

adopted to analyze the mobility patterns.  

Figure 8. Power law distribution of lifetime and size of spatio-temporal clusters. 

  

Interestingly, it was found that the lifetime and size of the traffic congestions both demonstrated a 

power law distribution (Figure 8), which indicates the presence of scaling as well as a strong 

hierarchical structure as mentioned in Section 4. This means that the traffic congestions are not evenly 

distributed. Instead, it demonstrates a scaling hierarchy, which is a key feature of complex urban 

systems and that of traffic systems. Traffic congestions were visualized according to their lifetimes 

during the rush hours on Monday in Figure 9, where the red represents the longest periods of traffic 

congestion and the blue means the shortest ones. These traffic congestion periods were generated 

based on the low-speed and stop GPS points in Figure 7. In contrast to Figure 7, the hierarchical 
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structures and spatio-temporal distributions of traffic congestion in urban environments can be visually 

and quantitatively assessed in Figure 9. 

Figure 9. Spatio-temporal clusters visualized according to their lifetime during rush hour: 

the more red, the longer the duration of traffic congestion. 

 

 

In Figure 9, the hierarchies of spatio-temporal clusters are unevenly distributed in a multi-core 

structure, whose spatial patterns are centralized towards the downtown area during the morning rush 

hour period from 7:00–9:00 (upper panel in Figure 9), but decentralized during the rush hour period 

from 17:00–19:00 (lower panel in Figure 9). The detected traffic congestions based on traffic GPS 

points objectively reflect traffic mobility patterns in Wuhan city. The areas of long spatio-temporal 

clusters indicate heavy traffic congestion, which means that the traffic condition around there is worse 

than other areas. It was found that areas of long spatio-temporal clusters mostly happened on major 

roads, such as ErHuanXian, Zhongshan Road, Jinghan Road and Huangpu Road according to their 

road levels and local popularity. That is, most of the heavily congested areas are coincident with road 

network structures. Despite that, there exists some difference between morning and afternoon rush 

hours. For example, some congestion areas such as A and B (upper panel in Figure 9) in the city center 

during morning rush hours disappear during afternoon rush hours (lower panel in Figure 9), while 

other congestion areas such E and F (lower panel in Figure 9) emerge in the outward direction of the 

city during afternoon rush hours. The change of mobility pattern may be due to the movement of 
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people from home to work in the morning, from work to home in the afternoon, and the actual physical 

difference in location from home and work. Similarly, the long temporal cluster area C (lower right in 

upper panel in Figure 9) disappears during afternoon rush hours (lower panel in Figure 9), while the 

long temporal cluster area D (middle left in lower panel in Figure 9) emerges during afternoon rush 

hours. In actuality, area C is the main train station in Wuhan, and area D is the sub train station. This 

kind of change probably reflects the temporal regularity of movement of people between Wuhan and 

other cities. However, not all congestions happened on major roads, such as area G (lower panel in 

Figure 9) on Zoo Road. Such areas could be potential developing areas with poor road networks but 

heavy traffic flows, where the surrounding traffic situation needs to be improved. This could be worth 

the attention of urban planners and policymakers.  

Based on the scaling property (c.f., Figure 8) and the head/tail division rule mentioned in Section 4, 

the areas of traffic congestions on Monday 9 March were divided into a series of two-tire hierarchical 

structures at different levels in time dimension according to their lifetimes (Table 1). The underlying 

implication behind the hierarchies indicates the traffic mobility patterns from a temporal perspective. 

The higher the levels of spatio-temporal clusters, the more serious are the areas of traffic congestion. 

The mean lifetime of each level (i.e., 4, 8, 16 and 28 min) could be set up as an index for measuring 

the degree of traffic congestion, which could provide a useful reference for urban traffic systems. For 

example, there are 32 areas of traffic congestion whose lifetimes are greater than 28 min, which 

constitutes areas of serious congestion. Meanwhile, the percentages in Table 1 are in good agreement 

with 80/20 percent principle in terms of scaling property, which also means that 20 percent of traffic 

congestions are serious and 80 percent of them are slight. Therefore, the limited urban human and 

financial resources should be focused on these seriously congested areas to improve traffic condition 

around there in an efficient and effective way. 

