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Abstract: Spatial epidemiology investigates the patterns and determinants of health outcomes over
both space and time. Within this field, Bayesian spatiotemporal models have gained popularity
due to their capacity to incorporate spatial and temporal dependencies, uncertainties, and intricate
interactions. However, the complexity of modelling and computations associated with Bayesian
spatiotemporal models vary across different diseases. Presently, there is a limited comprehensive
overview of Bayesian spatiotemporal models and their applications in epidemiology. This article aims
to address this gap through a thorough review. The review commences by delving into the historical
development of Bayesian spatiotemporal models concerning disease mapping, prediction, and
regression analysis. Subsequently, the article compares these models in terms of spatiotemporal data
distribution, general spatiotemporal data models, environmental covariates, parameter estimation
methods, and model fitting standards. Following this, essential preparatory processes are outlined,
encompassing data acquisition, data preprocessing, and available statistical software. The article
further categorizes and summarizes the application of Bayesian spatiotemporal models in spatial
epidemiology. Lastly, a critical examination of the advantages and disadvantages of these models,
along with considerations for their application, is provided. This comprehensive review aims to
enhance comprehension of the dynamic spatiotemporal distribution and prediction of epidemics.
By facilitating effective disease scrutiny, especially in the context of the global COVID-19 pandemic,
the review holds significant academic merit and practical value. It also aims to contribute to the
development of improved ecological and epidemiological prevention and control strategies.

Keywords: Bayesian spatiotemporal model; generalized linear mixed models; spatiotemporal analysis;
spatial epidemiology

1. Introduction

Epidemics pose significant threats to public health, characterized by rapid spread,
extensive environmental impact, and challenges in their prevention and control. The re-
cent COVID-19 pandemic has underscored the importance of establishing robust public
health surveillance and implementing the best practices [1,2]. The twenty-first century
has witnessed the emergence of numerous new health challenges for humanity. This era
has seen a heightened focus on public health, driven by rapid advancements in computer
technology and an increased awareness of the pivotal role of spatial epidemiology [3].
Spatial epidemiology, leveraging spatial statistics and map visualization techniques, plays
a crucial role in characterizing and analysing the spatial distribution of human diseases,
health conditions, and the associated environmental factors. By harnessing spatial infor-
mation, this discipline conducts in-depth investigations into epidemic data [4]. Through
its application, spatial epidemiology contributes to a comprehensive understanding of the
geographic distribution and incidence trends of diseases, providing valuable theoretical
insights for disease surveillance and the development of preventive interventions [4].
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In recent years, Bayesian spatiotemporal models have emerged as potent tools for
unravelling the intricacies of disease spread, seamlessly integrating both spatial and tem-
poral dimensions [5]. The challenge of tackling high-dimensional integral operations in
Bayesian statistics, particularly when estimating numerous parameters, has been effectively
addressed through rapid advancements in computer technology and the refinement of
the Markov Chain Monte Carlo (MCMC) approach. This progress has propelled Bayesian
statistics into the spotlight, garnering substantial attention [6]. Parameter estimates, a
key aspect of Bayesian spatiotemporal modelling, are acquired through a conventional
statistical technique known as frequency inference, grounded in the likelihood function.
Guided by the Bayesian statistical ideological framework, the spatiotemporal model dis-
cerns patterns of change inherent in spatiotemporal data [7]. Through the specification
of prior distributions and the incorporation of geographical and temporal dependencies,
the Bayesian approach quantifies uncertainty in predictions or inferential estimates using
probabilities. The primary distinctions between classical statistics and Bayesian statistics
are twofold. Firstly, in classical statistics, all unknown parameters are treated as constants,
while in Bayesian statistics, these parameters are regarded as random variables and charac-
terized by probability distributions in the pursuit of statistical inference. Secondly, classical
statistics relies on overall information and sample information for statistical inference,
whereas Bayesian statistics incorporates prior information alongside overall and sample
information. Bayesian statistics places a particular emphasis on the extraction, processing,
and utilization of prior information [8]. In the Bayesian framework, the foundation for
parameter estimates, inference, and prediction lies in the posterior distribution [9]. The
posterior distribution is produced by integrating (i) the current sample using the likeli-
hood function, and (ii) the previous distribution of the parameters based on historical or
other types of external information [10]. Through the incorporation of prior knowledge
modelling, the Bayesian spatiotemporal model delineates the impacts, time effects, and
interaction effects in the spatiotemporal domain, offering a comprehensive understanding
of the dynamics of disease spread [10].

While spatiotemporal analysis effectively captures features through a series of maps,
Bayesian approaches prove instrumental in addressing prevalent modelling challenges
in spatial epidemiology, such as non-normality, limited sample sizes, missing data, and
clustered data structures. By identifying regions or times of heightened risk, Bayesian
methods can uncover disease patterns that persist or evolve predictably over time and
across diverse spatial units [11]. The development of a Bayesian spatiotemporal model
aims to accomplish key tasks, including the following:

• To assess the anticipated value and uncertainty of a specific outcome variable at a
defined spatial point throughout the observation period.

• To forecast the expected value of an outcome variable at a specific location.
• To identify evolving patterns of diseases that persist or undergo predictable changes

over time and across various spatial units.
• To analyse the influence of environmental factors on the spatiotemporal dynamics

of disease.

In recent years, there have been several reviews on Bayesian spatiotemporal models,
most of which followed the Preferred Reporting Items for Systematic Reviews and Meta-
analysis (PRISMA) framework [12,13]. These reviews have covered various applications,
including spatial and spatiotemporal methods for mapping malaria risk [14], modelling
dengue fever [15], analysing COVID-19 epidemiology [16], and exploring joint spatial
and spatiotemporal methods in health research [17]. However, it is noted that only a
limited number of these reviews have delved specifically into spatiotemporal models or
Bayesian inference methods. This suggests that while there is a growing body of research
in the broader field of Bayesian spatiotemporal modelling, the detailed exploration of
spatiotemporal models and Bayesian inference techniques remains a niche within these
systematic reviews.
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This review systematically focuses on key aspects of Bayesian spatiotemporal models,
including their theoretical foundations, modelling techniques, and computational methods.
It provides a detailed examination of the spatiotemporal distribution of data, Bayesian
deduction principles, spatiotemporal evolution rules, and calculation methods employed
in these models. This comprehensive review not only serves to elucidate the intricacies
of Bayesian spatiotemporal models but also underscores their pivotal role in advancing
the understanding and control of disease transmission. The integration of advanced
statistical methods and computational tools is expected to further propel progress in
spatial epidemiology, offering valuable insights into the spatial and temporal dimensions
of health events.

2. Literature Review

Epidemiological data frequently exhibit discernible structures in both space and time.
Analysing the evolution of diseases enables the identification of patterns and areas of height-
ened risk. Over the past three decades, significant research efforts have been dedicated to
exploring this aspect through the application of spatiotemporal modelling techniques.

Bernardinelli et al. [18] and Bernardinelli et al. [11] employed a Poisson log-linear
model by modelling the logarithm of rates as a linear function of time, incorporating
spatiotemporal effects. Waller et al. [19] utilized a spatiotemporal conditional autoregres-
sive (CAR)-based model to explore how heterogeneity and spatial patterns evolve over
time, considering both temporal effects and spatiotemporal interactions. Waller et al. [20]
introduced a random effect for each year, assuming temporal effects are independent of
geographical effects. Sun et al. [21] and Kim et al. [22] assumed a linear shape for the tem-
poral trend. Moreover, Kim and Oleson [23] presented a modified technique incorporating
an autoregressive process of order one to capture nonlinearity in the temporal trend.

Spatial epidemiology has also made use of the Bayesian nonparametric spatial mod-
elling technique. A unique dynamic mixture model was developed by Böhning et al. [24] to
simultaneously discover space–time clusters. By adding spatial dependency and permitting
a random number of mixture components in a spatiotemporal environment through the
Dirichlet process prior, Kottas et al. [25] expanded the mixture model. In contrast, Yan and
Clayton [26] expanded upon Gangnon and Clayton [27]’s spatial cluster model to allow for
the space–time clustering of disease counts data.

