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Abstract: Uncertainties related to runout distances in shallow landslide analyses may not only
affect lives but may also result in economic losses. Owing to the increase in shallow landslides,
which are especially triggered by heavy rainfall, runout distances have been investigated to decipher
whether applications of a functional runout distance are feasible. This paper aims to give insights
into the modeling of the shallow landslide runout probability in Eocene flysch facies in the Western
Black Sea region of Türkiye. There are two main stages in this study—which are dominated by
empirical models, the detection of initiation points, and propagation—which help us to understand
and visualize the possible runout distances in the study area. Shallow landslide initiation point
determination using machine learning has a critical role in the ordered tasks in this study. Modified
Holmgren and simplified friction-limited model (SFLM) parameters were applied to provide a
good approximation of runout distances during the propagation stage using Flow-R software. The
empirical model parameters suggested for debris flows and shallow landslides were investigated
comparatively. The runout distance models had approximately the same performance depending
on the debris flow and shallow landslide parameters. While the impacted total runout areas for
the debris flow parameters were predicted to amount to approximately 146 km2, the impacted total
runout areas for the shallow landslide parameters were estimated to be about 101 km2. Considering
the inclusion of the RCP 4.5 and RCP 8.5 precipitation scenarios in the analyses, this also shows that
the shallow landslide and debris flow runout distance impact areas will decrease. The investigation
of runout distance analyses and the inclusion of the RCP scenarios in the runout analyses are highly
intriguing for landslide researchers.

Keywords: shallow landslide; runout distance; empirical model; machine learning; Eocene flysch
facies; RCP 4.5; RCP 8.5

1. Introduction

Considering the increase in extreme rainfalls in the last decade due to climate change,
it is possible to claim that shallow landslides are like any other type of natural hazard and
that researchers should increasingly focus on them [1]. Runout distance determination in
shallow landslide analysis is crucial because hazard evaluations involving runout distance
information constitute one of the bases of sustainable development for societies living
in mountainous areas [2]. Runout methods are yielding extraordinary insights into land-
slide runout analysis. For many years, researchers have studied landslides using existing
runout methods, which are empirical–statistical methods, physical methods, and numer-
ical models. The empirical–statistical model was applied in studies by Poltnig et al. [3],
Kaafarani et al. [4], Mergili et al. [5], Zhou et al. [6], Apriani et al. [7], Di Napoli et al. [8],
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and Guthrie and Befus [9] to inspect the runout of landslides. A novel terrain-matching
targeted machine learning model, which depends on statistical methods, was used to
estimate landslide runouts in a study by Ju et al. [10]. Additionally, a data-driven method
for the estimation of shallow landslide runout was used in a study by Giarola et al. [11].
Observation of flow-like landslide runouts was accomplished using the physical method,
which was applied as a flume test, in studies by Baselt et al. [12] and Gao et al. [13].
The numerical model, which has frequently been used to scrutinize flow-like landslide
runouts in recent studies, was also used in studies by Gao et al. [13], Yang et al. [14],
Chae et al. [15], Calista et al. [16], Abraham et al. [17], Dash et al. [18], Vicari et al. [19],
Mikoš and Bezak [20], Oh et al. [21], Zhou et al. [22], Alene et al. [23], and La Porta et al. [24].
Investigations into the probabilities of failures were based on merged models in some stud-
ies. For instance, the combination of the numerical and physical models yielded enhanced
comprehension of the failure mechanism in a study by Zhu et al. [25]. The physical method
and numerical method were also combined in order to probe the runout distances of debris
flows in studies by Clark [26], Melo et al. [27], and Gan and Zhang [28]. In addition,
numerical models aiming to calculate the runout of flow-like landslides were successfully
verified with a physical model (flume test) in a study by Gao et al. [13]. Numerical and
empirical models were combined in order to investigate landslide runouts in a study by
Peruzzetto et al. [29]. By considering data-driven approaches, runout analyses can be
successfully prepared by applying empirical–statistical, physical, and numerical methods.
The mentioned runout methods are often evaluated as extremely advantageous, but, in
fact, they also have disadvantages. For example, based on results obtained during an
experiment, the physical model is more suitable for in situ conditions than the numerical
model [30]. However, it is demanding for physical models to not only fully reconstruct
3D topography, due to scaling effects [31], but also reflect the dynamic real conditions
of field observations [32]. The numerical model’s precision is contingent upon the pa-
rameters established within the model [25]. The numerical model, which is an expensive
method, should be applied by experts who specifically possess experience in numerical
analysis [33]. It is not suitable for rapid decision making because the preparation of all
potential simulations is a time-consuming task [29]. In contrast, the empirical–statistical
model enables quick assessments due to its lower computational times [34]. In fact, the
empirical–statistical model can be used practically and realistically within a reasonable
timeframe with a lower cost and minimal calculation demands. However, volume neglect
and volume prediction based on past landslide events are challenging in complex geologi-
cal conditions [34,35]. To decide on a suitable method for runout analysis, available data
are important [36]. It may be claimed that the best runout model method is inconclusive,
considering the advantages and disadvantages of both methods. Nevertheless, recent
studies point out that although researchers have used various methods over the years to
investigate methods of estimating runout distance that may contribute to landslide risk
evaluations, empirical–statistical methods are still generally preferred because of compu-
tational costs [37]. The reach angle method was often considered as an empirical method
by many researchers [3,4,38,39]. The multiple flow direction [40], Holmgren [41], modified
Holmgren [42], cellular automata [43], and random walk [44,45] models provide opportuni-
ties to simulate possible runout paths. A combination of the empirical–statistical simplified
friction-limited model (SFLM), which considers the reach angle, and flow direction algo-
rithms, enables us to observe details such as feasible runout distances and paths using
Flow-R software [42], as shown in recent studies [39,46–54]. Owing to the development of
computer technology, recent studies on landslide runout distance prepared with software
go well beyond the conventional techniques. DebrisFlow Predictor [9], DFLOWZ [55], and
the Progressive Debris-Flow Routing and Inundation model [56] are alternative empirical
model programs that currently give the ability to inspect not only debris flow propaga-
tions but also shallow landslide runout scenarios. Consequently, the main purpose of this
study is to investigate the empirical models of the shallow landslide runout distance in
Eocene flysch facies in the Western Black Sea region of Türkiye. Concentrated precipita-
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tions often contribute to the occurrence of shallow landslides [57]. Extreme rainfalls in the
region containing Eocene flysch facies are on the rise, so residents have complained about
high frequencies of shallow landslide occurrences. Considering shallow landslide occur-
rences and the spatial probability evaluation of the hazard, integration of landslide runout
distance with a landslide susceptibility assessment seems to be indispensable [5,8,58,59].
Flow-R software, which was developed at the University of Lausanne [42], was used to
empirically examine shallow landslide runout scenarios in this study. This software offers
researchers the opportunity to try a variety of landslide runout simulations [39,46–54,60–63]
to obtain runout distances by considering different parameter configurations. Table 1 pro-
vides a summary of previous Flow-R studies.