Table 1. The numbers and percentages of spatio-temporal clusters in the head and tail 

on Monday. 

 Mean (minutes) # of all # in Head (≥ mean) % in Head # in Tail 

Level 1 4  6,711 1,525 22.7% 5,186 

Level 2 8  1,525 387 25.4% 1138 

Level 3 16 387 114 29.5% 273 

Level 4 28 114 32 28.1% 82 

6. Conclusion 

Real-world traffic flow data are essential to understanding internal mobile regularities of an urban 

system. In this paper, we examined over 85 million records of floating car data in Wuhan, China, 

where the taxicabs drive and stop continuously and cover the entire urban space during both day and 

night. The average speeds of tall taxicabs showed two different reproducible patterns during workdays 

and weekends. A speed of 20 km/h was selected as a threshold to separate GPS points into low-speed 

and normal ones. The combinations of low-speed and stop points indicated the stop-and-go movement 

pattern, from which spatio-temporal clusters were generated. The generated spatio-temporal clusters 

were found to demonstrate a scaling property over time and space, which suggested potential traffic 

congestions as well as dynamic and multinuclear traffic mobility patterns in a quantitative manner. 
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A two-tier hierarchical structure was iteratively obtained at different levels via the head/tail division 

rule. The automatically generated levels indicated the degree of traffic congestion and can be used as a 

standard for measuring the degree of traffic congestion. From a spatio-temporal perspective,  

spatio-temporal clusters exhibited dynamic and multinuclear patterns, which were objectively and 

quantitatively assessed. 

This study provides insight into the traffic behavior from the perspective of a complex system. For 

future work, we will first focus on tracking the evolution of spatio-temporal clusters, i.e., how they 

form and move on roads, which could reveal the mechanisms of traffic congestion. Second, we will try 

to differentiate hotspot areas from traffic congestion areas, so that we can assess urban mobility 

patterns more accurately. To differentiate between these two kinds of phenomena accurately, more 

information is needed, such as semantic place names and geometric analysis. 

Acknowledgments 

We would like to thank the editors and anonymous referees for their constructive comments. 

We also thank Annie Chow for her help to polish the English.  

Conflict of Interest 

The authors declare no conflict of interest. 

References  

1. Dhingra, S.L.; Gull, I. Traffic Flow Theory Historical Research Perspectives. In Proceedings of 

Traffic Flow Theory and Characteristics Committee (AHB45), Woods Hole, MA, USA, 8–10 

July 2008. 

2. Greenshields, B.D.; Weids, F.M. Statistics with Applications to Highway Traffic Analyses; 

The Eno Foundation for Highway Traffic Control: Saugatuck, CT, USA, 1952. 

3. Greenberg, H. A Mathematical Analysis of Traffic Flow; Tunnels and Bridges Department, Project 

and Planning Division, Port of New York Authority: New York, NY, USA, 1958. 

4. Hägerstrand, T. What about people in regional science? Pap. Reg. Sci. Assoc. 1970, 24, 6–21. 

5. Haight, F.A. Towards a unified theory of road traffic. Oper. Res. 1958, 6, 813–826. 

6. Kalnis, P.; Mamoulis, N.; Bakiras, S. On Discovering Moving Clusters in Spatio-Temporal Data. 

In Proceedings of 9th International Conference on Advances in Spatial and Temporal Databases 

SSTD, Angra dos Reis, RJ, Brazil, 22–24 August 2005; pp. 364–381. 

7. Kerner, B.S. The physics of traffic. Phys. World 1999, 12, 25–30. 

8. Nagatani, T. The physics of traffic jams. Rep. Prog. Phys. 2002, 65, 1331–1386. 

9. Doulet, J.F. Urban mobility: A new conceptual framework. Urban Plan. Forum 2004, 2, 90–92. 

10. Bogorny, V.; Kuijpers, B.; Alvares, L.O. ST-DMQL: A semantic trajectory data mining query 

language. Int. J. Geogr. Inf. Sci. 2009, 23, 1245–1276. 

