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Abstract: The Web of Data has been fueled significantly by geospatial data over the last few years. In
the current link discovery frameworks, there is still a lack of robust support for finding geospatial-
aware links between geospatial data sources in the Web of Data. They are also limited in efficient
association capabilities for large-scale datasets. This paper extends the data integration capability
based on the spatial metrics in the open geospatial engine OGE. These metrics include topological
relationships and spatial matching between geospatial entities within multiple geospatial data sources.
Thus, the tool can be employed by data publishers to set geospatial-aware links to facilitate geospatial
data and knowledge discovery in the Web of Data. Several geospatial data sources are used to
demonstrate the usability and effectiveness of the approach and tool implementation.
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1. Introduction

The advent of Linked Data shows great promise for effectively sharing and interlink-
ing Web resources on a global scale [1]. Linked Data plays a pivotal role in advancing data
interoperability and facilitating the creation of a global knowledge graph that enhances
data integration, accessibility, and discoverability, thereby fostering interdisciplinary re-
search and innovation across various domains [2]. It follows a set of recommended best
practices for exposing, sharing, and connecting data organized in the Resource Description
Framework (RDF) [3]. Linked Data can create one global database for all data and offer
great opportunities for the wide sharing and integration of isolated and heterogeneous data,
such as the integration of spatial proteomics [4]. The recent progress in natural language
processing (NLP), specifically with large language models (LLMs), has demonstrated signif-
icant potential for automating a wide range of tasks. Therefore, there are current research
efforts combining Linked Data and large language models (LLM), such as using the GPT-3
language model to answer natural language questions over Linked Data [5]. In the geospa-
tial domain, Linked Data results in a paradigm shift, from distributed complex databases
accessed through Web services to knowledge bases represented as RDF graphs [6].

Two basic ideas are involved in building the Web of Data: publishing structured data
on the Web using the RDF data model and establishing RDF links between different data
sources [7]. To use the Web as a single global data space, setting interlinks between diverse
data sources, including those geospatial data sources, is a crucial issue. It will bring a new
dimension to the connectivity of the Web of Data when taking into account geospatial
attributes to create RDF links. On the one hand, they can be employed to establish links
between spatial relationships, such as topological, directional, and distance relationships;
on the other hand, they can be weighted with other properties in similarity metrics to
generate identity links. For example, linguistic difference often hinders matches of different
URIs identifying the same geospatial entity. In such cases, the geospatial properties of these
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entities will contribute to the similarity calculation using spatial relationship metrics. In
addition, using geospatial information when creating links will also improve the accuracy
of similarity matching and avoid semantic mis-matches, as different geospatial entities may
have the same lexical information and classification in terms of an ontology yet have totally
different locations.

There are already several link discovery frameworks available to achieve connections
of entities in one dataset to entities in another, such as Silk [8], LIMES [9], and LinQL [10].
These existing link discovery tools, however, lack support for spatial matching functions,
while Silk and LIMES, despite supporting such features, have lower matching efficiency.
As the scale of geospatial data continues to expand, researchers are increasingly focusing
on association efficiency. For instance, recent notable association frameworks such as Geo-
L [11] and JedAI-spatial [12] have demonstrated advanced performance. Table 1 presents a
comparison of different link discovery frameworks (including ours). From these points of
view, this paper is motivated to support parallel geospatial link discovery for the Web of
Data by integrating spatial relation computation and matching methods in a link discovery
framework. This paper takes an open geospatial engine (OGE) as an example, enriching it
with geospatial metrics. The OGE system features three key aspects following the principles
of open science [13] and open GIS [14]: open-source architecture, adherence to OGC open
standards and APIs, and system openness with scalability. The tool, named the OGE
knowledge graph component (OGE-KG), thus can be employed by data publishers to set
geospatial-aware links to facilitate geospatial data and knowledge discovery in the Web of
Data. Several geospatial data sources in the Linked Open Data (LOD) cloud [15] are used
to demonstrate the usability and effectiveness of the approach.

Table 1. Comparison of different link discovery frameworks.

Framework Spatial Supported Parallel Computing Supported Efficiency

LinQL No No Low
Silk Partial No Low

LIMES Yes No Low
Geo-L Yes No High

JedAI-spatial Yes Yes High
OGE-KG Yes Yes High

The contribution of this article is summarized as follows: (1) The paper addresses
the gap in existing link discovery frameworks by integrating spatial relation computation
and matching methods, including relationship links and identity links. (2) This paper
enables parallel geospatial link discovery for the Web of Data, improving the efficiency of
matching functions and thus enhancing the connectivity of diverse data sources. (3) The
paper introduces the OGE knowledge graph component (OGE-KG), an extension of the
open geospatial engine (OGE). OGE-KG is enriched with geospatial metrics, allowing data
publishers to establish geospatial-aware links and facilitate geospatial data and knowledge
discovery in the Web of Data.