Table 1. Summary of studies that utilized Flow-R.

Authors Research Landslide Initiations Runout Method Flow Direction Algorithm

Horton et al. [42],
Jiang et al. [51],
Xu et al. [54],

Park et al. [61],
Sharma et al. [63]

Debris flow runout
susceptibility map

Initiations detected
by Flow-R SFLM Modified Holmgren

Pastorello et al. [46],
McCoy [47],
Paudel [48],

Putra et al. [53]

Debris flow runout
susceptibility map

User-defined initiations
considering flow

accumulation and
slope [46], landslide

susceptibility map [48],
and Sentinel images [53]

SFLM Modified Holmgren

Ali et al. [37],
Bera et al. [62]

Debris flow runout
susceptibility map

User-defined initiations
based on remote sensing,

slope angle
distribution [37], and

GPS and multi-temporal
satellite images [61]

SFLM Holmgren

Giano et al. [2] Debris flow runout
susceptibility map

Initiations detected
by Flow-R Perla Modified Holmgren

Polat and Erik [60] Debris flow runout
susceptibility map

User-defined initiations
considering landslide

susceptibility map
Perla Modified Holmgren

Charbel and El
Hage Hassan [50]

Mudflow runout
susceptibility map

Initiations detected
by Flow-R SFLM Holmgren

Do et al. [49] Landslide runout
susceptibility map

Initiations detected
by Flow-R SFLM Modified Holmgren

Liu et al. [52] Landslide runout
susceptibility map

User-defined initiations
based on previous

studies and
D-InSAR technology

SFLM Modified Holmgren

If the runout distance can be estimated, the resilience to shallow landslides will
be stronger. Accordingly, this shallow landslide investigation focuses on the develop-
ment of more accurate empirical models to obtain better estimations of shallow landslide
runout distances. Using machine learning to detect landslide initiations is the critical
stage of this study; however, accurate model parameter configuration also constitutes
one of the most prominent stages in the algorithm provided by Flow-R. Modified Holm-
gren and SFLM parameters are used to estimate runout distances in the propagation
stage in Flow-R. Considering the difficulty in distinguishing and the connectedness of
shallow landslides and debris flow, the decision of whether a movement is a shallow
landslide or debris flow depends on a researcher’s judgment [64]. It is also impossible to
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estimate which types of landslides will occur (whether they are debris flows or shallow
landslides) in Eocene flysch facies. Therefore, runout results are comparatively presented
with respect to two different parameter configurations, which are shallow landslide and
debris flow. Additionally, the question of whether the empirical–statistical method is
suitable for our large study area is also discussed deeply in the later sections of this
paper. Moreover, it is expected that the changes in precipitation trends caused by cli-
mate change will lead to changes in landslide occurrence in future years [65–69]. Thus,
this study also aims to show that it is possible to analyze the near and distant future
runout distances of shallow landslides considering the climate RCP scenarios’ precipita-
tion differences. The empirical model parameters suggested for debris flow and shallow
landslides are also investigated comparatively by including RCP 4.5 and 8.5 monthly
precipitation values.

Finally, the key research points of this paper can be listed as follows: (i) select the
most suitable threshold values for detecting shallow landslide initiations for scenarios
with and without RCP values, (ii) determine the appropriate propagation parameters, and
(iii) estimate the probable maximum shallow landslide runout distances for scenarios with
and without RCP values.

