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Abstract: In-person social events bring people to places, while people and places influence where
and what social events occur. Knowing what people do and where they build social relationships
gives insights into the distribution and availability of places for social functions. We developed a
Bayesian Network model, integrating points of interest (POIs) and sociodemographic characteristics,
to estimate the probabilistic effects of places and people on the presence of social events. A case
study in Dallas demonstrated the utility and performance of the model. The Bayesian Network
model predicted the presence likelihoods for seven types of social events with an R2 value around
0.83 (95% confidence interval). For both the presence and absence of social events at locations, the
model predictions were within a 20% error for most event types. Furthermore, the model suggested
POI, age, education, and population density configurations as important contextual variables for
place–event associations across locations. A spatial cluster analysis identified likely multifunctional
hotspots for social events (i.e., socially vibrant places). While psychological and cultural factors
likely contribute further to local likelihoods of social event occurrences, the proposed conceptually
informed geospatial data-science approach elucidated intricate place–people–event relationships and
implicates inclusive, participatory places for urban development.

Keywords: social events; POIs; Bayesian network; MAUP; place–event relationships

1. Introduction

Social events provide participatory opportunities that make human connections, cul-
tivate social capital, and shape the social fabric of a community [1,2]. In this study, we
consider places with social events as locales, where material context and settings meet the
functional and operational needs of the correspondent social events. Locales bring people
together across space at a particular time and serve as spatial catalysts for human dynamics.

Geospatial studies on human dynamics commonly adopt a Time Geography frame-
work to model individuals’ movements as “space-time paths” and estimate accessibility
and interaction opportunities subject to the constraints of capabilities, couplings, and au-
thority structures [3]. Some research on human mobility patterns examines the regularities
of movements between activity sites [4,5]. While these studies have yielded valuable
insights into the rhythms, patterns, and purposes of movements, they consider locales as
nodes in movement trajectories without attention to social events taking place there. Urban
design promotes human interactions through pedestrian access, for example, and venues
provide gathering places to facilitate in-person meetings [6]. While extensive research
uses sociometric data to analyze social ties and positions in human relationships (e.g.,
kinships or friendships) and social networks [7], few studies consider social events that
bring people to a specific physical space and how and what social events may effectively
promote positive human relationships [8]. There are community-focused locales, such
as a diner, with a proper material context to support gatherings of friends and families.
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There are also legendary locales equipped with multifunctional physical settings attract
diverse social events and people. The Sydney Opera House, for example, hosts a wide
range of cultural and social events, including concerts, festivals, and talks, attracting people
from around the world. Locales individually support and are supported by people and
their social activities and, furthermore, collectively characterize the communities where the
locales operate.

This study aims to understand the spatial probabilities of locales for different social
event types given various places and populations in a city. Locales are places where social
events occur because these places provide the material context or physical settings capable
of supporting the social events happening there. We assumed the existence of associations
between places, people, and social events. Moreover, we assumed convergent attraction
from proximate places (micro-locales) that together form a meso-locale with complementary
affordances to support multiple social events (for example, a parent meeting and a play day
at a coffee shop next to a children’s fun center). We expected that Bayesian inference with
conditional probabilities could capture the place–people–event association more effectively
than linear and logistic regression (LR), spatial autoregressive regression (SAR), and condi-
tional autoregressive regression (CAR) because the place–people–event association and the
convergent attraction would dwarf LR, SAR, and CAR interpolations of the probability of
event occurrences based merely on spatial distributions of events. Furthermore, Bayesian
Network modeling combines a graph structure and probabilities among variables to exam-
ine causal relationships on the ground that causal variables can increase the probabilities
of their effects. In other words, if C is a causal factor to affect E, then the conditional
probability P(E|C) shall be greater than the probability P(E) with the acknowledgment that
we may not know all the causes and not all causes are equally important [9].

As such, we developed a Bayesian Network Model and tested the model using data
from the 63-mile area around the city of Dallas in the U.S. The model predicted the spatial
probabilities for each social event type based on variables for places and people. The
social event type with higher prediction accuracy suggests a stronger spatial association
of place types, people, and social event types and, hence, stronger locales. Furthermore,
we applied local spatial autocorrelation statistics to identify macro-locales of clusters with
high probabilities of social event types, place types, and characterized populations. We
perturbed the input data with multiple spatial shifts to mitigate zoning effects on spatial
clustering. The next section highlights recent geospatial studies on events to clarify the
novel aims, conceptual framework, and proposed approach to geospatial modeling of
social events in this research. The sections that follow detail the data, methods, findings,
discussions, and conclusion of the study.