This paper is structured as follows. Section 2 describes the background and related
work. Section 3 introduces the approach to integrating geospatial metrics in the OGE-KG
data interlinking platform. The implementation of the geospatial extension based on the
OGE-KG is given in Section 4. Several use cases are provided in Section 5 to demonstrate
the usability and effectiveness of the implementation. Section 6 provides the discussion.
Conclusions and future work are given in Section 7.

2. Background and Related Work
2.1. Geospatial Data Sources in LOD

Linked Data offers great opportunities in the geospatial domain, since conventionally
isolated and heterogeneous geospatial data could be exposed as Linked Data on the Web,
thus promoting the wide sharing and integration of geospatial information [16]. Statistics
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show that about a quarter (25.05%) of datasets in the LOD cloud use the WGS84 vocabu-
lary [17], which demonstrates the significance of geo-referencing data on the Web. There is a
large body of work dedicated to publishing geographically-related data on the Web. Table 2
summarizes some prominent geospatial data sources in the LOD cloud. GeoNames is the
first case to provide geographical entities as Linked Data and linked by a large number of
datasets on the Web [18]. By adding a spatial dimension to the Web of Data, LinkedGeoData
transforms OpenStreetMap data into the RDF data model and maps them to other spatial
datasets [19]. GADM, the Database of Global Administrative Areas, is a spatial database of
locations of the world’s administrative areas. It provides administrative boundaries and
hierarchical relationships among administrative divisions. GADM is published as Linked
Data, named GADM-RDF [20]. NUTS, the Nomenclature of Units for Territorial Statistics,
provides geospatial regions in the European Union as Linked Data for statistical and policy
purposes [21].

Table 2. Geospatial data sources and related statistics.

Data Source Size

GeoNames 1 11,985,741 features
about 182 million triples

LinkedGeoData 2 20,000,000,000 triples
GADM 3 400,276 administrative areas
NUTS 4 316,238 triples

Ordnance Survey 36,773,687 triples
NHD 5 20,000,000 triples

GeoLinkedData.es 21,564,199 triples
1 http://www.geonames.org/ (accessed on 21 January 2024). 2 http://linkedgeodata.org/ (accessed on
21 January 2024). 3 http://gadm.geovocab.org/ (accessed on 21 January 2024). 4 http://nuts.geovocab.org/
(accessed on 21 January 2024). 5 https://www.usgs.gov/national-hydrography/national-hydrography-dataset
(accessed on 21 January 2024).

In the geospatial Linked Open Data cloud, there are also increasing governmental
efforts. Ordnance Survey, the national mapping agency of Great Britain, provides an up-
to-date geospatial RDF dataset of Great Britain [22]. The Geological Survey of the United
States (USGS) makes various geospatial and environmental datasets accessible as RDF data,
such as the National Hydrography Dataset (NHD) [23]. Another linked dataset, GeoLinked
Data, publishes Spanish geospatial data on the Web [24].

2.2. Geospatial Ontology Modeling

In order to publish geospatial resources as Linked Data on the Web, various ontologies
or vocabularies are developed in the LOD communities. These ontologies and vocabularies
define geospatial concepts and their relationships and help geospatial data integration in
the Web of Data. The W3C Geo Vocabulary, now updated by the Geospatial Incubator
Group as Geo OWL [25], is one of the most used vocabularies across multiple domains. The
Open Geospatial Consortium (OGC) develops the GeoSPARQL standard (version 1.1) to
represent and query geospatial resources on the Semantic Web [26]. The NeoGeo vocabulary
(geometry and spatial vocabularies) is another effort to representing geospatial data and
their relationships [27]. In addition, some geospatial data providers also contribute to the
ontologies. For example, Ordnance Survey develops both geometry and spatial relations
ontologies that are widely used by the LOD communities. A detailed comparison of these
vocabularies can be found in [28].

2.3. Geospatial Links in LOD

There are three important types of RDF links: relationship links, identity links, and
vocabulary links [7]. Relationship links connect entities in one dataset to entities in another,
which can provide more information to the source dataset. Identity links aim at construct-
ing interlinks between different URIs identifying the same entity. Both relationship and

http://www.geonames.org/
http://linkedgeodata.org/
http://gadm.geovocab.org/
http://nuts.geovocab.org/
https://www.usgs.gov/national-hydrography/national-hydrography-dataset
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identify links allow data consumers to discover more data by following links, thus possibly
tapping much more potential for data utilization. Vocabulary links map relationships
between terms from different vocabularies. Such links, for example, “owl:subClassOf” and
“owl:subPropertyOf”, can benefit data integration using different datasets, since they help
machines to understand terms from different vocabularies.