2. Materials
2.1. Study Area

The study area was the Eocene flysch facies located in the Western Black Sea region
of Türkiye, covering an area of about 877 km2 (Figure 1). Bartin and Zonguldak are the
main cities located on the Eocene flysch facies. The research area was determined by
considering the natural geological boundary consisting of Eocene-aged clastics and carbon-
ates [70]. The Eocene flysch facies contain weak and weathered sandstone, claystone, and
silt and have low topographic values. Their altitude varies between 4 and 1571 meters (m).
The altitude in the northeast is low, while in the southwestern part it is relatively high.
Rainfall is almost equally drastic at all meteorological stations in the study area. Accord-
ing to the Turkish State Meteorological Service [71], extreme rainfall of 252.8 mm was
observed on 11 August 2021 in only three hours at the Bartin Ulus Ceyupler station, which
is very close to the study area. Therefore, it is not surprising to posit that shallow land-
slides abound in this formation owing to heavy rainfall. In the recent past, this region
was frequently exposed to heavy rains. For instance, Can et al. [72] stated that due to
heavy rainfall in May 1998, shallow landslides were observed in Eocene flysch facies in
this region. In addition, the Turkish State Meteorological Service’s historical meteoro-
logical precipitation data indicate that 93.2 mm of daily rainfall occurred in Bartin on
21 May 1998 [73]. During this meteorological event, 91.8 mm of daily rainfall was also
observed in Zonguldak. As mentioned, shallow landslides are frequently observed in
Eocene flysch units due to heavy rainfalls [74] (Figure 2). Figure 2a clarifies the shallow
landslides triggered after the May 1998 precipitations, while Figure 2b–d show examples
of shallow landslide occurrences after heavy rainfall in November 2023. In total, 60 and
111 mm of daily precipitation were observed in the cities of Bartin and Zonguldak on
19 November 2023, respectively [75]. Figure 2 shows the types of landslides detected in
the study area according to the Varnes (1978) classification frame [76]. The study area
is predominantly covered by complex cultivation patterns and broad-leaved forests [77].
Mixed forests and land principally occupied by agriculture with significant areas of natural
vegetation are also observable in the study area [77]. Shallow landslides are frequently
observed in both mixed forests and broad-leaved forests in this study area, according to
Corine Land Cover [77].
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Although shallow runout distances have not yet been investigated in Eocene fly-
sch facies, some landslide analyses have already been conducted in the formation.
Duman et al. [78] prepared a landslide inventory of Northwestern Anatolia involving
Eocene flysch facies in the region. Akgun et al. [74] evaluated the general characteristics
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of the landslide sizes in the formation by considering magnitude and frequency relations.
In their study, they emphasized that while rollover effects were noticed at 0.048 km2, the
fractal dimensions of the distributions were noticed as 1.41 [74] in the flysch facies.

Studying large areas makes parameter selection difficult. For this reason, the study
area was divided based on the basin boundaries. ArcGIS software enabled the division
of the study area with respect to the basin boundaries by considering the watersheds in
the region. The Eocene flysch facies were divided into three sub-basins in which runout
analyses could be performed (Figure 3). To perform appropriate parameter selection by
decreasing the size of the investigation area, smaller sub-basins could also be considered.
However, studying larger areas is important for researchers investigating shallow landslide
runout distances. The areal distributions of the sub-basins are as follows: Egerci basin in
the south is 269 km2, Beycuma basin in the middle is 311 km2, and Ihsanoglu basin in the
north is 297 km2.
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2.2. Data Source and Pre-Processing

It should primarily be noted that the preparation of a susceptibility map was especially
critical to determine the initiation points that were used during the runout analyses. There-
fore, the following data were obtained to prepare a shallow landslide susceptibility map
and to calculate runout distances in this study: First, Shuttle Radar Topography Mission
Digital Elevation Model (SRTM DEM) data with a spatial resolution of ~30 m were obtained.
They were converted to a 25 m resolution using the nearest resampling technique in ArcGIS.
The coordinate system was set as WGS 1984 UTM zone 36N. Second, a DEM with a spatial
resolution of 25 m was also implemented to obtain topographic features such as the slope
gradient and slope aspect using the System for Automated Geoscientific Analyses (SAGA)
GIS. In addition, the slope length factor, valley depth, topographic wetness index (TWI),
plan curvature, profile curvature, convergence index, closed depressions, channel network
base levels, and channel network distance were obtained in the SAGA GIS environment to
identify the geomorphometric features of the study area. Third, the geological information
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was evaluated based on [38]. Subsequently, Corine Land Cover [77] was used to assess
the land cover in the study area with a 100 m spatial resolution. Fifth, NDVI data were
obtained from Sentinel-2 images with a 10 m spatial resolution.

NDVI = (NIR − Red)/(NIR + Red) (1)

Here, NDVI is the Normalized Difference Vegetation Index, NIR is the Near-Infrared
Band (band 8), and Red is the Red Band (band 4) of a Sentinel-2 image. Finally, the
spatial distributions of recent shallow landslides were mapped using Sentinel-2 images
and Google Earth. Short field surveys were also carried out to perform ground checks of
the mapped shallow landslides. Furthermore, available landslide inventories published
in national databases and the recent literature [72,78–80] were also evaluated, particularly
to identify shallow landslides during mapping using satellite images. When an available
landslide inventory was examined considering historical satellite images from Google
Earth, 262 shallow landslides were mapped. The landslides were geometrically classified in
terms of failure depths, reach angles, and observed runout distances. The volume and area
relations proposed by Hovius et al. [81] based on Jaboyedoff et al. [82] and the semi-ellipsoid
approach were used to determine the landslide depths. The obtained values proved that
the failures mapped in this study can be classified as shallow landslides since their depths
are less than 5 m [83]. The descriptive statistics of the failure depths, reach angles, and
observed runout distances are given in Table 2 with respect to the sub-basins. Figure 2b,d,
which were taken after heavy rainfall in November 2023, provide good evidence that
shallow landslides have continued to occur due to excessive rainfall in this region, and
their observed runout distances are compatible with Table 2.

Table 2. The properties of the landslide inventories prepared for the sub-basins.