To concurrently investigate the spatiotemporal variations in disease risks, Richardson
et al. [28] undertook a combined modelling approach for two interconnected diseases.
Disease risk is decomposed into two components: a common part and a unique part
capturing the distinctions between the diseases. Building upon Richardson et al. [28]’s
strategy, Musio et al. [29] extended the approach by integrating a model for zero-inflated
data with semi-parametrically structured additive predictors. Given that time was treated
as a categorical variable in the dataset, the interaction effects were modelled using a
changing coefficient approach [30,31].

To account for variations in underlying rates across different seasons within a given
year, Torabi and Rosychuk [32] proposed a model incorporating both seasonal and spa-
tiotemporal effects. This modelling technique finds applications in diverse fields, such as
the study of malaria diseases [33] and influenza [34,35]. Addressing the challenge of fitting
Bayesian spatiotemporal models to large datasets, Chen et al. [36] advocated for a two-stage
spatiotemporal technique. In the initial stage, each year’s data were fitted using various
geographic models. Subsequently, in the second stage, temporal trends in parameter
estimates from each year were analysed, aiming to reduce the computational burden.

Abellan et al. [37] assessed underlying spatial patterns using a two-component joint
mixture model for space–time interactions. The first component addresses residual noise,
while the second captures deviations from space and time’s main effects. Schrödle et al. [38]
compared parameter-driven and observation-driven models, applying Bayesian inference
with integrated nested Laplace approximations for parameter-driven models and maximum
likelihood for observation-driven models. Cameletti et al. [39] introduced a spatiotemporal
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modelling approach for particulate matter concentration using the stochastic partial differ-
ential equation technique. Bukhari et al. [40] employed correlation methods, seasonal and
trend decomposition, hotspot analysis, and conditional autoregressive Bayesian models to
assess spatiotemporal clustering and the impact of climatic and socio-economic covariates
on disease occurrence in Mexico. In the spread of the COVID-19 pandemic, numerous
studies have employed Bayesian spatiotemporal models to discern spatial and spatiotem-
poral variations [16]. Ref. [41] have devised a Bayesian spatiotemporal model featuring a
non-separable, stationary Matern covariance function, which adeptly handles spatial and
temporal dependencies by capturing the intricate space–time interactions among geograph-
ical locations. Sun et al. [42] considered six spatiotemporal Bayesian hierarchical models
based on two spatial conditional autoregressive priors.

Over the past three decades, significant advancements have been made in Bayesian
spatiotemporal models in addressing spatial distribution, temporal trends, and the intricate
interaction between space and time. These models have evolved to consider various factors,
including seasonal changes, the challenges posed by large datasets, and the exploration
of multiple model variations. Today, aided by robust computer technology, Bayesian
spatiotemporal modelling methods have found widespread and impactful applications.

3. Bayesian Spatiotemporal Models
3.1. Probability Distribution in Spatial Epidemiology

There are two primary types in spatial epidemiology: (1) case event data, encom-
passing georeferenced instances of cases along with their respective times of diagnosis,
registration, or onset, and (2) count data, representing the tally of disease cases within
defined tracts over successive time intervals. The seamless extension of spatial data analysis
into the temporal domain is readily achievable, as highlighted by Lawson [9]. Figure 1
visually illustrates the progression of space–time dynamics in geographical epidemiology.
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Figure 1. Evolution of space–time in geographical epidemiology. (a) Representation of space–time
points. (b) Dynamic points with temporal changes while maintaining a constant spatial location.
(c) Points constrained by static barriers that evolve over time. (d) Temporal influence on the entry at
point 0 and exit at point B (adapted from Cox and Isham (1980)).

Several parametric statistical probability distributions common in epidemiology, such
as Poisson, binomial, and negative binomial, can be used for the case event data and
count data. A brief summary of these distributions is shown in Table 1 (https://mkram01.
github.io/EPI563-SpatialEPI/disease-mapping-i-aspatial-empirical-bayes.html, accessed
on 22 February 2024).

https://mkram01.github.io/EPI563-SpatialEPI/disease-mapping-i-aspatial-empirical-bayes.html
https://mkram01.github.io/EPI563-SpatialEPI/disease-mapping-i-aspatial-empirical-bayes.html
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Table 1. Probability distributions common to disease mapping.

Distribution Parameterization MLE and Comments

1 Binomial Yi| ri ∼Bin(Ni, ri) r̂i =
Yi
Ni

2 Poisson Yi| θi ∼Poisson(Eiθi) θi =
Yi
Ei

3 Negative binomial Yi| θi ∼Poisson(Eiθi)
θi ∼ gamma(α, β)

Also known as Poisson–gamma mixture

Yi is the count of health events in the ith areal unit, Ni is the count of population at risk, ri is the risk, Ei is the
expected count, and θi is the relative risk.

The Poisson likelihood has been a cornerstone in the toolkit of Bayesian spatiotemporal
models for modelling diverse diseases [43]. Typically, a Poisson distribution is favoured
when low observed values are expected for each location and period, making it well-suited
for situations where disease cases are relatively rare.

Conversely, binomial distribution becomes a valuable choice when describing the
occurrence of non-rare or common disease processes, particularly in areas where the
incidence of disease (or mortality) is high. This distribution provides an effective framework
for situations where events are not rare and their outcomes involve binary states.

For scenarios characterized by rapidly rising disease cases and over-dispersed infec-
tious outbreaks, such as the initial wave of COVID-19 in New England regions in 2020, the
negative binomial likelihood, incorporating an additional dispersion parameter, proves
more adaptable. Several studies show the efficacy of this model in capturing the height-
ened variability observed during such outbreaks [1,44–46]. In spatial epidemiology, over-
dispersion is common due to the presence of often undisclosed factors influencing disease
prevalence in each location.

In summary, the choice of likelihood in Bayesian spatiotemporal models is contingent
upon the specific characteristics of the disease data, with the Poisson, binomial, and
negative binomial distributions offering versatile tools tailored to different scenarios and
levels of disease prevalence.

3.2. Models
3.2.1. General Effect Model

In a general form, a spatiotemporal model assumes a logarithmic connection between
rates and time within a given area, with variations in the time trend across different
regions [11]. Under the framework of general spatiotemporal models, the connection
between time and rates within an area is presumed to be log-linear, and time trends are
considered to differ across regions [11].

The linear predictor, a rescaled version of the risk designed to enhance the reliability
of predictions, is essentially the logarithm or log-odds of the risk θi,j (or, less frequently,
another link function of the risk), depending on the chosen model for observation [47].
Typically, the additive expression of the linear predictor is the summation of several
elements or effects, each representing distinct and independent contributions to risk for
a specific area and time period. Generalized linear mixed models (GLMM) over space
and time are mostly used in the related research. This concept is exemplified in the
following examples:

log
(
θij
)
= µ + Ai + Bj + Cij

where the regression models include the following:

a. Intercept overall rate µ;
b. Spatial group Ai;
c. Temporal group Bj;
d. Space-time interaction group Cij.
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The pioneering example of modelling space–time relative risk was introduced by
Bernardinelli et al. [11]. In their methodology, they embraced a model for the log relative
risk, formulated as

log
(
θij
)
= µ + ϕi + βtj + δitj

where ϕi is an area (tract) random effect, βtj is a linear trend term, and δitj is an interaction
random effect. Here, Ai = ϕi, Bj = βtj, Cij = δitj.

Following this, Waller et al. [20] presented a model incorporating both uncorrelated
and correlated heterogeneity terms. Subsequently, Xia and Carlin [48] further advanced
and streamlined this model to be

log
(
θij
)
= µ + ζti + ϕij + ρpi + f ixed covariate terms

where ζti is a linear time trend, and pi is a variable measured within the tract unit. In this
formulation, Ai = ρpi, Bj = ζti, Cij = ϕij.