Some efforts have studied the interconnection of linked geospatial data by extending
linking criteria from the general information domain, such as a hybrid use of distance and
semantic criteria [29–31]. A geographic entity can be described using either a geographical
name in the text form or a geographical feature with location represented in coordinates.
Both spatial scores and name similarity scores can then be calculated using various dis-
tance algorithms, including Jaco-Winkler [32], to determine the linkage of entities, such as
the “owl:sameAs” relationship. In some cases, distance computation may be employed
to establish relationships such as “nearBy” between two geographical features. In the
LinkedGeoData, datasets (e.g., roads and lakes) are interlinked at the feature level using
different distance measures. In addition, topological relations among geospatial features
can be determined and presented as links. For example, some efforts employ the topolog-
ical predicate, “spatial:EQ”, to integrate the NUTS and GADM datasets [33,34]. Ma [35]
describes conversion from vector objects and raster data to RDF. Vector data are encoded in
Geography Markup Language (GML), from which topological relations are pre-computed
and then converted into RDF triples.

3. Incorporating Geospatial Metrics: The OGE Approach

In the previous section, we listed different vocabularies for representing geospatial
features, geometries, and their relationships. While there is a high variety in expressing
geo-referencing data and their spatial relations, we adopt the GeoSPARQL vocabularies
in the development process for the future possibility of spatial reasoning and follow the
Dimensionally Extended Nine Intersection Model (DE-9IM) specified by OGC. To integrate
geospatial metrics into the link discovery framework, the spatial properties of geospatial
datasets must be fully taken into account. First, the spatial dimension of LOD cloud datasets
can be computed by topological operators to detect spatial relationship links between them.
Second, they can be compared by the geometry-based metric to establish identity links
between them.

3.1. Topological Predicates

Topological relations for geospatial features are used to make links between differ-
ent geographic datasets. This kind of relationship link can be established by extracting
geographic coordinates encoded in GML or Well Known Text (WKT), computing spatial
relations using the encoding, and then leveraging appropriate vocabularies to explicitly
describe topological relations.

The GeoSPARQL standard [26] provides vocabularies for representing geospatial
information and defines different families of topological relations between spatial objects,
including simple features, Region Connection Calculus (RCC), and Egenhofer relations.
The Simple Features Specification (SFS) adopts the DE-9IM model and defines eight topo-
logical predicates including Equals, Disjoint, Intersects, Touches, Crosses, Within, Contains,
and Overlaps. The topological predicates are Boolean functions that return TRUE (T) if a
comparison meets the function criteria and FALSE (F) otherwise. These binary predicates
make topological comparisons rather than pointwise comparisons and can be described
by related DE-9IM patterns. If “I” represents the interior of a geometry, “B” represents the
boundary of a geometry, and “E” represents the exterior of a geometry, then the DE-9IM
model of two geometries is represented by a nine-character string composed of F/T/*,
where, from left to right, it represents the following: I(a) ∩ I(b), I(a) ∩ B(b), I(a) ∩ E(b),
B(a) ∩ I(b), B(a) ∩ B(b), B(a) ∩ E(b), E(a) ∩ I(b), E(a) ∩ B(b), and E(a) ∩ E(b). For exam-
ple, the pattern matrix of the “Within” predicate accounts for the fact that the predicate
returns true (T) when the interiors of two geometries intersect and false (F) when the
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interior and boundary of a geometry intersect the exterior of the other geometry. All
other conditions do not matter (*) whether an intersection exists or not. Also, the pattern
matrix of the “Intersects” signifies that either the interiors of two geometries intersect
(T********), the interior of one geometry intersects with the boundary of another geometry
(*T******* or ***T*****), or the boundaries of two geometries intersect (****T****), consti-
tuting an intersection. The pattern matrix of the “Equals” represents that I(a) ∩ I(b) = T,
I(a) ∩ B(b) = F, I(a) ∩ E(b) = F, B(a) ∩ I(b) = F, B(a) ∩ B(b) = T, B(a) ∩ E(b) = F, E(a) ∩ I(b) = F,
E(a) ∩ B(b) = F, and E(a) ∩ E(b) = T. Table 3 lists the applicable geometry types and DE-9IM
intersection patterns of SFS topological relations. “Applicable Dimensions” refers to the
types of geometries for which simple feature topological relations can be applied. The
symbol P is used to refer to 0-dimensional geometries (e.g., points), L to 1-dimensional
geometries (e.g., lines), and A to 2-dimensional geometries (e.g., polygons).

Table 3. Simple feature topological relations.

Relation Name Applicable Dimensions DE-9IM Pattern

Equals All TFFFTFFFT
Disjoint All FF*FF****

Intersects All

T********
*T*******
***T*****
****T****

Touches All except P/P
FT*******
F**T*****
F***T****

Within All T*F**F***
Contains All T*****FF*

Overlaps P/P, A/A, L/L T*T***T** (for P/P, A/A)
1*T***T** (for L/L)

Crosses P/L, P/A, L/A, L/L T*T***T** (for P/L, P/A, L/A)
0******** (for L/L)

3.2. Geometry-Based Metric

Currently, most identity links are generated using string similarity metrics over the
non-spatial properties. This may result in semantic mis-matches, especially in the geospatial
domain, since it is often the case that different entities may have the same non-spatial
properties yet totally different spatial properties. Therefore, it is necessary to involve spatial
attributes when building identity links between geospatial datasets.