11. Spaccapietra, S.; Parent, C.; Damiani, M.L.; Macedo, J.A.; Porto, F.; Vangenot, C.A. Conceptual 

view on trajectories. Data Knowl. Eng. 2008, 65, 126–146. 

  



ISPRS Int. J. Geo-Inf. 2013, 2 384 

 

 

12. Yan, Z.; Parent, C.; Spaccapietra, S.; Chakraborty, D. A Hybrid Model and Computing Platform 

for Spatio-Semantic Trajectories. In Proceedings of 7th Extended Semantic Web Conference 

(ESWC), Heraklion, Greece, 30 May–3 June 2010. 

13. Hwang, S.Y.; Lee, C.M.; Lee, C.H. Discovering Moving Clusters from Spatial-Temporal 

Databases. In Proceedings of Eighth International Conference on Intelligent Systems Design and 

Applications (ISDA ’08), Kaohsiung, Taiwan, 26–28 November 2008; pp. 111–114. 

14. Rosswog, J.; Ghose, K. Detecting and Tracking Spatio-Temporal Clusters with Adaptive History 

Filtering. In Proceedings of IEEE International Conference on Data Mining Workshops ICDM 

Workshops, Binghamton, NY, USA, 15–19 December 2008; pp. 448–457. 

15. Cao, H.; Mamoulis, N.; Cheung, D.W. Discovery of periodic patterns in spatio-temporal 

sequences. IEEE Trans. Knowl. Data Eng. 2007, 19, 453–467. 

16. Bazzani, A.; Giorgini, B.; Rambaldi, S.; Gallotti, R.; Giovannini, L. Statistical laws in urban 

mobility from microscopic GPS data in the area of Florence. J. Stat. Mech. Theory Exp. 2010, 

doi: 10.1088/1742-5468/2010/05/P05001. 

17. Hoque, M.A.; Hong, X.; Dixon, B. Analysis of Mobility Patterns for Urban Taxi Cabs. In 

Proceedings of IEEE International Conference on Computing, Networking and Communications 

(IEEE ICNC), Maui, HI, USA, 30 January–2 February 2012. 

18. Helbing, D.; Molnár, P.; Farkas, I.J.; Bolay, K. Self-organizing pedestrian movement. Environ. 

Plan. B Plan. Design 2001, 28, 361–383. 

19. Helbing, D.; Nagel, K. The physics of traffic and regional development. Contemp. Phys. 2004, 45, 

405–426. 

20. Kerner, B.S. Experimental features of self-organization in traffic flow. Phys. Rev. Lett. 1998, 81, 

3797–3800. 

21. Li, Q.; Zhang, T.; Yu, Y. Using cloud computing to process intensive floating car data for urban 

traffic surveillance. Int. J. Geogr. Inf. Sci. 2011, 25, 1303–1322. 

22. Rozenfeld, H.D.; Rybski, D.; Gabaix, X.; Makse, H.A. The area and population of cities: New 

insights from a different perspective on cities. Am. Econ. Rev. 2009, 101, 2205–2225. 

23. Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data. SIAM Rev. 

2009, 51, 661–703. 

24. Adamic, L.A. Zipf, Power-Laws, and Pareto—A Ranking Tutorial. Available online: 

http://www.hpl.hp.com/research/idl/papers/ranking/ranking.html (accessed on 1 January 2013). 

25. Adamic, L. Unzipping Zipf’s law. Nature 2011, 474, 164–165. 

26. Jiang, B.; Liu, X. Scaling of geographic space from the perspective of city and field blocks and 

using volunteered geographic information. Int. J. Geogr. Inf. Sci. 2011, 26, 215–229. 

27. Liu, X.; Jiang, B. A novel approach to the identification of urban sprawl patches based on the 

scaling of geographic space. Int. J. Geomat. Geosci. 2012, 2, 415–429. 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