2. Geospatial Studies of Events, Places, and People

Social events are dispersed socially and geographically and are difficult to collect.
While there are many databases that characterize places and people, to the best of our
knowledge, there are no data sets systematically recording where and what ordinary
people do. The rise in ambient geospatial big data has stimulated many novel approaches
to identifying geospatial events and performing large-scale geospatial modeling. Moreover,
geospatial research shifts foci from attributes, features, and fields to events, movements,
and dynamics. Most of these geospatial events are public events, such as infections, hazards,
festivals, political rallies, or hate speeches. Analytical emphases of these events center
on the event patterns in space and time for the predictions of changes in event locations
or spatial distributions over time. Our study differs from these studies by focusing on
social events organized by ordinary people and the spatial associations of place, people,
and social events. Despite the differences, the overview below highlights the conventional
approaches to geospatial event modeling in contrast to this research.

Social sensing data, such as geo-tagged social media posts and Call Detail Records from
smartphones, are popular sources for mining geospatial events. Studies on event extraction
from social media data and ensuing analysis of these extracted events commonly apply
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some combinations of methods from natural language processing, regression modeling,
semantic patterns, or machine learning. Xiang and Wang [10] detailed the tasks, methods,
and algorithmic progress in the field. Geospatial event extraction follows the general
workflow with added considerations of the spatial dimension.

For example, Gao et al. [11] used a bag-of-words model and support vector ma-
chine (SVM) algorithm with keyword filtering to classify tweets as event-related or event-
unrelated. Then, they applied kernel density estimation (KDE) to model the surface of the
rates of event-related posts to the total posts within individual spatial units for each period.
These temporal surfaces represented spatial event prevalence and served as the basis to
determine statistical p-values for anomalous event patterns, such as influenza activities.
Beyond identifying anomalies in spatial event patterns over time, researchers applied
semantic analysis to examine the content of posts to model the topical clusters among the
posts and, furthermore, how these topics are distributed and correlated over space. Xu, Li,
and Huang [12] detected irregular busts of tweets as candidates for local events during
the Toronto International Film Festival (TIFF) and spatially aggregated clusters of similar
topics with various thresholds that led to an estimate of 673 local events, among which
86 TIFF events and 498 non-TIFF events were correctly identified.

The idea that sudden changes in space and time signal event occurrences thrives with
the proliferation of human mobility data from smart cities and location-aware sensing
technologies, including GPS-equipped vehicles, transit smartcards, smart phones and
watches, and various geo-tagged user-generated content (such as tweets, four-square
check-ins, or customer reviews). These multimodal data of high density in space and time
characterize human dynamics in a city and subserve the detection of anomalies that signal
disruptive events, such as concerts or accidents that cause traffic jams. Jayarajah et al. [13]
showed that events from anomaly detection from such multimodal data accounted for
30–50% of published events (e.g., concerts) within 1.5 km of the event venues or up to 80%
within 4 km in Singapore and New York City. Relating mobility data to land use, Widhalm
et al. [14] reconstructed trips, visited places, and clusters of home, work, shopping, and
leisure activities in Vienna and Boston.

Research on how events relate to places and people commonly uses case studies of
mega or hallmark events, such as Arts Festivals [15,16], Olympic Games [17–19], World
Fairs, and Expositions, to investigate social, economic, and cultural impacts on the local
communities. Yet, cultural festivals, such as The Notting Hill Carnival in London, have
significant contributions to local cohesion. Despite their ephemerality, the intensity of social
interactions at such festivals can foster a strong sense of belonging, particularly among
younger community members and festival-goers, enhancing the social fabric of urban
spaces [20].