Before building spatial equivalences between geospatial entities, it is noted that the
geometric shape of the same spatial feature may be measured at varying resolutions.
For example, there are different geometric descriptions of the administrative geography
of Berlin from official data of the German government and vague data published by
international survey agents. Hence, existing methods for determining similarities between
two geometries are needed. For example, the Hausdorff distance is a frequently used
distance measure for comparing the similarity of two geometric shapes. The measured
value can be normalized to lie in the range [0, 1], where the higher value indicates a greater
degree of similarity. The input geometries are considered to be a matching shape if the
measure is within a given tolerance with respect to the Hausdorff distance.

3.3. High-Performance Geospatial Data Linking

In recent years, the advancement of parallel computing technology has provided
solutions to high-performance geographic computing issues and has become a research
hotspot in the fields of big data analysis and data mining. Efficient spatial algorithms for
real-time processing of massive amounts of geospatial data have enabled the simulation
and analysis of geospatial phenomena on a global scale and over extended time periods,
which were previously challenging to compute. Spatial metrics are typical attributes of
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geographically associated data. As an essential part of geospatial reasoning, enhancing
their computational efficiency is crucial for constructing vast, wide-ranging, multi-scale
geographical knowledge graphs.

Geospatial parallel computation can be divided into two types: data-intensive and
compute-intensive. Data-intensive computing processes different geographic data in a
Single Instruction Multiple Data (SIMD) manner, with the core characteristic being that the
geometric objects are mutually independent during computation. For instance, establishing
topological predicates between large-scale heterogeneous geographic data sources and
determining topological relationships fall under data-intensive computations. Compute-
intensive calculations are conducted when complex intersection relationships exist between
polygons. They primarily involve operations like intersection, difference, union, negation
of intersection, amalgamation, updating, identification, and spatial connections, exhibiting
typical features of high algorithmic complexity and intensive computation. For example,
when determining spatial equivalence relationships like the Hausdorff distance, it is neces-
sary to compute the distance between different pairs of points inside two polygons, which
is also a compute-intensive operation.

3.4. Adding Geospatial Metrics into OGE-KG

The OGE represents a comprehensive platform dedicated to the analysis of large-scale
spatial–temporal data. The OGE-KG Data Interlinking Workbench, embedded within the
overarching framework of the OGE knowledge graph, is a Web application that enables
users to create links between two datasets in an interactive way. It provides three compo-
nents: workspace browser, linkage rule editor, and evaluation. The workspace component
provides a tree view of all projects and allows users to customize data sources and link
tasks for each project. The linkage rule editor is a graphical interface that enables users to
generate linkage rules by dragging and dropping its built-in operators (transformations,
comparators, and aggregators). The evaluation component allows users to evaluate the
links generated by the current linkage rule.

Compared with common data-linking tools Silk and LIMES, the spatial extension to
the OGE-KG includes enriching comparators with topological operators and geometry-
based metrics. The extension framework is illustrated in Figure 1. First, the source dataset
and target dataset are inputted into the workspace browser, and an association task should
be created with the two datasets. Then, the RDF path selector is utilized in the linkage
rule editor to further filter the data that need to be associated. Subsequently, functions
are employed in the transformations module to preprocess the data, such as renaming
and filtering. Afterward, various comparator operators, such as topological association,
string association, and geometric operators, can be used to concatenate data in OGE-KG.
Additionally, aggregator operators can be utilized for aggregation operations. Each operator
is regarded as a plugin that can be embedded into various operators: transformations,
comparators, and aggregators. Finally, the system will execute computations for the linkage
workflow using efficient parallel computing. Upon completion of the computation, results
can be exported in the evaluation module, where attributes such as similarity of association
scores can be viewed and results can be exported.

Using the extension framework, the OGE-KG Data Interlinking Workbench is able to
find topological relationships between entities within different geospatial data sources and
supports the generation of identity links based on geometry similarity.
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4. Implementation of Geospatial Extension in OGE-KG

This section describes the implementation of geospatial extension in OGE-KG. In the
development process, the JTS Topological Suite is used to provide spatial data operations
required in the OGE-KG framework. The JTS is an open-source Java API that provides
the implementation of spatial predicates and functions described in the OpenGIS Simple
Features Specification [36]. To speed up the process of data linking in the OGE-KG frame-
work, we parallelize it using the MapReduce approach in a single machine. MapReduce is
a programming model and an associated implementation introduced by Google to process
and generate large datasets [37]. Apache Spark is an open-source, distributed computing
system that is designed to be fast and general purpose, making it suitable for a wide range
of tasks from batch processing to real-time data processing and advanced analytics [38].

4.1. Topological Operators

Given two geometries g1 and g2, which are created by the JTS WKTReader from two
string parameters s1 and s2, the topological operators are a set of binary predicates that
compute whether a certain topological relationship exists between the two geometries. For
example, if the statement “g1.within(g2)” returns true, it means every point of g1 is a point
of g2, and the interiors of g1 and g2 have at least one point in common. Hence, we can
describe the topological relationship between g1 and g2 using the GeoSPARQL vocabulary
“geo:sfWithin”. Table 4 describes all of the topological operators added in the OGE-KG
framework and their associated GeoSPARQL vocabularies.