Knorr-Held and Besag [49] devised a model employing binomial likelihood for the
number at risk nijkl with a probability πijkl for the counts. They utilized a logit link to the
linear predictor, and the formulation is as follows:

ηijkl = ln
(

πijkl/
(

1 − πijkl

))
where

ηijkl = αj + βkj + γl j + δzi + θi + ϕi

αj is a time-based random intercept, βkj is a kth age group effect at time j, γl j is a
gender × race effect for combination l at time j, δzi is a fixed covariate effect term with an
urbanization index zi, θi and ϕi encompass both correlated and uncorrelated heterogeneity
terms, and notably, these terms are not contingent on time variations. In this formulation,
Ai = δzi + θi + ϕi, Bj = αj + βkj + γl j, Cij = 0.

Recent advancements in spatiotemporal modelling encompassed extensions of mixture
models, as demonstrated by Böhning et al. [24]. These models investigated temporal
periods independently, without mutual interaction, and for the spatial random effects,
they employed a variation of a full multivariate normal spatial prior distribution [21].
Another notable extension involved the modification of the Knorr-Held and Besag model
to incorporate diverse forms of random interaction terms, as proposed by Knorr-Held [50].

In exploring the spatiotemporal distribution of disease, the loglinear relative risk can
be considered and modelled as a GLMM accounting for spatiotemporal dependence and
heterogeneity as follows:

log
(
θij
)
= µ + ωi + vi + ϕj + φj + δij

Here, ωi, vi, ϕj, φj are the spatially structured (spatial autocorrelation), spatially
unstructured (spatial heterogeneity), temporally structured (serial autocorrelation), and
temporally unstructured (temporal heterogeneity) random effects, respectively, and δij is
the interaction of a pair of the four random effects above. The random effects implicitly
capture the determinants of the relative risk [51].

3.2.2. Infectious Disease Model

In the context of the infectious disease mechanism, a susceptible–infected–removed
(SIR) model was presumed, as proposed by Wormser and Pourbohloul [52]. The specific
variant of the SIR model being evaluated was introduced by Morton and Finkenstädt [53],
and was initially applied to analyse measles epidemic time series and later was expanded
into the spatiotemporal domain by Lawson and Song [54] for an investigation into influenza
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outbreaks. The size of the susceptible population at risk in region i and period j is denoted
as Si,j. The accounting formula for the SIR model is as follows:

Si,j = Si−1,j − yi−1,j − Ri−1,j

The susceptible population for the current period i is obtained by subtracting the
previous disease counts, denoted as yi−1,j, and the removed population, denoted as Ri−1,j,
from the susceptible population of the previous period. This equation takes into account
the removals from the population Ri−1,j, which could be attributed to factors such as death,
relocation, and other reasons.

The two-component endemic–epidemic model proposed by Held et al. [55] can be
applied to Bayesian spatiotemporal models. In this model, the authors separated the
endemic and epidemic components of the log-linear mean model. Two dissemination
patterns for infectious diseases were identified: the local epidemic effect and the lagged
epidemic impact. The lagged epidemic effect posited that the pattern of disease counts
from the prior period influences the current disease count. Consequently, in areas where
disease counts were higher in the prior period, disease dissemination may be more intense.

3.2.3. Environmental Covariates

Bayesian spatiotemporal models offer the capability to integrate diverse data types,
including demographic, environmental, and healthcare data. This integration of various
data sources can significantly enhance the comprehension of the fundamental processes
influencing the spread of diseases [56,57]. The types and quantity of covariates generally
exhibit a wide range of variations. Six distinct categories of covariates were identified, as
reported in the review by Aswi et al. [15], including climatic, demographic, socioeconomic,
entomological, geographic, and temporal covariates. This comprehensive classification was
based on the insights derived from the aforementioned review, providing a framework for
a more holistic understanding of the spatiotemporal dynamics of disease.

In certain scenarios where factors can influence the linear predictor, an additional
component is introduced as follows:

log
(
θij
)
= µ + Ai + Bj + Cij + X′

itβ

Covariates can be either time-varying or time-invariant X′
itβ, accounting for uncer-

tainty arising from measured confounders, where Xit is the environmental covariates’
matrix for county i and time j and β is a vector of regression parameters [9,58,59].

3.2.4. Prior Distribution

Bayesian inference takes all the parameters as random variables with prior probability
distributions. In Bayesian disease mapping, a spatially structured random effect is com-
monly addressed in a hierarchical model’s second level using random effects with CAR
prior distributions, falling under the category of Markov random fields. Besag et al. [60] in-
troduced intrinsic and convolution CAR priors, but these lack clear differentiation between
structured and unstructured random effects, causing identification issues [61]. Leroux
et al. [62] proposed the Leroux prior to explicitly distinguish between structured and
unstructured spatial variation, offering greater flexibility in representing various spatial
correlation scenarios [63]. Krisztin et al. [64] suggested using spatial econometrics, applying
the Spatial Autoregressive (SAR) model to quantify spatial spillover, also known as the
spatial error model in spatial econometrics.

In the unstructured heterogeneity model, the spatial effects are assumed to be sampled
from a normal distribution with mean 0 and precision δ2

ν ,

νi ∼ N
(

0, δ2
ν

)
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In the clustering model, the Gaussian CAR distribution was employed, enabling the
mean of the structured effect to depend on its neighbouring values [65]. The CAR prior
model postulates that the risk of disease occurrence in a given spatial area is influenced by
its nearby geographical neighbours, thereby exhibiting spatial autocorrelation. In essence,
it assumes that spatial areas in close proximity share more similar disease occurrence risks.
Formally, the joint distribution of µi is denoted:

µi
∣∣µj ̸=i ∼ N

(
1

mi
∑
i∼j

µi,
σ2

mi

)

where i ∼ j indicates that areas i and j are neighbors, mi is the number of areas that share
boundaries with the ith area, and σ2 is the variance component. Spatial dependence in µi is
modelled with a CAR prior that extends the well-known Besag model [66] with a Gaussian
distribution. This implies that each µi is conditional on its neighbour µj with variance being
dependent on the number of neighbouring counties mi of county i.

Based on the existing knowledge of the primary risk variables, the choice between
heterogeneity and clustering models can be made. A clustering model emerges when risk
factors extend beyond the boundaries of one or more areas, leading to comparable risk
values in neighbouring regions. On the other hand, a heterogeneity model arises when the
scope of risk determinants is smaller than the size of a region.

Among the various suggestions proposed in the literature for implementing risk
smoothing, the approach presented by Besag et al. [60] has exerted the most significant
influence. Referred to as the BYM specification, this method formed the basis for spatial
modelling in the majority of the models examined in this evaluation [67]. The integration of
clustering effects and heterogeneity plays a pivotal role in determining the risk associated
with a specific area.

The temporal components also include two random effects: the term φj is the unstruc-
tured time effect, which is specified using an independent mean–zero normal prior to the
unknown variance σ2

φ:

φj ∼ N
(

0, δ2
φ

)
The term ϕj represents the organized temporal impact and is dynamically modelled

using a neighbouring structure. In this instance, the structured temporal impact precedes
the random walk dynamic model [10], with its prior density π expressed as follows:

π
(

ϕj

∣∣∣σ2
ϕ

)
∝ exp

(
1

1
2σ2

ϕ

T

∑
t=2

(
ϕj − ϕj−1

)2
)

Similar to CAR, the random walk prior model posits that nearby time points (temporal
correlation), represented as a smoothly fluctuating nonlinear curve, exert an influence on
the temporal fluctuation of the risk of disease occurrence [68].

For a temporal trend, a random walk prior of order one (RW1):

ϕt+1 − ϕt

∣∣∣σ2
ϕ ∼ N

(
0, σ2

ϕ

)
or order two (RW2):

ϕt − 2ϕt+1 + ϕt+2

∣∣∣σ2
ϕ ∼ N

(
0, σ2

ϕ

)
is appropriate for the temporal trend ϕ = (ϕ1, ϕ2, . . . , ϕT)

′, with σ2
ϕ as the variance hyper-

parameter of ϕ.
For the unstructured temporal effects φ = (φ1, φ2, . . . , φT)

′, the exchangeable prior
could be:

φt

∣∣∣σ2
φ ∼ N

(
0, σ2

φ

)
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where σ2
φ is the variance hyperparameter of φ.