Sub-Basin N Statistics Area (m2)
Failure Depth

(m)
Travel Angle

(◦)
Observed Runout

Distance (m)

Egerci 111

Min. 21 0.2 1 7

Max. 4116 3.2 49 122

Mean 536 1.0 23 53

Median 344 0.9 24 47

Std. Deviation 572 0.5 12 29

Beycuma 15

Min. 23 0.2 4 7

Max. 1843 2.1 28 83

Mean 376 0.9 13 36

Median 258 0.8 13 31

Std. Deviation 438 0.5 8 20

Ihsanoglu 136

Min. 7 0.1 1 5

Max. 1710 2.1 32 122

Mean 140 0.5 11 25

Median 65 0.4 10 17

Std. Deviation 226 0.3 7 21

3. Methods

The method of this study was divided into four critical interconnected steps: (i) prepare
a shallow landslide susceptibility map using the machine learning logistic regression (LR)
method; (ii) determine shallow landslide initiations by considering the shallow landslide
susceptibility map and the RCP scenarios’ precipitation values; (iii) assess the shallow land-
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slide runout distance methodology by taking into consideration detected shallow landslide
initiations; and (iv) select suitable model parameters for runout distance assessment.

3.1. Preparation of Shallow Landslide Susceptibility Map

Considering the constant lithological information of the Eocene flysch facies, fifteen
features, including the altitude, slope gradient, slope aspect, landslides, land use, NDVI,
slope length factor, valley depth, topographic wetness index (TWI), plan curvature, slope
profile curvature, convergence index, closed depressions, channel network base levels, and
channel network distance, were used as the landslide conditioning factors for landslide
susceptibility mapping (Table 3).

Table 3. Descriptive statistics of the topographic parameters with respect to the sub-basins.

Sub-Basin Statistics A SG (◦) SA (◦) PLC PRC CI CD TWI SLF CNBL
(m)

CND
(m)

VD
(m)

Egerci

Min. 41 0 0 −0.01 −0.01 −92 0 2 0 41 −49 −3
Max. 1574 60 6.28 0.01 0.012 96 20 21 38 1382 449 549
Mean 444 15 3.25 0 0 0 0 7 5 381 64 236

Median 425 14 3.04 0 0 0 0 6 4 369 49 229
Std.

Deviation 259 8 1.91 0.002 0.002 8 1 2 3 233 60 133

Beycuma

Min. 13 0 0 −0.01 −0.01 −100 0 3 0 13 −27 0
Max. 658 52 6.28 0.008 0.009 100 19 20 24 444 304 277
Mean 170 11 3.27 0 0 0 0 7 3 129 41 140

Median 158 9 3.33 0 0 0 0 7 2 118 32 146
Std.

Deviation 91 6 1.91 0.001 0.001 9 1 2 2 69 38 61

Ihsanoglu

Min. 4 0 0 −0.01 −0.02 −98 0 2 0 6 −39 0
Max. 633 70 6.28 0.017 0.021 92 32 20 30 284 468 339
Mean 121 11 3.35 0 0 0 0 7 3 79 42 117

Median 104 10 3.43 0 0 0 0 6 2 69 32 117
Std.

Deviation 71 7 1.83 0.001 0.001 10 1 2 2 43 42 51

Abbreviations: altitude: A, slope gradient: SG, slope aspect: SA, plan curvature: PLC, profile curvature: PRC,
convergence index: CI, closed depression: CD, topographic wetness index: TWI, slope length factor: SLF, channel
network base level: CNBL, channel network distance: CND, valley depth: VD.

An open-source machine learning library in Python provided the opportunity to
produce a landslide susceptibility map at this stage. The LR method is valuable, given
its high prediction accuracy, in machine learning research, such as the preparation of
landslide susceptibility maps [84–90]. For instance, Polykretis and Chalkias [91] prepared a
landslide susceptibility map for shallow rotational and translational slides and the flow
types of landslides using this method. The authors stated that the LR method is the better
option. Nhu et al. [86] stated that the LR method was the second most successful and
trustworthy model in their comparison of the production of shallow landslide susceptibility
maps. Nwazelibe et al. [90] indicate that LR is the better method to produce landslide
susceptibility maps. Landslides, which are shallow translational debris slides, slumps, and
occasional debris topples, frequently occur in the Eocene-aged Ameki-Bende formation [90].
Taking these examples from the literature into account, in this study, LR was used to
determine shallow landslide susceptibility.

P = 1/(1 + e−y) = e/(1 + ey) (2)

Here, P is the landslide probability occurrence, which changes from 0 to 1, while
e is the exponential constant [92]. In Equation (3), y is a dependent variable. When b0
is a constant intercept from the model, bn is the triggered landslide factor of an, which
represents an independent variable.
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y = b0 + b1a1 + b2a2 +· · · . . . + bnan (3)

The ratio of the training/testing samples was selected as 80:20. The data were divided
into training (80%) and testing (20%) sets [91,93–97]. The “train_test_split” and “cross_val_
score” functions of the sklearn model selection were used in the open-source Python
libraries for training and testing the data.

Shallow landslide susceptibility maps obtained using the LR method for the sub-basins
are given in Figure 4. There are three classes indicating low (0–0.4), moderate (0.4–0.7), and
high (0.7–1) probabilities of shallow landslide occurrences.
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3.2. Determination of Shallow Landslide Initiations