Table 4. Topological operators extended in the OGE-KG framework.

Plugin
Label Relation URI Description

Equals geo:sfEquals Returns true if two geometries are topologically equal.
Disjoint geo:sfDisjoint Returns true if the intersection of the two geometries is an empty set.

Intersects geo:sfIntersects Returns true if two geometries have at least one point in common.

Touches geo:sfTouches Returns true if two geometries have at least one boundary point in
common but no interior points.

Within geo:sfWithin Returns true if the first geometry lies in the interior of the
second geometry.

Contains geo:sfContains Returns true if the second geometry lies in the interior of the
first geometry.

Overlaps geo:sfOverlaps
Returns true if two geometries of the same dimension share some but

not all points in common and the intersection of the interiors of the two
geometries has the same dimension as the geometries themselves.

Crosses geo:sfCrosses
Returns true if two geometries share some but not all interior points

and the dimension of their intersection is less than the maximum
dimension of the two source geometries.
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4.2. Geometry-Based Similarity Operator

We have implemented the Hausdorff similarity measurement. There are various
methods of computing the Hausdorff distance between two geometric shapes. The JTS
computes the Hausdorff distance (HD) based on a discretization of the input geometries,
and the discrete Hausdorff distance (DHD) is less than or equal to the standard HD for
all geometries. In order to increase the accuracy of the result, the input geometries are
densified by a factor of 0.25. When the densify factor tends to zero, the DHD value will
approach the true HD. Next, the DHD value is normalized by dividing it by the diagonal
distance across the envelope of the combined geometries.

4.3. Extended OGE-KG Workbench

As illustrated in Figure 2, the topological predicates and Hausdorff metric can be
dragged and dropped as built-in comparison operators in the OGE-KG Data Interlinking
Workbench. The topological operators can be used to find topological relationships between
two entities within different geospatial datasets. The Hausdorff metric can be used to
recognize the spatial equivalence of two geometries and then aid the establishment of
identity links.
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5. Experiments in OGE-KG

To assess the usability and effectiveness of geospatial enrichment in the OGE-KG, we
have conducted two kinds of experiments: finding spatial relationship links (Section 5.1)
and building identity links (Section 5.2). Three use cases are reported involving four
geospatial databases including LinkedGeoData, GADM, NUTS, and NHD. The XML
namespace prefixes used in the experiments are summarized in Table 5. It is worth noting
that to reflect the association efficiency, we calculated the serial and parallel durations for
the following three experiments. All linking experiments were implemented on a 64-bit
desktop system with a 2.10 GHz CPU, 16 GB memory, and 12 Cores environment. In
OGE-KG, Apache Spark uses 12 cores, with data partitioned into 24 partitions. For the
single-threaded experiment, 1 core is utilized, with data partitioned into 24 partitions
as well. We also conducted comparative experiments with two frameworks, Silk and
LIMES (both equipped with spatial association capabilities), within the same experimental
environment to highlight our efficiency advantage. Additionally, we conducted a scalability
analysis using the topological relation. To demonstrate scalability, we not only implemented
comparative experiments with two recent open-source frameworks, Geo-L and JedAI-
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spatial, but also performed a detailed evaluation of the parallel efficiency of the OGE-KG
framework in a multi-core server environment.

Table 5. XML namespaces used in the experiments.

Prefix Namespace

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# (accessed on 21 January 2024)
rdfs http://www.w3.org/2000/01/rdf-schema# (accessed on 21 January 2024)
ngeo http://geovocab.org/geometry# (accessed on 21 January 2024)

spatial http://geovocab.org/spatial# (accessed on 21 January 2024)
geo http://www.opengis.net/ont/geosparql# (accessed on 21 January 2024)
lgdo http://linkedgeodata.org/ontology/ (accessed on 21 January 2024)
lgd http://linkedgeodata.org/triplify/ (accessed on 21 January 2024)

lgdg http://linkedgeodata.org/geometry/ (accessed on 21 January 2024)
meta http://linkedgeodata.org/meta/ (accessed on 21 January 2024)

gadm-o http://linkedgeodata.org/ld/gadm2/ontology/ (accessed on 21 January 2024)
gadm-r http://linkedgeodata.org/ld/gadm2/resource/ (accessed on 21 January 2024)
nhd-o http://cegis.usgs.gov/rdf/nhd# (accessed on 21 January 2024)
ramon http://rdfdata.eionet.europa.eu/ramon/ontology/ (accessed on 21 January 2024)

5.1. Spatial Relationship Links

We employed topological operators extended in the OGE-KG Data Interlinking Work-
bench to find spatial relationships between different geospatial datasets. The following two
topological operators are selected as examples to demonstrate the workflow of discovering
spatial relationship links in the LOD cloud.