The spatially structured, spatially unstructured, temporally structured, and spatially
unstructured effect with the distribution are schematically shown in Figure 2.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 9 of 30 
 

 

𝜑 𝜎 ~𝑁 0, 𝜎  

where 𝜎  is the variance hyperparameter of 𝜑. 
The spatially structured, spatially unstructured, temporally structured, and spatially 

unstructured effect with the distribution are schematically shown in Figure 2. 

 
(a) (b) (c) (d) 

Figure 2. Schematic diagram of spatially structured (a), spatially unstructured (b), temporally struc-
tured (c), and spatially unstructured (d) effect and their distribution. 

For the four interaction components, the priors are the products of the priors of the 
corresponding components. The crucial element in spatiotemporal models is the spatio-
temporal interaction, which can be particularly challenging given the array of options and 
the absence of a universally recognized benchmark that consistently performs well. Knorr-
Held [50] introduced a classification system comprising four potential types of interaction 
between spatial and temporal random effects [47,69], shown in Table 2 and Figure 3. 

Table 2. Four types of space–time interaction (proposed by Knorr-Held [50] and adopted from  
[69]). (✓ means it has correlation; - means it doesn’t have correlation.) 

Space–Time Interaction 𝑹𝜹 Spatial Correlation Temporal Correlation 
Type I 𝑅 ⊗ 𝑅  - - 
Type II 𝑅 ⊗ 𝑅  - ✓ 
Type III 𝑅 ⊗ 𝑅  ✓ - 
Type IV 𝑅 ⊗ 𝑅  ✓ ✓ 

Figure 2. Schematic diagram of spatially structured (a), spatially unstructured (b), temporally
structured (c), and spatially unstructured (d) effect and their distribution.

For the four interaction components, the priors are the products of the priors of
the corresponding components. The crucial element in spatiotemporal models is the
spatiotemporal interaction, which can be particularly challenging given the array of options
and the absence of a universally recognized benchmark that consistently performs well.
Knorr-Held [50] introduced a classification system comprising four potential types of
interaction between spatial and temporal random effects [47,69], shown in Table 2 and
Figure 3.

Table 2. Four types of space–time interaction (proposed by Knorr-Held [50] and adopted from [69]).
(✓means it has correlation; - means it doesn’t have correlation.)

Space–Time Interaction Rδ Spatial Correlation Temporal Correlation

Type I Rv ⊗ Rγ - -

Type II Rv ⊗ Rβ - ✓

Type III Rψ ⊗ Rγ ✓ -

Type IV Rψ ⊗ Rβ ✓ ✓

A Type I space–time interaction can be conceptualized as distinct, with unstructured
unobserved factors for every possible combination of location and period. In this case, the
assumption is that risk is independent in space but similar throughout time. A Type II
interaction consists of temporally organized but geographically unstructured effects. Here,
the assumption is that risk shows a temporal correlation but is independent across different
locations. A Type III interaction assumes that risk exhibits geographic autocorrelation for
each time period but is independent over time. This type comprises spatially structured
but temporally unstructured effects. A Type IV space–time interaction assumes that global
trends are both spatially and temporally connected, capturing both spatial and temporal
structures’ risks.

In the Bayesian framework, a notable challenge arises when selecting appropriate
prior distributions and determining the corresponding parameter values. The intrica-
cies of hierarchical modelling are further compounded by the imperative to define prior
distributions for both model parameters and variance parameters, commonly known as
hyperparameters. Widely employed distributions in this context encompass logGamma
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for log-inverse variance, Half-Cauchy, Penalized Complexity, and Uniform distribution for
hyperparameter standard deviation [70].
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3.3. Bayesian Inference

The Bayesian approach, named after Thomas Bayes, an English clergyman (1702–1761),
revolved around a method of data analysis that emphasizes conditional probabilities linking
observed and unknown quantities. This paradigm enables the assessment of the likelihood
of a specific hypothesis based on the observed data.

Bayesian methods offer the advantage of incorporating prior information with ob-
served data to estimate parameters and make predictions. Although frequentist statistical
analysis still underpins the majority of practical statistical applications, Bayesian methods
have emerged as the standard in numerous fields, particularly in the modelling of spa-
tiotemporal epidemiology. Their utility is particularly evident in public health policy and
clinical settings, where study results can directly influence decision making.

Bayes’ theorem, as articulated by Gelman [71], is fundamental to Bayesian statistics
and states that

p(θ|x ) ∝ p(x|θ )p(θ)

which means Posterior ∝ likelihood × prior, where x is the observed data and θ is the
unobservable vector quantities or population parameters of interest. As elucidated by
Austin et al. [72], the probability distribution of a parameter was derived by multiplying its
prior probability distribution by the likelihood function and then dividing the result by
the probability of the data, conditioned on the observed data. The resulting distribution is
referred to as the posterior distribution.

This theorem provides a framework for updating beliefs (posterior probability) based
on new evidence (likelihood) and prior knowledge (prior probability). The versatility of
Bayesian methods makes them valuable tools in exploring complex relationships and uncer-
tainties, offering a comprehensive approach to statistical modelling in various disciplines.

A tutorial on the Bayesian workflow for disease transmission modelling in Stan
has been provided (https://mc-stan.org/users/documentation/case-studies/boarding_
school_case_study.html, accessed on 28 December 2023). The tutorial illustrates the pro-

https://mc-stan.org/users/documentation/case-studies/boarding_school_case_study.html
https://mc-stan.org/users/documentation/case-studies/boarding_school_case_study.html
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cesses of constructing, fitting, and assessing disease transmission models utilizing a fun-
damental susceptible–infected–recovered (SIR) model. Figure 4 provides an overview of
the Bayesian model’s functionality through a simplified process (adapted from Martin
et al. [73]).
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3.4. Computational Algorithms
3.4.1. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods, which simulate direct draws from
complex distributions of interest, are widely employed in Bayesian computation. MCMC
algorithms generate a Markov chain by utilizing past sample values to randomly generate
the next sample value. Typically, the Markov chain begins at any random point and
gradually converges to the desired distribution. The Gibbs sampler [74] and the Metropolis
algorithm [75,76] are commonly used in a variety of Bayesian applications. For further
details and variations on MCMC approaches, refer to Gilks et al. [77].

3.4.2. Integrated Nested Laplace Approximation

Rue et al. [78] have introduced the integrated nested Laplace approximation (INLA)
as an alternative to sampling-based methods, addressing the slow convergence and high
computational cost associated with MCMC methods. INLA is particularly useful for latent
Gaussian field structured additive regression models, providing an approximation for
Bayesian inference.

In each equation, the symbol can be employed to represent the vector of all Gaussian
variables and the vector of hyperparameters, which are not necessarily Gaussian. Another
approach to express the marginal posterior density of an image is as follows:

π(xi|y ) =
∫

θ
π(xi|θ, y )π(θ|y )dθ

To approximate the first component π(xi|θ, y ), three different approaches are possi-
ble: a Gaussian approximation, a full Laplace approximation, and a simplified Laplace
approximation. Rue et al. [78] introduced the simplified Laplace approximation, which
was based on a series expansion of the full Laplace approximation. This method is less
time consuming and proves to be highly competitive in many applications. Finally, an
approximation of the posterior marginal density is given using

π(xi|y ) = ∑ k
∼
π(xi|θk, y )

∼
π(xi|θk, y )∆k

As computation with INLA has gained popularity, several comparisons between
INLA methods and MCMC algorithms have been conducted. These investigations have
consistently demonstrated that the two strategies perform similarly. According to Schrödle
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and Held [69], the outcomes of MCMC simulations and the full Laplace approximation
of INLA are nearly identical. Other studies, including posterior predictive checking by
Held et al. [79], and survival models by Martino et al. [80], have reported very similar
outcomes between INLA and MCMC. The INLA software package, recently developed in
R (Integrated Nested Laplace Approximation), has become a commonly used approach for
implementing Bayesian models [16].

3.5. Model Fit Criteria

In disease mapping studies, the Deviance Information Criterion (DIC), introduced
by Spiegelhalter et al. [81], was widely employed as one of the goodness-of-fit statistics.
DIC relies on comparing the average deviance and the deviance of the posterior parameter
estimates. It is defined as

DIC = 2Eθ|y(D)− D
[

Eθ|y(θ)
]

where D[.] is the deviance of the model, and θ is the parameter set of the model. In model
comparison, a smaller DIC indicates a better goodness-of-fit.