Possible shallow landslide initiation determination is a significant concern for landslide
researchers. Even though it is difficult to make precise predictions about initiations, a
susceptibility map can provide a basis to estimate possible shallow landslide initiations.
Similar considerations were also given by Xu et al. [54]. Xu et al. [54] indicated that more
susceptible areas on susceptibility maps have higher initiation abilities. Can et al. [72]
marked that due to heavy rainfall in May 1998, shallow landslides were observed in
very highly susceptible zones in the Eocene flysch facies in this region. In this study,
highly susceptible areas, which are called shallow landslide initiations, were implemented
for runout distance estimation using Flow-R software. In fact, the determination of the
susceptibility threshold of each basin was key to identifying the shallow landslide initiations
in this study because they were used as pre-defined initiations in the runout distance
assessment stage. The QGIS environment was used to visualize the shallow landslide
susceptibility maps and apply the necessary threshold value of susceptibility to determine
the initiations (Figure 5).
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When shallow landslide initiations are identified according to a susceptibility thresh-
old, it is a good idea to be on the safe side. The threshold value was selected according to
the frequency histograms of the shallow landslide susceptibility values of the sub-basins
(Figure 5). The threshold value for the shallow landslide initiations in the sub-basins was
determined to be 0.70. Therefore, shallow landslide susceptibility grid cells with values
equal to or higher than 0.70 and recent landslides mapped during the inventory stage
were chosen as the shallow landslide initiations for the sub-basins (Figure 6). According
to Corine Land Cover [77], the initiations in the Beycuma and Ihsanoglu basins are fre-
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quently abundant in broad-leaved forests, while those in the Egerci basin are abundant in
broad-leaved forests and mixed forests.
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In this part of the study, Community Climate System Model (CCSM4) projections
based on RCP 4.5 and RCP 8.5 monthly precipitation scenarios for both cities were also
analyzed using an IDW heterogeneous environment method in ArcGIS based on data
obtained from NCAR [98]. Geological hazards, such as shallow landslide initiation points,
may exhibit a spatially heterogeneous distribution. IDW interpolation demonstrates greater
success in heterogeneous environments [99]. The IDW method is considered the best
method due to its reasonable processing timeframe and adequate precision for heteroge-
neous data [100]. The IDW method was also used to analyze the spatial distributions of the
RCP scenarios’ rainfalls in studies by Mohamed Yusof et al. [101] and Nasidi et al. [102]. Al-
though 30 years is the most widely used reference period, 20 years has recently been
used in some works [103]. Therefore, the time periods were classified as 2025–2044,
2044–2063, 2063–2082, and 2082–2100. In addition, 20-year monthly median values were
used to analyze the general precipitation trend in order to apply the IDW method.
Selected precipitation threshold values were utilized in order to detect critical shallow
landslide initiations by considering the IDW results of the three sub-basins. Historical
meteorological data for two stations, Bartin and Zonguldak, and RCP 4.5 and 8.5 scenario
precipitation values for both cities were evaluated by separately using cross-correlation
and choosing the reference period of 1995–2022. This step aimed to determine how
extreme precipitations are represented in the obtained RCP data. Therefore, extreme
precipitation values that resulted in shallow landslides in the study area were consid-
ered using this cross-correlation equation in order to reach predicted precipitation values.
Considering these values, finding the median precipitation values was a critical stage.
Both scenarios gave 81 mm monthly critical precipitation threshold values. Although the
probability of this precipitation amount falling in one month or one day will be uncertain,
it is possible to expect this amount of rainfall in one day by considering previous daily
rainfall data and recent extreme daily rainfall data in this area. Hence, it was revealed that
for the two scenarios the critical precipitation threshold of 81 mm would be applied in
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the analyses. Nevertheless, in this condition, shallow landslide initiations should supply
both conditions together. These conditions are that the shallow landslide susceptibility
is equal to or more than 0.70 and the RCP precipitation scenarios are equal to or more
than 81 mm. In addition, while including the RCP precipitation scenarios’ effects in the
runout distance analyses, the impacts of the other triggering landslide parameters were
neglected, and it is admitted that they might stay the same except for the RCP precipitations.
Shallow landslide initiations, which were detected by considering the RCP precipitation
scenarios with respect to divergent time periods, are shown in Figure 5. Despite the re-
duction in shallow landslide initiations, the Egerci sub-basin and the Beycuma sub-basin
may be exposed to shallow landslides, while the Ihsanoglu sub-basin may not be affected
by shallow landslides in the presented time range for both scenarios (Figures 7 and 8).
Therefore, the Ihsanoglu sub-basin is not presented in Figures 7 and 8. Although there is
no big difference between the results of the other three scenarios apart from the RCP 4.5:
2025–2044 scenarios in the Egerci sub-basin, differences can be observed in the northwest-
ern part of the Egerci sub-basin in terms of shallow landslide initiations. The differences
between in the presented RCP 4.5 and 8.5 scenarios are considerably larger in the period of
2025–2044 for both the Egerci and Beycuma sub-basins. In addition, the RCP 8.5 scenario
only affects shallow landslide initiations in the period of 2025–2044 for both sub-basins. In
the Beycuma sub-basin, shallow landslide initiations can be observed for the RCP 4.5 sce-
nario in the periods of 2025–2044 and 2082–2100, while in the Egerci sub-basin shallow
landslide initiations can be examined in the periods of 2025–2044, 2063–2082, and 2082–2100.
All results show that shallow landslide initiations decrease if the RCP precipitation scenarios
are considered; therefore, this study also has the same opinion about landslide susceptibility
decrement depending on RCP scenarios as the previous studies by Ageenko et al. [65] and
Park and Lee [104].
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2082–2100.
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3.3. Shallow Landslide Runout Distance Assessment Methodology

The empirical–statistical methods were applied in this study to analyze the runout
distances of shallow landslides. Models are generally prepared using the empirical method
for large-scale studies [46]. It is important to choose a suitable method and algorithm
to determine how to implement the software [42]. The flow direction algorithm and the
simplified friction-limited model (SFLM) are two main stages that need to be applied to
obtain probability of runout from the software during the stages of spreading and energy
calculation. Essentially, the combination of the spreading algorithm and energy calculation
gives the possible runout paths and distances. First, it is indispensable to choose the flow
direction algorithm to be used in a study. Therefore, the question of which flow direction
algorithm method is preferable for use in landslide runout studies should be pondered.
Holmgren [41] added the “x” parameter to the multiple flow direction approach of this
algorithm, allowing studies to be carried out in more detail. In Equation (1), while i and j
represent flow directions, ρi

fd is the sensitivity ratio in the i direction, tanβi is the gradient
between the center cell and the cell in the i direction, tanβj is the slope gradient between
the center cell and the cell in the j direction, and x is the variable parameter that controls
the variable deviation. As can be seen in Equation (4), x can take values between one
and infinity.