5.1.1. Within Operator

In this case, we want to discover railway stations in the LinkedGeoData that are
“Within” the Hubei Province, China, in the GADM data source. We configure the <Link-
Type> to be geo:sfWithin. Figure 3 presents the process of generating geo:sfWithin rela-
tionship links between lgd:node317750134 in LinkedGeoData and gadm-r:feature_36153 in
GADM. Figure 4 shows the screenshot of linking results in the OGE-KG Data Interlinking
Workbench. Dataset statistics and linking results are given in Table 6. The discovery pro-
cess takes only 5 s approximately with a parallel program. The same datasets were also
tested using the Contains (the inverse of Within) operator. The establishment of Contains
relationship links costs almost equal time as that of Within links. Additionally, we tested
the time of Silk and LIMES using the same dataset and experimental environment. Silk and
LIMES may have employed optimizations for efficiency; hence, their single-threaded times
may be faster. However, the efficiency of using MapReduce remains significantly higher,
with substantial improvements in the parallel computation of spatial relationship links.
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Table 6. Linking railway stations in LinkedGeoData and Hubei administrative areas in GADM.

Dataset Statistics Linking Result

Triples of railway stations in LinkedGeoData 15,297,705
Triples of GADM (Hubei province) 720

Links discovered 366
Time used (single-threaded program) 19.6 s

Time used (Apache Spark MapReduce program) 5 s
Time used—Silk 13.1 s

Time used—LIMES 9.5 s

5.1.2. Intersects Operator

In this case, we use NHD as the source dataset and GADM as the target dataset.
NHD represents the water drainage network of the United States with features such as
rivers, streams, canals, lakes, ponds, coastlines, dams, and stream gages. GADM is a
high-precision global administrative boundary database. It encompasses administrative
boundaries data of multiple levels including national, provincial, municipal, and district
boundaries for all countries and regions worldwide. In the use case, we want to find rivers
in the NHD that are “Intersects” with the administrative regions of Missouri State in GADM.
We configure the <LinkType> to be geo:sfIntersects. Figure 5 gives the steps of setting
geo:sfIntersects relationships between NHD and GADM. As mentioned in Figure 1 before,
OGE-KG allows users to select a path in the RDF graph around a particular resource. For
example, the path “?geomtry/geo:asWKT” would select the value of WKTLiteral associated
with a geometry. Therefore, if we want to set spatial relationship links between features,
the source and target paths in this example should be “?a/nhd-o:geometryProperty” and
“?b/ngeo:geomtry/geo:asWKT” respectively. Then, we utilize the “geo:sfIntersects” in the
GeoSPARQL vocabulary to link the two datasets. Table 7 shows the number of datasets
triples and amount of discovered links. We also conducted comparative experiments.
The computation times in Silk and LIMES are 30.8 s and 17.6 s, respectively, faster than
the single-threaded time. It takes about 9.4 s to finish the linking process with a parallel
program, which is the fastest. Similar to the conclusions drawn with “Within”, there is a
significant improvement in computational efficiency when parallelized with MapReduce.
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Table 7. Linking NHD and GADM-Missouri with the “Intersects” relationship.

Dataset Statistics Linking Result

Triples of NHD 1,579,951
Triples of GADM (Missouri) 917

Links discovered 73,541
Time used (single-threaded program) 41.3 s

Time used (Apache Spark MapReduce program) 9.4 s
Time used—Silk 30.8 s

Time used—LIMES 17.6 s

5.2. Identity Links

Building identity links between geospatial datasets using both spatial and non-spatial
properties will improve the accuracy of linking results. Some efforts have been made
to integrate NUTS and GADM datasets based on spatial properties using Linked Data
technologies [39,40]. Now, this kind of task can be carried out in the OGE knowledge graph
framework. Take the Berlin administrative region data for example. Figure 6 shows the
incongruency of geometric shapes about Berlin from NUTS (low resolution) and GADM
(high resolution). To find the spatial equivalence of Berlin within the NUTS and GADM
datasets, a linkage rule using the “min” aggregation function is specified. It aggregates the
scores of string similarity and geometric similarity, where their minimum values are set to
0.9 and 0.7, respectively. The linkage rule is implemented and executed in the OGE-KG
Data Interlinking Workbench (Figure 7). Following the geographical equivalence rules
set above, we conducted additional tests based on NUTS (level 0) and GADM (level 0)
in the same environment. Dataset statistics and linking results are given in Table 8. The
NUTS-0 dataset with 35 objects and the GADM-0 dataset with 36 objects are used as
experimental data. Since Silk lacks the Hausdorff metric operator, it cannot be compared
with OGE-KG regarding performance; we only compared OGE-KG with LIMES. The results
indicate that even when the number of points for each geometry object is particularly large,
MapReduce achieves a certain level of performance improvement compared to single-
threaded processing. Additionally, despite LIMES’ performance optimization for the
Hausdorff metric in its source code, its performance still falls short of MapReduce.
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Table 8. Linking NUTS (level 0) and GADM (level 0) with the “Equals” relationship.