Large-scale geospatial analysis of events, places, and people is scarce, but the two
examples below suggest a rich ground for geographic knowledge. Calabrese et al. [21]
used one million call detail records to show the origins of people attending events from
30 July to 12 September 2009 in Boston and 15 large-scale events from Boston Global news
online. Under many caveats, the research suggests that what events people attend are
strongly correlated with where people live (e.g., the closer, the more likely) and the type of
events (e.g., people show event preferences). Currid and Williams [22] used Getty Images
of 300,000 geotagged photos taken at 6000 arts and entertainment events from March 2006
to March 2007 in Los Angeles and New York City to analyze macro-geographic patterns of
social milieus by identifying event enclaves and cultural hubs. Their study concluded two
types of event locations: “overly frequented locations hosting multiple social events” and
“places where major events were held annually or semi-annually” (p. 436). These popular
event venues serve vital functions for place branding.

Places are pivotal to event making and human interactions. For example, urban design
builds pedestrian access to promote human interactions and create venues to facilitate
in-person meetings [6]. Hawker Center in Singapore serves not just as a dining place but as
a vibrant community hub that promotes social connectedness and well-being [23]. These
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spaces become integral to community resilience, especially during stressful events like the
COVID-19 pandemic, by maintaining a sense of normalcy and encouraging responsible
behaviors. The design of public spaces, such as streets, can foster social encounters [24].

While the cited studies above are limited, their extensive references in literature
reviews suggest similar tracks of inquiries and methodologies. Geospatial research on
events is intensive, but most studies focus on one event type, one case, one place type, or
one kind of relationship. In contrast, our study aims to seek spatial associations among
multiple types of events, places, and people, and with the spatial associations, it aims to
predict the likelihood of each event type to occur at a place type and the characteristics of
the population residing around the place.

3. Data

Comprehensive data for social events and places of the event venues are dispersed
across physical and digital media, such as classified posts in local newspapers, posters in
public libraries and community centers, and announcements in various social media outlets
(e.g., Facebook, X, Nextdoor, LinkedIn, and Google Event Calendar). As our emphasis is
on community-based events, Meetup.com (henceforth, simply Meetup) captures a wide
variety of social events from people who share common interests in communities nearby
and brings online communities offline. Meetup has over 58 million members and 20 years
of social events catering to diverse interests and hobbies. Studies showed that social
events at Meetup enhanced attendees’ engagement and created bonded social capital [25],
reflected the economically advantaged geographies associated with regional median income
with the type of meeting venues and activities [26], and served alternative measures for
entrepreneurial ecosystems [27,28]. The latest Meetup report (https://www.meetup.com/
marketing-assets/PDF/Meetup+Trend+Report+v13.pdf, accessed on 21 October 2023)
showed shifts in popular event types from technology and processional-focused events
in 2019 to authentic friendships (including Queer and LGBTQ) in 2022. Meetup does not
collect demographic data. However, web traffic analytics by similarweb.com (https://
www.similarweb.com/website/meetup.com/#demographics, accessed on 21 October 2023)
showed 49% female and 51% males among the 18.3 million site visits in September 2023,
and approximately one-third (33.77%) of the visits from the age group 25–34 and reasonable
spread across other age groups (12.75% 18–24, 19.72% 35–44, 16.31% 45–54, 11.32% 55–64,
and 6.13% 65+).

For places of event venues, we choose Points of Interest (POI) data from SafeGraph.com
(henceforth, simply SafeGraph). POIs traditionally represent visually and culturally impor-
tant features on maps. The rise of digital maps and microeconomic interest popularizes
the POIs with business establishments and tourist landmarks in cities. In this context,
many POIs serve as third places complementary to home (the first place) and work (the
second place) and become an essential part of many people’s daily lives. As such, POIs
give meanings to locations and can be referred to as places [29]. When the meaning of
POIs comes from social events that have produced shared experiences and memories,
the POIs are not only places but micro-locales. Many POI data solicitors and providers
exist, such as Google Places, OpenStreetMap, Yelp, Four Square, ArcGIS, and Maptitude.
Our choice of SafeGraph POI dataset is due to three main reasons: (1) detailed technical
documentation (https://docs.safegraph.com/docs/places, accessed on 21 October 2023) on
data collection, processing, metadata, and accuracy assessment; (2) free access for academic
research and used in 2000+ published studies; and (3) global coverage and routine updates
and maintenance. The first reason asserts confidence in data quality. The other two reasons
enable our proposed methods and research findings to be compared and contextualized in
the literature, allowing for reproducibility and replicability beyond the study site.