ρi
fd = (tanβi)x/(∑8

(j=1) (tanβj)x) ∀ {(tanβ > 0@ × ε[1;+∞])} (4)

The modified Holmgren algorithm proposed by Horton et al. [42] is one of the most
favorable flow direction algorithms because it includes the “dh” parameter, which varies
the gradient values by varying the height of the central cell. It smooths DEM roughness.
Since low-resolution data were used, the modified Holmgren algorithm [42] was used
in this study. Putra et al. [53] stated that they also chose this algorithm because it is less
sensitive to the DEM resolution. The SFLM is the second key part of the propagation stage.
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In this stage, the energy should be sufficient when it travels to another cell. Energy loss is
caused by friction [42,48].

Ekin
i = Ekin

0 + ∆Epot
i − Ef

i (5)

In Equation (5), Ekin
i, which is the kinetic energy (cell in direction i), is calculated

using ∆Epot
i and Ef

i. While ∆Epot
i is the variability in the potential energy (cell in direction

i), Ef
i is energy loss due to friction (cell in direction i).

Ef
i = g∆x tanφ (6)

The Ef
i calculation multipliers are g, ∆x, and tan φ (Equation (6)). ∆x represents the

horizontal displacement increment, while tan φ is the energy line gradient. g is gravitational
acceleration and is also used to calculate energy loss. The reach or travel angle is significant
for the SFLM during the energy calculation. Past landslide runout travel angles are the
key to understanding the region’s landslide travel angle trends. Since the study area was
divided into three sub-basins, different travel angles were determined for each sub-basin
separately. The properties of the landslide inventory prepared in this study, involving the
depth of the estimated failure surface, runout distances, and travel angles, were used to
identify the parameter sets that achieved ideal model performance across the models of the
sub-basins. The determination of the median travel angle for the sub-basins was important
for the assessment of the probabilities of runout distances in larger areas.

The selection of an appropriate velocity and energy limit was also important for this
study to remain within the acceptable energy levels and to avoid an endless energy loop
during the analysis (Equation (7)).

Vi = min{
√

(V0
2 + 2g∆h − 2g∆x tanφ), Vmax} (7)

Here, V0 and Vmax indicate the initial speed and the maximum speed limit, respectively.

3.4. Selection of Model Parameters

Appropriate parameter selection considering the region is important during model
preparation. In this study, Flow-R software, which is a distributed empirical model, was
used to model possible runout distances for the sub-basins. The software enabled compari-
son of the runout distance results not only for debris flows but also for shallow landslides
by considering proposed parameters. Flow-R software promoted the utilization of a range
of parameters to enhance the accuracy of the research. Many simulation scenarios can be
considered to investigate the effects of the selected parameters because the parameters
can change more rapidly in actual conditions. The parameter x can become valuable for
understanding the effect of the flow direction. The value of x is equal to 4 for debris flows,
while it can be set as 22 to 26 for shallow landslides [105]. The value of x has also been
set as 4 for debris flows in recent studies [37,47,51,61]. In this study, comparative analy-
ses were performed depending on whether failures occurred as debris flows or shallow
landslides. Therefore, considering the suggestions already given in the literature, the value
of x was set as 4 or 25 for the debris flows and shallow landslides in the analyses, respec-
tively. The value of dh is also a significant parameter that affects results by changing the
reduced rate of roughness. The value of 1 was suggested for dh in recent studies [2,49,53].
Horton et al. [105] also proposed that dh can be equal to 1 for both debris flows and shallow
landslides. Since slope morphology can change in various ways, travel angles can also
change to various degrees. For instance, slope gradients are higher in the western part
of the Eocene flysch facies. Travel angles were also evaluated separately for the three
sub-basins by considering back analyses. Accordingly, median travel angle degrees were
determined for the sub-basins separately as follows: 24◦ for the Egerci sub-basin, 13◦ for
the Beycuma sub-basin, and 10◦ for the Ihsanoglu sub-basin. Horton et al. [105] suggested
that travel angles of 8◦–13◦ can be used for debris flows, while they may be 16◦ to 20◦ for
shallow landslides. Different researchers considered different travel angles in the literature,



ISPRS Int. J. Geo-Inf. 2024, 13, 84 15 of 27

e.g., 5◦ [38,49], 9◦ [51], 10◦ [47], 11◦ [42], 12◦ [37], and 13◦ [61]. Back analyses also show
that if the other parameters are kept the same and only the travel angle is decreased, runout
distances will increase. The last parameter that should be considered during analyses
is velocity. The estimation of velocity is difficult. Back-calculated debris flow velocities
were observed in the range of 5 to 15 m/s in a study by Prochaska et al. [106]. Similarly,
different researchers considered different velocity values in the literature, e.g., 5 m/s [49],
10 m/s [37], 15 m/s [42,47,54], 16 m/s [107], 20 m/s [46], and 25 m/s [51]. By considering
both back analyses and the local information obtained by residents having memorials
related to the shallow landslides that occurred in May 1998 in this region, it was concluded
that the velocity parameter could be set as 15 m/s for shallow landslides in the Eocene
flysch facies. The same velocity value was also used for debris flow during the comparative
analyses. This parameter selection was compatible with the suggestions that were given by
Horton et al. [42]. Apart from the velocity parameter, energy limitation should also be con-
sidered to obtain logical runout distance results. Consequently, the DEM and pre-defined
landslide initiations were imported into Flow-R. Files should be converted to ASCII format.
It is also necessary to be aware that files should have the same spatial resolution and
coordinate system. The model parameters implemented in Flow-R for shallow landslides
and debris flow are summarized in Table 4 with respect to the different sub-basins.