Another goodness-of-fit statistic could be Watanabe–Akaike information criterion
(WAIC) [82].

The Mean Squared Error (MSE) for comparing data points and posterior mean esti-
mates is given by Kim et al. [1]:

MSE = ∑ M
i=1∑ t

j=1∑ S
s=1
(
yij − ûijs

)2/(M·t·S)

where S is the number of MCMC samples, M is the total number of the area, and t is the
total number of time periods. The MSE is computed as the sum of the squared differences
between the actual data yij and posterior estimates at each sampling period ûijs and then
averaged over the entire time, space, and sampling periods.

For short-term prediction evaluation, the one-step-ahead prediction from the posterior
estimates of the last time period can be compared with real data, as suggested by Kim
et al. [1].

MAOSPE = ∑ M
i=1∑ t

j=1∑ S
s=1
∣∣yi,j+1 − ŷi,j+1,s

∣∣/(M·t·S)

For each sampling period s, ŷi,j+1,s is sampled from the estimated, while yi,j+1 is
calculated using the values from the previous time period j.

In addition to the measures mentioned above, the predictive performance of models
can be further evaluated by assigning numerical scores based on their predictive distri-
butions. In accordance with this approach, given a set of spatiotemporal observations
y = (y11, . . . , ynT)

′, the logarithmic score (LS) [83], and probability integral transform
(PIT) [84] are defined as follows:

LS = −∑ n
i=1∑ T

t=1log(CPOit)

and
PIT = Pr

(
Yit ≤ yit

∣∣yit
)

where CPOit = Pr
(
Yit = yit

∣∣yit
)

represents the conditional predictive ordinate [85]. It
signifies the cross-validated predictive probability mass at the observed count yit.

A smaller LS indicates a better prediction. The PIT histogram provides an indication of
the model fit across all observations. The closer the PIT histogram aligns with the uniform
distribution histogram, the better the overall fit of the model [86].

Various model selection criteria used in studies include Bayesian cross-validation
criterion (BCV), mean absolute percentage error (MAPE), Root Mean Squared Error (RMSE),
Continuous Ranked Probability Score (CRPS), highest probability (HPM), mean absolute
error (MAE), Pearson correlation coefficient (r) [87], which are appropriate statistics for
prediction of performance evaluation, and for the best prediction (BPM) [16]. Each criterion
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provides a different perspective on model performance, and the choice often depends on
the specific goals and characteristics of the analysis.

4. Early-Stage Modelling Work
4.1. Data Collection
4.1.1. Epidemic Data

Several websites provide epidemic data and updates on infectious diseases. Here are
some reputable sources for epidemic data in Table 3.

Table 3. Reputable sources for epidemic data.

Name Website Data

1 World Health
Organization (WHO) https://www.who.int/ global health data, including updates

on ongoing epidemics and pandemics

2
Centers for Disease

Control and
Prevention (CDC)

https://www.cdc.gov/
the United States national public

health agency on diverse
infectious diseases

3

Johns Hopkins
University

(JHU)—Coronavirus
Resource Center

https://coronavirus.jhu.edu/
a global paltform for tracking the

COVID-19 pandemic with statistics on
cases, deaths, and vaccination

4
European Centre for

Disease Prevention and
Control (ECDC)

https://www.ecdc.europa.eu/
data on infectious diseases in Europe

with surveillance reports and
epidemiological updates

5 Worldometer—COVID-19
Coronavirus Outbreak

https://www.worldometers.
info/coronavirus/

real-time statistics covering a range of
topics with COVID-19 cases, deaths,

and testing

6 Our World in Data https://ourworldindata.org/ visualisations and data on global
health, including infectious diseases

4.1.2. Geographical and Socioeconomic Data

There are several reputable sources that provide a wide range of geological and Earth
science information. Here are some key websites for geosciences data in Table 4.

Table 4. Key websites for geosciences data.

Name Website Data

1 United States Geological
Survey (USGS) https://www.usgs.gov/

collection of geological and
geospatial data with maps, satellite
imagery, and geological information

2
National Centers for

Environmental
Information (NCEI)

https://www.ncei.noaa.gov/ environmental data with climate,
oceanography, and geophysical data

3 European Space Agency
(ESA)—Earth Online https://earth.esa.int/eogateway

satellite data on Earth observation
missions with data related to

climate, land cover, and
environmental monitoring

4

National Aeronautics
and Space

Administration (NASA)
Earth Observing System

Data and Information
System (EOSDIS)

https://www.earthdata.nasa.
gov/eosdis

NASA’s Earth science data with
satellite imagery, atmospheric data,

and climate data

5
Global Biodiversity

Information
Facility (GBIF)

https://www.gbif.org/ georeferenced species occurrence
data related to biodiversity

6 OpenTopography https://opentopography.org/ high-resolution topographic data
and lidar datasets

https://www.who.int/
https://www.cdc.gov/
https://coronavirus.jhu.edu/
https://www.ecdc.europa.eu/
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://ourworldindata.org/
https://www.usgs.gov/
https://www.ncei.noaa.gov/
https://earth.esa.int/eogateway
https://www.earthdata.nasa.gov/eosdis
https://www.earthdata.nasa.gov/eosdis
https://www.gbif.org/
https://opentopography.org/
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There are some websites that provide meteorological data and information, where you
can access weather-related data. Here are some key websites for meteorological data in
Table 5.

Table 5. Key websites for meteorological data.

Name Website Data

1
National Oceanic
and Atmospheric

Administration (NOAA)
https://www.noaa.gov/

meteorological information with
weather forecasts, satellite imagery,

and climate data

2 National Weather
Service (NWS) https://www.weather.gov/

weather forecasts, warnings, and
other meteorological information for

the United States

3
European Centre for

Medium-Range Weather
Forecasts (ECMWF)

https://www.ecmwf.int/
global weather forecasts, climate

reanalysis data, and
meteorological products

4 World Meteorological
Organization (WMO) https://wmo.int/ global meteorological information,

reports, and publications

5 Weather Underground https://www.
wunderground.com/

weather forecasts, radar imagery, and
historical weather data

There are several reputable sources that provide socioeconomic data, where you can
access a wide range of information related to social and economic indicators. Here are
some key websites for socioeconomic data in Table 6.

Table 6. Key websites for socioeconomic data.

Name Website Data

1
World Bank—World

Development
Indicators (WDI)

https://datatopics.worldbank.org/
world-development-indicators/

(accessed on 9 March 2024)

socioeconomic data with population,
poverty, education, and
economic development

2

United Nations
Development Programme

(UNDP)—Human
Development Indicators

https://hdr.undp.org/data-center/
human-development-index (accessed on

9 March 2024)

human development indicators with life
expectancy, education, and income

3 United Nations Statistics
Division (UNSD) https://unstats.un.org/UNSDWebsite/ global statistical information with social,

economic, and environmental indicators

4 U.S. Census
Bureau—Data.census.gov https://data.census.gov/ socioeconomic data with population,

housing, and economic indicators

5 Eurostat https://ec.europa.eu/eurostat socioeconomic data for EU member states

6 Statista https://www.statista.com/
statistics and data on various

socioeconomic topics with industry,
finance, and demographics

Other products such as daily land surface temperature (LST) measurements, North
American Land Data Assimilation System (NLDAS) data, normalized difference vegetation
index (NDVI) raster data, are also accessible in Google Earth Engine™ [88].

Socioeconomic data can also come from the Statistical Yearbook Sharing Platform in
China, including the land area of the administrative region, the total population at the end
of the year, the gross domestic product (GDP), the total power of agricultural machinery,
and the number of beds in medical and health institutions.