Specifically, we used “DFW, TX” to retrieve events at Meetup from 26 February 2020
to 30 January 2021, a period of reduced social activities amid the COVID-19 pandemic.
Meetup adopted GraphQL to handle data requests. On spatial queries, GraphQL requires
longitudes and latitudes instead of city names and uses Geonames (http://www.geonames.

https://www.meetup.com/marketing-assets/PDF/Meetup+Trend+Report+v13.pdf
https://www.meetup.com/marketing-assets/PDF/Meetup+Trend+Report+v13.pdf
https://www.similarweb.com/website/meetup.com/#demographics
https://www.similarweb.com/website/meetup.com/#demographics
https://docs.safegraph.com/docs/places
http://www.geonames.org
http://www.geonames.org
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org, accessed on 21 October 2023) as the default geocoder. The input “DFW, TX” was
converted to us-tx-dfw to check Geonames entries. The matched city was Dallas, so
Geonames returned the latitude and longitude coordinates (N 32◦46′59′′ and W 96◦48′24′′).
Returned events were within 63 miles of the query center, so we set a 63-mile radius as the
study area boundary. By removing online events and those lacking geographic coordinates,
we retained 9445 social events across 1537 unique locations. These in-person social events
took place during the COVID-19 pandemic, when many people opted to reduce human
contact, signaling the robust nature of social gatherings and the social importance of
micro-locales.

The Meetup platform categorized these events into 24 distinct categories, and we
subsequently grouped the categories into seven (7) event types (Table 1) for a helpful
heuristic in information processing. However, recent publications argued for even lower
cognitive limits [30,31]. Many POIs are closely located to each other and quickly blur
point distributions. We aggregated POIs by hexagons with an edge length of 2000 m to
visualize the spatial distributions of POI types (Figure 1A). All seven social event types
were commonly held in central Dallas, with trends towards the north and the southwest. A
vast peripheral area had no posted social events at Meetup, which could indicate biases
towards urban centers and spatially extensive POIs, like parks where all events would be
geo-coded to their centroids. Sports and Health and Hobby and Passion were the most
popular and widely held across the metroplex. In contrast, Movement events were most
concentrated in residential areas, primarily due to their focus on community service and
charitable activities. The widely distributed Hobby and Passion event type is attributed to
its diverse activities across various populations. In contrast, the Movement event type is
specific to social and political movements and, hence, often takes place at locations of social
or political significance. Figure 2 shows word clouds from Meetup posts for the two event
types to highlight event compositions in the two categories. The other four event types,
Social Activities, Science and Education, Region and Identity, and Career and Business,
were distributed comparably over space.

Table 1. Categories of social events from Meetup.

Reclassified Category Original Category Reclassified Category Original Category

Movements (no similar events to
merge up but instance is enough
to be an isolate type, same for
Career and Business)

Movements (e.g., women’s
opportunity movements,
decolonial movements)

Religion and Identity Beliefs

Science and Education

Tech LGBTQ
Learning Career and Business Career and Business
Writing Sports and Health Health and Wellness
Book Clubs Sports and Fitness

Hobbies and Passions

Sci-Fi and Games Outdoors and Adventure
Dance Social Activities Social
Music Language and Culture
Food and Drink Pets
Hobbies and Crafts Family
Arts
Photography
Film
Fashion and Beauty

An event post on Meetup included the organizer, event description, location (POI
and addresses), date and time, and attendees. Figure 1B shows an example of Hobbies
and Passions: a drawing event from 7:30 to 9:30 p.m. on Wednesday, 4 March 2020, at
Flagship Half Price Books, 5803 East Northwest Highway, Dallas. The event was for the
Dallas Sketchers group but was also open to the public.

http://www.geonames.org
http://www.geonames.org
http://www.geonames.org
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Figure 1. Social events from Meetup.com (26 February 2020–30 January 2021): (A) spatial distributions
of social events; (B) an event instance.