Table 4. The model parameters implemented in Flow-R in this study.

Sub-Basin Failure Flow Direction
Algorithm x dh

(m)
Travel

Angle (◦)
Velocity

(m/s)

Egerci
Debris flow Modified

Holmgren 4 1 24 15

Shallow
landslides

Modified
Holmgren 25 1 24 15

Beycuma
Debris flow Modified

Holmgren 4 1 13 15

Shallow
landslides

Modified
Holmgren 25 1 13 15

Ihsanoglu
Debris flow Modified

Holmgren 4 1 10 15

Shallow
landslides

Modified
Holmgren 25 1 10 15

4. Results
4.1. Shallow Landslide Runout Distance Assessment

Effective determination of the runout distances of shallow landslides is significant to
understand and assess the importance of the negative effects of shallow landslides. As
runout research has been developing rapidly, it is difficult to agree on which methods will
become the most practical in the future. This study has pointed out that the empirical–
statistical method can determine the runout distances of shallow landslides. Runout
distance models have approximately the same performance depending on the debris flow
and shallow landslide parameters. Runout distances in the Eocene flysch facies can be
estimated at a coefficient of determination level of 0.64 with debris flow parameters, while
this value was obtained as 0.62 for the models developed using the shallow landslide
parameters (Figure 9). Therefore, it is possible to bring the hazard regions up to date by
integrating the resultant runout zones into landslide susceptibility maps. The results of
the runout distance evaluations for the sub-basins are represented in Figures 10–12 with
respect to the model parameters considered for debris flows and shallow landslides.
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The uncertainty about whether observed landslides are shallow landslides or debris
flows continued in the statistical–empirical evaluations. Therefore, models were prepared
for both parameter options to determine where shallow landslides or debris flows may
reach because it was difficult to make decisions about the exact detection of whether
landslides are shallow landslides or debris flows on a regional scale. It was possible to
compute that the runout distances did not differ significantly when the simulations with
both parameters were examined. It can also be stated that it was hard to distinguish
differences between the debris flow analysis results and the shallow landslide analysis
results. Changes in distances generally happened gradually in various areas for the debris
flow analysis parameters. Moreover, the runout distances reached farther in the debris
flow analyses. However, highly probable runout distances were not as common in the
debris flow analyses as in the shallow landslide analyses. The highly probable range (0.5–1)
indicates that a grid cell is involved in a runout zone with a probability value higher than
50%, while the low-probability range (0–0.5) means that a grid cell is included in a runout
zone with a probability value lower than 50%. An assessment of the runout areas indicated
that while the models with debris flow parameters impacted a total area of 146 km2, the
models with shallow landslide parameters impacted a total area of 101 km2.

4.2. Shallow Landslide Runout Distance Assessment Considering RCP Scenarios

Including the RCP precipitation scenarios in the runout distance analyses in the study
area adequately fulfilled the need for necessary precautions related to shallow landslides
in the future. Simulations of possible runouts were carried out for shallow landslides and
debris flow to investigate whether their parameters affect the runout distances in the Eocene
flysch facies for detected landslide initiations, which were determined considering the RCP
4.5 and RCP 8.5 precipitation scenarios. Possible future runout areas that will be affected by
debris flows or shallow landslides will decrease because of a reduction in shallow landslide
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initiations (Figures 13–15). It is also not surprising that due to a lack of shallow landslide
initiations, shallow landslides will not occur in the Egerci, Beycuma, and Ihsanoglu sub-
basins during some periods because shallow landslide initiations were factored into the
estimation of the runout distances in this study. Although shallow landslide initiations
will decrease in the Egerci sub-basin in the period of 2025–2044 in the RCP 4.5 scenario
(Figure 14), it is possible to claim that there are no big differences between these runouts
and the runouts shown earlier, which did not include the RCP precipitation scenarios.
However, in the same period (2025–2044), there will be discernable declines in shallow
landslide initiations and their runout distances in the Beycuma sub-basin. It is notable
that dramatic declines in shallow landslide initiations will also be clearly visible in the
Egerci and Beycuma sub-basins in the period of 2025–2044 for the RCP 8.5 scenario. In
addition, Figures 13–15 give the opportunity to compare the effects of the RCP 4.5 and
8.5 precipitation scenarios for the Egerci sub-basin and the Beycuma sub-basin in the period
of 2025–2044 in terms of the divergence of their runout distances. Compared with the initial
analyses, there is a trend of decreases in shallow landslide initiations and their runout
distances in the Egerci and Beycuma sub-basins. However, it is noteworthy that fluctuating
changes in shallow landslide initiations and runout distances will be observed in both
sub-basins. For instance, they will show an increasing trend after the period of 2044–2082
in the Beycuma sub-basin, despite the fact that they will not reach the levels of the initial
analyses (Figure 13).