4.2. Data Preprocessing
4.2.1. Preprocessing for Data Integrity

To ensure data integrity, preprocessing steps encompass interpolation [89], classi-
fication, normalization, and standardization. Addressing missing values is crucial; we
must adopt appropriate handling methods, incorporating imputation if necessary. When
examining environmental and social risk factors for infectious diseases using a Bayesian
spatiotemporal framework, the population is interpolated linearly across the study pe-
riod and extrapolated for the other period from the trend [89]. Equally important is the

https://www.noaa.gov/
https://www.weather.gov/
https://www.ecmwf.int/
https://wmo.int/
https://www.wunderground.com/
https://www.wunderground.com/
https://datatopics.worldbank.org/world-development-indicators/
https://datatopics.worldbank.org/world-development-indicators/
https://hdr.undp.org/data-center/human-development-index
https://hdr.undp.org/data-center/human-development-index
https://unstats.un.org/UNSDWebsite/
https://data.census.gov/
https://ec.europa.eu/eurostat
https://www.statista.com/
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identification and appropriate handling of outliers, as they can significantly impact the
model’s results.

Normalization or standardization of variables is vital to ensure that they are on similar
scales, particularly when merging variables with different units. Additionally, it is crucial
to verify that spatial data are accurately georeferenced and align with the coordinate
system used in the analysis. To avoid biases in model estimation, thorough exploration
and addressing of spatial autocorrelation is necessary.

4.2.2. Preprocessing for Data Statistics

Preprocessing for data statistics involves assessing the normality and multicollinearity
of the data. The normality test utilizes the Kolmogorov–Smirnov (K–S) method. To
address spatial autocorrelation and prevent biases in model estimation, a comprehensive
exploration should be conducted.

Multicollinearity is assessed by calculating the variance inflation factor (VIF). Variables
with VIF ≥ 10 indicate multicollinearity, prompting the removal of one variable at a time
until multicollinearity is resolved.

In the presence of a correlation between influencing factors, principal component
analysis (PCA) can be employed to reduce dimensions and avoid collinearities. The
cumulative contribution rate reaching over 80% guides the determination of the number of
principal components, aligning with the actual meaning of each component.

For credible intervals, computation involves fitting the full model. These intervals,
serving as the Bayesian counterpart to frequentist confidence intervals, allow for the
identification of parameters that are not significant predictors if their credible intervals
contain 0 [90].

4.3. Statistical Software

A statistical analysis can be conducted using various tools including ArcGIS Desk-
top/ArcGIS Pro, GeoDa, SaTScan, QGIS, and R. Additionally, specialized software like
GWR4, BayesX, and WinBUGS can be employed for specific spatial analyses [16].

For the development of Poisson regression models within a region-level Bayesian
framework, WinBUGS proves useful, offering a platform for Bayesian model iteration [91].
OpenBUGS software facilitates the assessment of the spatial sociological impact of diseases
through Gibbs sampling, generating a Markov chain from the complete conditional prob-
ability distribution. GeoBUGS, an OpenBUGS add-on, fits spatial models and produces
diverse maps as outputs, allowing for the mapping of relative risk for different regions [92].

An interface with R, called R-INLA, provides an alternative for model specification and
fitting within the R environment. Downloadable from http://www.r-inla.org/ (accessed
on 9 March 2024), it offers documentation, numerous worked examples, and a discussion
forum. R-INLA is versatile, handling fixed effects, non-linear terms, and random effects
in a formula argument, providing flexibility for the specification of different models and
priors options [10].

5. Applications

The Bayesian spatiotemporal model serves the crucial purpose of estimating disease
transmission risk, pinpointing areas with elevated spatial incidence, and aptly considering
the susceptibility–infection–recovery model within the population. Simultaneously, this
model is adept at assessing the influence of physical geographical and socioeconomic
factors on disease incidence. Natural factors encompass elements like temperature, rainfall,
and air pollution, while socioeconomic factors include aspects such as economic indicators,
healthcare accessibility, and population demographics.

The applications of Bayesian spatiotemporal models are diverse. Here are the four
key areas:

Disease surveillance: offering real-time risk estimates and assisting dynamic disease
surveillance.

http://www.r-inla.org/
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Epidemic forecasting: by modelling the spatiotemporal dynamics of diseases, these
models enable the forecasting of future outbreaks, facilitating timely intervention and
resource planning.

Identifying hotspots: effectively pinpointing spatial and temporal hotspots, these
models highlight areas with consistently high disease risk or where risk is escalating
over time.

Public health planning: the insights derived from Bayesian spatiotemporal models
play a pivotal role in guiding public health planning and resource allocation, identifying
priority areas and populations at high risk.

Bayesian spatiotemporal models serve as powerful tools for comprehensively analysing
the distribution and trends of both non-communicable and infectious diseases across di-
verse regions and over varying time periods.

In the realm of non-communicable diseases (e.g., cardiovascular diseases, cancers,
chronic respiratory diseases, and diabetes), these models play a pivotal role. For instance,
in cardiovascular disease research, Bayesian spatiotemporal models can effectively map
cardiovascular mortality, pinpoint regions with elevated prevalence [93,94], identify as-
sociated risk factors [95], and evaluate the nuanced impacts of these factors. Likewise, in
cancer epidemiology, these models facilitate the meticulous analysis of cancer incidence
and mortality. They empower researchers to identify clusters of cancer cases, delve into
potential environmental risk factors [96], and gauge the effectiveness of interventions [97].
Moreover, in the study of diseases like asthma or chronic obstructive pulmonary disease,
Bayesian spatiotemporal models prove invaluable by helping identify areas with high
prevalence and investigating potential environmental triggers [98]. In the context of di-
abetes, these models are instrumental in the analysis of spatial and temporal patterns of
diabetes prevalence. They contribute to predicting trends and assessing influential factors
contributing to the global prevalence of diabetes in recent years [99].

In the realm of infectious diseases, the significance of Bayesian spatiotemporal mod-
els is heightened, as they provide a nuanced understanding of disease dynamics and
interactions. The detailed importance of these models is elucidated below.

5.1. Viral Infection

The virus typically spreads through respiratory droplets, direct contact, or vectors like
mosquitoes. Consequently, in densely populated areas, viral infections often experience
swift and extensive dissemination. Geographically, viral infections can have a global
distribution, but prevalence rates vary based on factors such as the environment, population
density, and socioeconomic conditions. Temporally, viral infections may display seasonal
patterns distinct from other infection patterns. For instance, COVID-19 and influenza are
more prevalent during colder months.

5.1.1. COVID-19

Bayesian spatiotemporal models have been widely utilized for COVID-19 analysis
and forecasting globally, including in the United States [100–102], England [103,104], Spain,
Italy, Germany, Sweden [87,105–107], Africa [108], and in some regional areas such as
the West Java Province, Indonesia [109], and the Greater Seoul Area, Korea [110]. As an
illustration, Nazia et al. [111] applied a Bayesian hierarchical spatiotemporal model to
assess the COVID-19 risk. Their model incorporated satellite-derived remote sensing data
on land surface temperature and various socioeconomic covariates from January 2020 to
October 2021 for 140 neighbourhoods in Toronto. The resulting spatial relative risk and
spatiotemporal trends were visually represented, revealing heterogeneous risk patterns,
particularly in western and southern Toronto (Figure 5).
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5.1.2. Influenza

A Bayesian spatial CAR model assessed the spatiotemporal distribution of H7N9
infection risk in Shanghai from February 19 to 14 April 2013, revealing high variations in
the east and centre of the city [112]. Another study focused on China, using a Bayesian
hierarchical conditional autoregressive model with five covariates to predict seasonal
relative risk for human H7N9 infection [113]. Lemey et al. [114] applied Bayesian inference
to H1N1pdm genetic data for global epidemic spread considering meteorological and
socioeconomic variables and accounting for spatial autocorrelation. [115] used Bayesian
phylogeography on H5N1 and H7N9 haemagglutinin sequences to identify migration
patterns and investigate associated risk factors [2].

5.1.3. Haemorrhagic Fever

Two Bayesian spatiotemporal CAR models were employed, one allowing for dis-
continuities in risk between neighbouring areas. Utilizing these models facilitates the
identification of distinct groups of areas and assesses the impact of climatic covariates,
offering valuable insights for informing policy decisions [116]. Another study focused on
HFRS incidence in mainland China from 2015 to 2018, employing a Bayesian hierarchical
spatiotemporal distribution model. The analysis revealed significant positive associations
between HFRS development and woodland and grassland areas, economic factors, and
traffic levels, with traffic having the most substantial promoting effect [117].