Dataset Statistics Linking Result

Triples of NUTS (level 0) 77
Triples of GADM (level 0) 79

Links discovered 33
Time used (single-threaded program) 1307 s

Time used (Apache Spark MapReduce program) 823 s
Time used—LIMES 1165 s

5.3. Scalability Analysis

Traditional link discovery tools as mentioned above primarily utilize existing spatial
operators for geographic linking to facilitate integration into their own system frameworks;
hence, they often overlook scalability and efficiency. Considering this factor, recent research
has mainly focused on optimizing these issues. Among these, Geo-L utilizes PostgreSQL
and PostGIS for efficient indexing and spatial linking of geometric data, enhancing the effi-
ciency of topological link discovery. JedAI-spatial is an open-source system that calculates
topological relationships between datasets with geometric entities based on the DE9IM
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model. Similar to OGE-KG, JedAI-spatial offers not only a serial version but also a parallel
processing capability based on Apache Spark.

In this case, we first conducted tests of “Within” relation associations with Geo-L and
JedAI-spatial (serial version) in the same environment using datasets of 165,000 Smart
Points of Interest (SPOI) entities and 1782 NUTS entities as used in paper [11]. The com-
parative results are shown in Figure 8. In the OGE-KG program, the discovery process
takes approximately 8 s, while Geo-L requires about 26 s, noting that this process only
tests the mapping stage. Due to the use of the R-Tree-over-GiST index for managing
geometric data in PostGIS during the data preprocessing stage, Geo-L can significantly im-
prove association efficiency during the mapping stage. Compared to Geo-L, JedAI-spatial
achieves higher association efficiency by incorporating not only tree-based algorithms but
also grid-based and partition-based filters. However, according to the time-consuming
results, MapReduce still maintains its processing advantage for large datasets. Additionally,
OGE-KG’s processing time is slightly inferior to that of JedAI-spatial with the parallel
scheme. This is due to its indexing filters effectively reducing computational overhead
during the joining stage, although it requires configuring extra indices and grids for reparti-
tioning during the preprocessing stage. Nevertheless, our framework still achieves efficient
performance improvements.
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Next, we conducted speedup ratio and parallel efficiency calculations using parallel
“intersects” tests to validate the applicability of the OGE-KG framework for large datasets.
To provide a more intuitive comparison, we migrated the experiment environment to a
multi-core server and tested the average processing time of each batch under different data
partitioning (Case 1: 10 partitions; Case 2: 50 partitions; and Case 3: 200 partitions) and
cluster computing resources. The server had specific parameters: Intel(R) Xeon(R) Gold
5220R CPU @ 2.20 GHz, 2 NUMA nodes, 100 cores, and 100 GB RAM. The datasets used
included 2,292,766 entities of areal hydrologic data (AREAWATER) and 5,838,339 entities
of linear hydrologic data (LINEARWATER) as utilized in the experiments of paper [12].
Figure 9 indicates the following: (1) The performance of Case 3 surpasses that of Case 1
and Case 2 because Case 3 has more partitions, allowing it to fully leverage the advan-
tages of concurrency, especially in scenarios with a higher number of cores. (2) While
using more cores can further reduce the time required for spatial correlation, excessive
core allocation can lead to decreased parallel efficiency, resulting in decreased utilization
efficiency of each core. Therefore, optimal core allocation is crucial in practical operations.
(3) Increasing the number of partitions appropriately as the number of cores increases can
enhance efficiency further. It is worth noting that in Case 3, the processing time under
single-threaded conditions is approximately 4 h, whereas under optimal parallelization,
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the processing time is reduced to 18 min. This significant reduction in processing time
demonstrates the effectiveness of parallelization in maximizing computational efficiency.
By efficiently utilizing the computational capacity of each core, the OGE-KG framework
achieves remarkable improvements in processing time. Moreover, as computational re-
sources increase and more data partitions are utilized, the framework demonstrates a
higher degree of processing parallelization, further enhancing its scalability. Therefore,
the results demonstrate the scalability of the OGE-KG framework in handling large-scale
geospatial datasets and interconnecting operations.
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6. Discussion

We implement our design by conforming to the OpenGIS SFS. However, the ways
geometries are represented vary largely. The SFS model is only used in limited geospatial
datasets in the Web of Data. There are also some geospatial datasets employing the
GeoRSS feature model [41], which is adopted by the W3C Geospatial Incubator Group for
representing geospatial concepts in GeoOWL ontology [25]. Thus, there are still several
issues that need to be tackled to make our extension more generic. Additionally, we
discuss the characteristics of the OGE-KG framework and compare its advantages and
disadvantages with other frameworks.