It should be underlined that all obtained runout model results depend on the RCP
scenarios. If the RCP scenarios are changed or do not turn out as projected, results such as
landslide initiations and their runout distances might change.
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5. Discussion

The runout distances of shallow landslides are important outputs that may facilitate
improved resilience against shallow landslides. According to the results of empirical evalu-
ations, runout model outputs indicate that shallow landslides can damage transportation
networks and residential areas in this region. For example, Nie et al. [108] assessed the
landslide risk along national highways based on information quantity and random forest
coupling methods. Flow-R, a distributed empirical model, was implemented with great
success not only in this study but also in many studies in the literature. Giano et al. [2], Polat
and Erik [60], Charbel and El Hage Hassan [50], and Jiang et al. [51] discussed whether
Flow-R and observed landslide runout results are compatible. The researchers concluded
that Flow-R results are well matched with the observed results. Despite not considering
rheological parameters, Flow-R model results are coherent [51,53]. Do et al. [49] stated
that the Flow-R model may give exaggerated results. However, the results can be used
to evaluate all possibilities. Putra et al. [53] also put forward that although Flow-R does
not provide complete hazard mapping, it does enable the prediction of possible runout
debris flow paths. In terms of analyzing shallow landslide runout distances in the three
sub-basins, the selection of model parameters and data quality had significant roles. De-
spite employing a limited dataset, Flow-R was proven to attain accurate results, especially
for the Ihsanoglu sub-basin, with an R-squared level of about 79%. Applying a machine
learning algorithm was advantageous in this study during the preparation of a suscep-
tibility map to obtain quite reliable shallow landslide initiations. Flow-R software can
also be implemented to distinguish landslide initiations by applying a grid-based overlay
approach [2,50,51,54]. However, the pre-determination of landslide initiations via machine
learning is thought to have a positive effect, increasing the success of the analyses with
respect to the accuracy of the runout distance probability. Shallow landslide initiations
will decline in the future RCP scenarios for the sub-basins, which means the landslide
runout distances will decrease [65,104]. If a more detailed examination is conducted on
shallow landslide initiations, they are abundant in broad-leaved forests in the three sub-
basins in the initial analyses. The literature review also showed that shallow landslide
initiations are often observable in coniferous forests and broad-leaved forests [109,110].
However, climate change scenarios indicate that the susceptibility of broad-leaved forests
will decrease [111,112]. If shallow landslide initiation detection analyses, including the RCP
precipitation scenarios, are considered, shallow landslide initiations show a decreasing
trend in broad-leaved forests, especially in the Beycuma sub-basin. The period between
2025 and 2044 will be the most affected period for both sub-basins in the RCP 4.5 scenario
in terms of both shallow landslide initiations and their runout distances. These analysis
results are critical for estimating the hazard rates of shallow landslides in the study area in
terms of their contributions to disaster management strategies.

Limitations of this Study

Improving the spatial resolution of the DEM is important to obtain better results [50].
Horton et al. [42] stated that DEMs with a 10 m spatial resolution provide higher accuracies.
However, a spatial resolution of 25 m can also be implemented successfully in analyses.
The models in this study were also sensitive to DEM effects. Nevertheless, considering the
size of the study area, the computational cost of higher resolutions could not be managed.
Supercomputers may be a solution to this situation. Moreover, despite many attempts at
changing the DEM resolution to analyze runout distances, propagations were not triggered
for some initiations in datasets examined considering both 10 m and 25 m resolutions.
The main reason for this peculiarity may be that the DEM stopped or was deflected by
natural environment features and building features [53]. Furthermore, the selection of
the velocity parameter also may have affected the results. Increasing runout distances
should not be surprising in view of an increasing velocity. For instance, Horton et al. [105]
suggest that the velocity limitation is 8 m/s for mudflows. Therefore, it has become
clear that runout distances are affected by the maximum velocity limitation and should
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be considered cautiously during model parameter determinations. In this study, a back
analysis was carried out just for this purpose. In addition, the landslide initiation process
is primarily influenced by geological conditions [113]. Conducting further research that
integrates lithological and geological investigations along with hydrogeological conditions
would highlight the significance of these data in the initiation process of landslides [114].
Therefore, an additional focus on hydrogeological conditions may be required to improve
the accuracy of probable shallow landslide initiations.

6. Conclusions

Runout distances have been ruled out in many studies. Considering the successful
results, runout will be considered more in future studies because runout distance proba-
bilities in susceptible areas enable us to make more appropriate decisions in hazardous
regions. The goal of this study was to determine the shallow landslide runout distance
probabilities in the Eocene flysch facies in the Western Black Sea region of Türkiye. This
research offers evidence that the empirical–statistical method can successfully evaluate
the runout distances in the study area. Despite the different empirical model parameters
suggested for shallow landslides and debris flow, the models give nearly identical runout
distance results in the Eocene flysch facies. Runout distances can be predicted at R-squared
levels of 0.64 and 0.62 for the debris flow and shallow landslide models, respectively, in this
study area. The total impacted runout areas were estimated to be approximately 146 km2

and 101 km2 for the debris flow and shallow landslide parameters, respectively. This
study also reveals that machine learning algorithms can be remarkably fast and accurate
in providing shallow landslide initiations in the sub-basins. The successful inclusion of
the climate change scenarios in the runout distance analyses was ensured. The RCP 4.5
and RCP 8.5 scenarios also give the possible future runout distances in the Eocene flysch
facies. The simulated runout results, including the RCP 4.5 and RCP 8.5 scenarios, prove
that areas affected by shallow landslides or debris flows will decrease in the future due
to the decrement in shallow landslide initiations. The analysis results also show that the
time period of 2025–2044, in accordance with the RCP 4.5 scenario, persists as a challenging
interval for the Egerci and Beycuma sub-basins due to shallow landslide occurrences and
their runout distances. In conclusion, this study reveals that if runout analyses can be
carried out successfully, they contribute to the preparation of effective disaster manage-
ment policies to increase the resilience to landslides for societies living in mountainous
areas. Using more advanced machine learning and statistical techniques to predict failure
initiations for shallow landslides is recommended to improve the accuracy of the runout
distance results in future work. It is foreseen that relations between the RCP precipitation
scenarios and the runout distances of shallow landslides will increasingly seize attention in
enhanced landslide studies in the future.
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