5.1.4. Ebola

Bayesian model inference was employed to assess the Ebola outbreak in Western
Africa (2014–2015), integrating individual-level spatial information with epidemiological
data. Superspreaders were identified as crucial for sustaining epidemic transmission [118].
A Bayesian hierarchical Poisson model estimated Ebola virus disease risk, linking it to
factors like households lacking radios, increasing rainfall, and urban land in districts [119].
Utilizing fully Bayesian geostatistical analysis through stochastic partial differential equa-
tions revealed a positive association between violent events in affected areas and reported
Ebola virus disease cases and deaths [120].

5.1.5. Dengue

The Bayesian method suggests a spatial and temporal positive correlation between the
spreading pattern of Aedes aegypti, as indicated by Dengue haemorrhagic fever incidence in
East Java [121]. The relationship between egg numbers and climatic/environmental variables
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was examined through Bayesian zero-inflated spatiotemporal models [122]. Martínez-Bello
et al. [123] employed alternative models to assess dengue transmission risk. A systematic
review by Aswi et al. [15] summarized Bayesian spatial and spatiotemporal approaches for
modelling dengue fever. To better understand the effects of niche variables in the epidemiolog-
ical process, Poisson-lognormal and binomial models were explored using various Bayesian
spatiotemporal methods [124]. Different structure models, including autoregressive and
random walk, were developed for dengue counts in Kendari, Indonesia [125].

5.1.6. Rabies

The absence of human-to-human transmission means that the spread of rabies is not
substantially influenced by human distribution or migration [126]. Bayesian hierarchical
frameworks were employed to assess spatial and spatiotemporal patterns of rabies infection
among striped skunk cases in the North Central Plains of the US [127]. In eastern Germany,
a hierarchical Bayesian state–space model was applied to analyse three decades of fox rabies
cases and oral rabies vaccination campaigns [128]. Spatiotemporal Bayesian regression
models were used to evaluate the impact of accessibility to rabies on post-exposure prophy-
laxis patients, generating a risk map for optimal new centre locations in Cambodia [129]. In
a One Health approach focusing on Thailand, a Bayesian spatial regression model, specifi-
cally a CAR Bayesian zero-inflated Poisson regression, quantified the location-based risk of
dog-mediated rabies for both human and animal populations [130]. The study further mod-
elled ecological and socio-economic variables associated with dog rabies using univariate
analyses with zero-inflated negative binomial regression and multivariable spatial analy-
ses. In China, annual rabies incidence data at the province level from 2004 to 2019 were
analysed using a Bayesian hierarchical spatiotemporal model to determine the impacts of
environmental, economic, and demographic factors [131]. Kanankege et al. [130] also fitted
a conditional autoregressive Bayesian model for human and animal rabies, emphasizing
factors such as dog bites and ownership.

5.2. Bacterial Infection

Bacterial infections can spread through various avenues, such as person-to-person
contact, contaminated food or water, and vectors. From a spatial standpoint, these infections
often manifest in localized patterns, influenced by environmental factors and population
dynamics. The prevalence can vary based on factors like sanitation and living conditions.
Temporally, bacterial infections typically exhibit a slower spread compared to viruses.
Predicting their temporal distribution is more challenging than that of viral infections.
Some bacterial diseases endure year-round, while others experience intermittent outbreaks,
adding complexity to their overall temporal dynamics.

5.2.1. Salmonellosis

A Bayesian hierarchical spatiotemporal model identified significant spatial and tem-
poral influences on Salmonella spp. isolation from litter, along with notable effects from
broiler house size, total housing area per farm, broiler house type, and the number of
litter recycles [132]. Subsequently, Bayesian spatial regression, using a reparametrized
Besag-York-Mollié Poisson model, was employed to quantify structured and unstructured
spatial effects while considering potential risk factors for Salmonella infection at the province
level [133].

5.2.2. Tuberculosis

Bayesian spatiotemporal models have been applied to study tuberculosis in various
countries, including India [134], China [135–137], Kenya [138], Indonesia [139], Ethiopia [140].
Srinivasan and Venkatesan [134] examined disease rates among Indian states, assessing
neighbourhood tuberculosis infections and their causes using Bayesian models with a CAR
approach for spatial and temporal pattern changes in two survey periods. Cao et al. [137] iden-
tified influencing factors for tuberculosis in certain cases. Li et al. [135] employed a Bayesian
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spatiotemporal model to analyse the correlation of socioeconomic, healthcare, demographic,
and meteorological factors with the population-level number of tuberculosis cases. Amsalu
et al. [141] used a Bayesian CAR model to explore the spatial–temporal pattern of tuberculosis
in the geriatric population and its association with meteorological and sociodemographic
factors. Liu et al. [142] constructed Bayesian spatiotemporal models to analyse the association
between ambient air pollutants and pulmonary tuberculosis incidence, adjusting for socioeco-
nomic covariates. Wahyuni and Syam [143] employed a Bayesian approach for spatiotemporal
modelling of tuberculosis cases in Makassar City, comparing seven Bayesian Spatiotemporal
CAR models using measures like DIC and WAIC. Madden et al. [144] explored different
spatiotemporal random-effects models, including the negative binomial Besag-York-Mollié
model, using comprehensive data to examine the association between covariates and the
number of bovine tuberculosis cases.

5.2.3. Brucellosis

Ahasan et al. [145] used spatial analysis to estimate the true prevalence of brucellosis
and assess test performances. In South Korea, Lim et al. [146] conducted spatial analysis to
examine the relationship between human and bovine brucellosis. Rahmanian et al. [147]
analysed temporal trends of human brucellosis in Yazd Province, Iran, between 2013 and
2018, predicting future incidence trends. Liang et al. [148] estimated the spatiotemporal
distribution of human brucellosis in Inner Mongolia, China, and identified influencing
factors using Bayesian spatiotemporal models.

5.2.4. Anthrax

Bayesian spatiotemporal models for anthrax were applied in Vietnam [149,150] and
Kenya [151]. In Kenya, a Bayesian approach was employed to analyse a long-term dataset
of livestock anthrax cases from 2006 to 2020. Spatial and spatiotemporal models were
developed to investigate the distribution and socio-economic drivers of anthrax occurrence
and incidence at both national and sub-county levels [151].

5.3. Parasitic Infection

Parasitic infections typically propagate through vectors, such as mosquitoes trans-
mitting malaria, or through the consumption of contaminated water and food. The life
cycle of a parasite often spans multiple hosts, impacting both its spatial and temporal
distribution. Geographically, the prevalence of parasitic infections is shaped by the habitat
and behaviour of vectors or intermediate hosts participating in the transmission cycle.
Temporally, parasitic infections can manifest with intricate life cycles; certain parasitic
diseases may experience seasonal variations, while others may be characterized by more
extended periods aligned with the parasite’s life cycle.

5.3.1. Malaria

Bayesian spatiotemporal models for malaria have been employed in various regions,
including Burkina Faso [152], Pará [153], Nigeria [154], Rwanda [155], and Thailand [156].
Alegana et al. [157] utilized a Bayesian conditional–autoregressive model to assess spatial
and temporal variations in malaria incidence, considering test positivity rates and health
facility utilization. Haddawy et al. [158] applied Bayesian networks to model malaria,
creating village-level models with weekly temporal resolution in the Tha Song Yang district,
Thailand, using cases and environmental covariates, including NDVI, LST, rainfall, slope,
distance to nearest stream, stream density, and distance to border. Semakula et al. [159]
used spatiotemporal models to estimate excess probability for decision making for malaria
incidence reduction, employing SIR and BYM models with routine health facility data
from 2012 to 2018 in Rwanda. A systematic review on spatial and spatiotemporal meth-
ods for mapping malaria risk was conducted by Odhiambo et al. [14]. In their review,
approximately half (44%) of the studies employed variable selection techniques prior to
mapping with rainfall and temperature selected in over 50% of the studies. Malaria in-
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cidence (47%) and prevalence (35%) were the most commonly mapped outcomes, with
Bayesian geostatistical models often (31%) being the preferred approach to risk mapping.