Similarly, we downloaded all POI data in March 2020 from SafeGraph and selected
102,920 POIs with North American Industry Classification Systems (NAICS) categories
(Table 2) within the study area. To spatially relate social events and POIs, we tessellated the
study area into a grid of hexagons with an edge length of 400 m, representing a common
walkable distance [32,33]. In the subsequent spatial clustering analysis, hexagons were
chosen over squares for their isotropic spatial relations to their neighbors and ensuing
advantages. This study only considered those hexagons within 400 m from any POIs, which
includes hexagons with POIs or within 400 m from any POI (Figure 3), because we intended
to model the spatial probabilities of locales of different social event types given various
places (i.e., POI types). Hexagons without POIs but within 400 m of any POI are considered
reachable by foot, so social events in these hexagons could be associated with these POIs
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outside the hexagons. For simplicity, we subsequently used POI-hexagons to include both
hexagons with POIs and hexagons within 400 m of any POI. Of the 9445 social events in this
study, 9361 (or 99%) occurred in POI-hexagons. The remaining 1% of events predominantly
comprised sports activities in lakes or parks with spatial extent far beyond the POI label
points or private venues without POI designations. Therefore, hexagons without POI or
beyond 400 m of any POI (i.e., not POI-hexagons) were removed from the study.

Figure 2. Word Clouds that show words, their relative frequency, and relative positions in Meetup
posts for Hobby and Passion and Movements events.

Figure 3. The study area comprised POI-hexagons, including hexagons with POIs and hexagons
without POIs but within 400 m of a POI in adjacent hexagons. The edge length of these hexagons
was 400 m.
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Table 2. SafeGraph POI categories and frequencies in the Study Area.

Category # POIs Category # POIs

Retail Trade 26,181 Arts, Entertainment, and Recreation 5351
Health Care and Social Assistance 18,479 Educational Services 3709
Other Services (except Public Administration) 17,657 Real Estate and Rental and Leasing 2830
Accommodation and Food Services 16,825 Professional, Scientific, and Technical Services 1947
Finance and Insurance 7698 Information 1426
Public Administration 866 Transportation and Warehousing 1319

Wholesale Trade 743 Administrative and Support and Waste
Management and Remediation Services 1058

Construction 189 Manufacturing 917
Utilities 116 Management of Companies and Enterprises 8
Agriculture, Forestry, Fishing and Hunting 9

4. Methods

Each POI-hexagon served as a unit of analysis in our study to spatially associate
places, people, and social event types. We developed a Bayesian Network model to
explicitly compute the conditional probability of event occurrences, given the probabilities
of sociodemographic quantities within a POI-hexagon and the POIs within 400 m of the
POI-hexagon’s boundary. We then compared the Bayesian model with other conventional
methods to affirm the advantages of Bayesian Network modeling.

We chose Bayesian Networks (BN), developed by Pearl [34] and also known as belief
networks or Bayes nets, to model probabilistic relationships among places, people, and
social events for three reasons. First, popular machine learning methods, such as Ran-
dom Forests (RF), Support Vector Machines (SVM), and Neural Networks (NN), despite
their predictive power, are characterized by their black-box operations and limited inter-
pretability to relate input variables to the output variable [35]. BN can model multiple
non-mutually exclusive distributions of predictive variables, but discriminative classifiers,
like RF or SVM, are subject to the predicted probabilities summed to 100% [36]. Second,
generalized linear regression and its spatial extensions, such as spatial autoregressive (SAR)
and conditional autoregressive (CAR) models, assume predefined relationships among
variables and therefore lack the flexibility to model complex associations. BN, in contrast,
requires no predefined rigid functional forms [37]. The third reason is BN’s ability to
maximize posterior queries to determine the most probable network configuration based
on the learned joint distributions for a given observation.

4.1. Probability Modeling

BN modeling depends heavily on the underlying graphical structure that should align
with the corresponding domain knowledge. In a graphical structure, nodes symbolize
variables, and edges represent conditional dependencies between them. Network depen-
dencies learned by data-driven approaches may sometimes contradict domain knowledge.
For instance, in the context of this research, POIs support social events under the research
assumption that an event takes place where material context and physical settings can meet
the event’s functional needs. Therefore, the BN structure should direct edges from POI
types to event types. Nevertheless, data-driven approaches may result in social events as
precedents to POI types. While it is possible that a POI was built to host a preplanned event
(such as building an arena for an Olympic game), this research is limited to using POIs
to predict social events, as our interest is in the implications of what places we have in a
community and what people do and relate to in the community.