6.1. Coordinate Reference Systems

The coordinate reference system (CRS) (also called the spatial reference system), com-
posed of a coordinate system, an Earth ellipsoid, a geodetic datum, and a map projection, is
the essential metadata of a geometry. Each CRS can have a unique spatial reference system
identifier. For example, the World Geodetic System 1984 (WGS84), the most widely used
CRS in the LOD cloud, is identified using EPSG:4326. However, other coordinate reference
systems are often used by local geographical organizations. For instance, the Ordnance
Survey uses EPSG:27700 to record its geographic data. Thus, comparing a geometry in
the Ordnance Survey dataset with another one in the GeoNames dataset (using WGS84)
will return an incorrect result in the current OGE knowledge graph framework. To make it
work right, a conversion from EPSG:27700 to EPSG:4326 is required before the comparison.

6.2. Literals for Geometries

Setting geospatial links within the geospatial LOD is also hindered by the variety of
encoding methods. When generating geometry literals, triple store vendors may choose
either WKT serialization or GML serialization. These two serializations have different
geometry types. Some datasets employ WKT geometry types (e.g., GADM) to implement
their geospatial triple stores and some use GML geometry types (e.g., Ordnance Survey
datasets), while others use both of them (e.g., NHD). These varieties prevent geometry liter-
als from being compared easily by spatial operators in the OGE-KG framework. Therefore,
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the transformation of geometry literals is needed in the OGE-KG framework to make it
applicable to more geospatial datasets.

6.3. Literals or Ontologies for Geometric Representation

GeoSPARQL works in a compact way such that the entire description of geometry is
contained in a single literal (WKT and GML literals). The geometry ontology developed
by Ordnance Survey works the same way but only focuses on the GML literal. Some
geospatial datasets describe the geometry shape using a collection of points, each of
which is represented within a single RDF node identified by a latitude/longitude pair
such as the NUTS. These cases illustrate a fundamental issue: Literals or ontologies for
geometric representation may vary among different data providers, thereby complicating
spatial linkage between data sources or rendering them non-interoperable. To set spatial
links between geospatial data sources with different geometric structures, on the one
hand, standardization activities should be taken for LOD data providers, including the
specification of preferred syntaxes for modeling geospatial data [40]; on the other hand, for
link generation tools, flexible plugins to bridge these gaps are encouraged.

6.4. Characteristics and Comparative Analysis of OGE-KG

OGE-KG stands out in comparison to other link discovery frameworks due to its
unique focus on integrating spatial relation computation and matching methods, including
both relationship links and identity links. Unlike LinQL, Silk, and LIMES, OGE-KG sup-
ports spatial matching functions, which significantly enhances its capability for geospatial-
aware link discovery. Moreover, OGE-KG surpasses its counterparts by enabling parallel
computing, ensuring high efficiency in matching functions. Compared to existing open-
source geospatial link frameworks, OGE-KG exhibits a parallel advantage in scalability,
allowing it to handle larger datasets and more complex queries more effectively. Even when
compared to the most advanced frameworks with spatial topological linking capabilities,
the OGE-KG framework maintains its computational efficiency advantage while ensuring
flexibility. Specifically, it requires simple data and process configuration to achieve parallel
association without the need for complex constraint settings. Therefore, within the OGE-KG
framework, it is possible to accurately describe features and their spatial relationships more
rapidly using models such as SFS and RCC8. This provides a knowledge graph founda-
tion for subsequent spatial association, reasoning, and even discovery of patterns hidden
within the data. It aids in better understanding the intrinsic structure and characteristics of
geographic spatial datasets.

One limitation of OGE-KG is its reliance on traditional methods and lack of integration
with machine learning techniques. The current trend in link discovery moves beyond
isolated spatial and semantic computations, transitioning toward direct association using
neural networks [42]. This approach leverages the power of neural networks to capture
complex relationships and patterns within data, potentially offering more holistic and
efficient linkage solutions. Furthermore, the framework employs an automated identifica-
tion and skipping mechanism to ensure computational accuracy in handling inconsistent,
incomplete, or erroneous data. There is potential for further enhancement in this regard.
Overall, the impact of data quality on linkage discovery results will bolster the applicability
of this research to real-world datasets. Currently, manual judgment is utilized for assessing
linkage quality, which represents a limitation of our approach.

Additionally, OGE-KG’s adherence to open science principles and open GIS standards
ensures its scalability and usability. We embrace the principles of FOSS4G (Free and Open-
Source Software for Geospatial) with the goal of advancing the development and utilization
of open-source geospatial software [43].

7. Conclusions and Future Work

In this paper, we demonstrate how to enrich the OGE-KG framework with geospatial
awareness. The extended framework supports discovering spatial relationship links and
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building spatial identity links within geospatial Linked Open Data. It is used to detect
topological relations between different geospatial data sources on the LOD cloud and help
build identity links between geospatial features within different datasets based on their
geometries. The results indicate that, compared to other frameworks, OGE-KG significantly
improves the efficiency of linking different geospatial data sources using MapReduce.

The future work will focus on the issues proposed in the discussion by implementing
geospatial transformation operators in the OGE-KG framework. Handling various geom-
etry representations will be the first step followed by the conversion function between
different spatial reference systems. In addition, we will continue to pay attention to the
efficiency issue as well to achieving better runtime performance.
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