5.3.2. Toxoplasmosis

Bayesian spatiotemporal models for toxoplasmosis have been utilized in various re-
gions, including China [160], Brazil [161], and Africa [162]. In Jiangsu province, China,
Yang et al. [163] employed Bayesian spatiotemporal models to analyse Schistosoma japon-
icum infection risk, determining relationships between key climatic factors and infection
prevalence at the county level. Welton and Ades [164] presented a Bayesian evidence
synthesis model combining data on toxoplasmosis seroprevalence, seroconversion, and
tests of recent infection to estimate its current incidence in the UK, incorporating a hier-
archical structure over geographic regions, a random-walk model for temporal effects,
and a fixed-age effect. Hu et al. [160] identified high-risk counties for schistosomiasis in
Anhui province, China, and described trends using a Bayesian hierarchical spatiotemporal
model with annual parasitological and environmental data. Melo et al. [165] assessed the
temporal trend, spatial analysis, and spatiotemporal clusters of infant mortality associated
with congenital toxoplasmosis in Brazil, with spatial analysis (including Global Moran
Index, Global Geary’s Contiguity, and Getis-Ord General statistics) and spatiotemporal
scan methods.

5.4. Other Infections

The assessment of Mediterranean spotted fever, rickettsiosis in Italy, involved the
analysis of spatiotemporal distribution using hospitalization records, as explored in the
records of Gomez-Barroso et al. [166]. In Brazil, Baquero and Machado [167] investigated
the spatiotemporal dynamics and risk factors associated with Leptospirosis. Similarly,
in Mahasarakham province, Thailand, Viroj et al. [168] delved into the spatiotemporal
aspects of Leptospirosis. Meanwhile, Dhewantara et al. [169] studied Leptospirosis in
China, contributing insights into the disease’s dynamics and associated risk factors. These
studies collectively provide a comprehensive view of the spatiotemporal dynamics and risk
factors associated with Leptospirosis across diverse geographic regions, emphasizing the
importance of understanding the spatial and temporal dimensions of infectious diseases
for their effective management and prevention strategies. Consequently, the predominant
application of Bayesian spatiotemporal models in the context of infectious diseases is
visually depicted in Figure 6.
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6. Discussion
6.1. Difficulties

The Bayesian spatiotemporal modelling approach is effective for handling uncertainty
in the scientific inference, offering a robust foundation, greater power, flexibility, and
delivering results in a natural and intuitive form. Yet, challenges exist in applying Bayesian
methodology to statistical analysis.

(1) Computational complexity: Bayesian spatiotemporal models, particularly for large
datasets, can be computationally demanding due to integrations over uncertain
parameters, often requiring intensive numerical methods like MCMC algorithms.
Despite this, the Bayesian hierarchical framework is widely used for its flexibility,
allowing the construction of complex models through a hierarchical structure that
combines data and prior information using prior distributions for each parameter.

(2) Model interpretability: Complex Bayesian spatiotemporal models can pose chal-
lenges for result interpretation, as their structures demand a prior distribution on
the parameters of interest. The use of different priors can yield varied results, in-
troducing subjectivity and controversy. Striking a balance between complexity and
interpretability is crucial in model development to enhance decision making.

(3) Incorporating dynamic factors: enhancements in modelling dynamic factors influ-
encing disease spread, such as human mobility or climate changes, are areas for
future research.

(4) Validation and comparison: while there have been reviews on Bayesian models,
there is a continued need for standardized validation procedures and comparisons
among various Bayesian spatiotemporal models to evaluate their performance and
generalizability.

6.2. Advantages

(1) Bayesian spatiotemporal models yield more reasonable results than traditional meth-
ods. Unlike traditional approaches that rely on p values, Bayesian methods extract the
mean, mode, confidence intervals, and other indicators from the posterior distribution
of unknown parameters, providing a more comprehensive and interpretable represen-
tation of uncertainty. Bayesian methods can naturally handle missing data through
their probabilistic framework, providing a more robust analysis in situations where
traditional methods may struggle. Bayesian spatiotemporal models often involve
hierarchical structures that allow for borrowing strength across space and time. This
helps in improving parameter estimation, especially in regions or time periods with
limited data. In situations where new data become available, Bayesian models can
be easily updated to incorporate this information, allowing for dynamic and adap-
tive modelling. Traditional methods may require more extensive modifications to
accommodate new data.

(2) The Bayesian spatiotemporal model integrates prior information, treating unknown
parameters as random variables influenced by both sample and prior information. By
incorporating information about spatial and temporal structures as initial assump-
tions in the model, it becomes more realistic and gains valuable insights from past
experiences, leading to a more accurate representation of the data.

(3) Bayesian spatiotemporal models benefit from computational advantages, enabled
using the MCMC algorithm and improved calculation speed. MCMC iteratively gen-
erates parameter samples, simplifying the estimation of posterior distributions. This
approach facilitates the Bayesian analysis of complex datasets, addressing challenges
such as missing observations and multidimensional outcomes.

(4) The Bayesian spatiotemporal model adeptly handles statistical challenges in disease
research, including small areas, low case counts, and significant regional differences.
By incorporating prior information and adjacent spatiotemporal data, these models
improve the realism of model estimation in spatial analyses, offering dependable
solutions for addressing statistical issues in disease research.
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6.3. Considerations

(1) Spatial and temporal scale: Using Bayesian spatiotemporal models presents a chal-
lenge known as the scale effect, where varying spatial or time scales may produce
inconsistent or contradictory results. Spatial scales generally refer to provinces, cities,
counties, and time scales refers to years, quarters, months, weeks. Careful considera-
tion of both spatial scales and time scales is essential when comparing conclusions
from spatiotemporal analyses of the same disease. The stable correlation observed
with certain factors in one space–time dimension may not hold in another.

(2) Selection of prior information: Bayesian statistical methods benefit from the use
of prior information, but its effectiveness depends on careful selection. Defining a
Bayesian prior requires a thorough understanding of the relevant scientific litera-
ture. Extracting useful information from the literature and combining it with expert
knowledge helps in choosing an appropriate prior distribution and setting parame-
ters. In cases without support from the literature, opting for an uninformative prior
ensures that results remain unbiased using uncertain prior information, preventing
misleading conclusions.

(3) Reasonable model selection: Conventional spatiotemporal model analysis methods
may overlook mean regression bias and unobserved heterogeneity, leading to unstable
and biased parameter estimates. Additionally, methods like spatial autoregression
face challenges with multi-level data and population-level random effects. In contrast,
the full Bayesian framework is more flexible, easily extending to models with random
effects that serve as surrogates for unobserved or missing covariates with spatial or
temporal structures.

7. Conclusions

This study is designed to address the specific requirements of spatiotemporal mod-
elling in spatial epidemiology. It takes into account the diverse and intricate nature of
Bayesian spatiotemporal models, identifying those most suited to the task. The review
encompasses a detailed examination of research on Bayesian spatiotemporal models within
spatial epidemiology. The methodological intricacies, ranging from the spatiotemporal
distribution of data to Bayesian deduction, spatiotemporal evolution rules, and calcula-
tion methods, are thoroughly discussed. Furthermore, the application fields, advantages,
and necessary precautions associated with this method are critically reviewed. Bayesian
spatiotemporal models naturally accommodate uncertainty in parameter estimates and
facilitate the incorporation of both spatial and temporal dependencies, which are pivotal
in advancing our understanding of the dynamics of diseases. The integration of diverse
data sources, such as environmental variables and demographic information, into a unified
framework, enhances the analysis of the complex interplay of factors influencing disease
dynamics. Despite facing challenges, ongoing research endeavours are anticipated to
refine these models, enhancing their accessibility, interpretability, and applicability to a
broader spectrum of spatial epidemiological inquiries. The fusion of advanced statistical
methodologies and computational tools is poised to continue propelling advancements in
this field. This study serves to elucidate the Bayesian model and its practical utilization
in spatial epidemiology including both non-communicable and infectious diseases, and
the understanding of control factors of these diseases. Such advancements are of profound
significance in fostering better comprehension and control of epidemic transmission.
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