To examine the validity of this research assumption, POI preceding social events, we
calculated the presence rates of social events in POI-hexagons to show the POI effects on
event presence. For social events, most POI presences are associated with higher event
presence rates (Figure A1). The only exception was with Management and Remediation
Services (MgmEnterp) and Agriculture, Forestry, Fishing and Hunting (AgriFish) POI-
hexagons. In contrast, the effects of social event types on POI presence are negligible
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(Figure A2). Subsequently, we adopted the network structure with directed edges from POI
types to social event types (Figure 4).

Figure 4. The network structure with directional edges from POI types to social event types:
(A) a simplified representation; (B) the network used in the proposed BN model.

A social event cannot take place without participants. Therefore, population character-
istics can affect what kinds of social events are likely to occur in a community. We acquired
five-year (2017–2021) estimates of demographic and socioeconomic (henceforth simply
sociodemographic) data at the census tract level from American Community Surveys (ACS).
The selected ACS variables included population density per square meter; age brackets of
under 18, 18–44, 45–64, and over 64 years old; race categories of White, Black, Asian, and
Other; educational attainment levels of completing middle school, high school, or college;
per capita income; and poverty rates, for a total of 14 sociodemographic variables. We
calculated the area-weighted average of each variable in individual POI-hexagons. These
sociodemographic variables and POI-type probabilities are input variables to predict the
probabilities of social events in every POI-hexagon. Micro-locales would be identified if a
particular POI type exhibited robust predictability for a specific social event type. Spatial
clusters of POI-hexagons with high probabilities of social event types of interest suggest
meso- or macro-locales.

The added sociodemographic variables necessitated the consideration of a condition in
which the two variables (POI types and social event types) become dependence-separated
(i.e., d-separated) in the BN. Figure 5 gives a d-separated example of a directed path from
X1 to S1 through X2. If X2 is not an empty set, the path X1 to S1 is blocked by conditioning
on the intermediary X2; hence, X1 and S1 are dependence-separated upon X2. Structural
revisions to the Bayesian network aim to identify sociodemographic variables (X1) that
can mediate previously independent POI types (X2) to a specific type of social event
(S1) and, therefore, improve the Bayesian network model’s predictability of social events.
For illustrative purposes, let us examine the religious sociodemographic variable (e.g.,
Christianity, Islam, Hinduism) denoted as X1. These variables are often associated with
the presence of specific POIs, represented as X2, such as churches, mosques, or temples.
Consequently, the type of religious events (S1) can be directly deduced from the type
of worship place (POI), obviating the need for additional sociodemographic data in this
context. In such instances, X1 is deemed d-separated from S1, with the observation of
X2. Conversely, in the absence of POI data, the local sociodemographic variables can
still facilitate inferences about likely social events. Under these circumstances, X1 is d-
connected to S1 in the absence of X2 observations. An alternative, X2 to S1 through X1, is
also possible; some POI types may condition the dependence between sociodemographic
variables and social event types. Because all hexagons under consideration have POIs and
sociodemographic values (i.e., not empty sets), the proposed Bayesian Network model
considered both d-separation alternatives.
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Figure 5. D-separation of X1 and S1 in a directed path (i.e., a subgraph in a BN).

BN modeling needs to account for the soundness and completeness of d-separation [38].
Given that all predictors, encompassing both local sociodemographic and POIs, are observ-
able in this study, dependencies among these variables will form d-separation to social
events nodes, which will inflate the computational load without improving model per-
formance. Consequently, we constructed a graph with direct edges from all predictors to
social events nodes, as the priori assumption in BN. In practice, the validity of these edges
was evaluated using mutual information, ensuring the accuracy of the dependency assump-
tions [39]. This study considered 19 POI types, 14 demographic and sociodemographic
variables, and 7 social event types. The conditional probability of presence for a given
social event type (Si) in a POI-hexagon is subject to the probabilities of a given possible state
defined by the 33 variables characterizing POI types and sociodemographic conditions:

P(Si = si|X1 = x1, . . . , X33 = x33) for i = 1 to 7 (1)

We treated POI types as binary variables to encode their presence (=1) or absence
(=0) for each POI-hexagon. Sociodemographic variables were continuous values, and it
would be infeasible to consider all possible combinations of unique values. As such, we
transformed these sociodemographic data into categorical variables based on the quantile
distributions of the respective variables. The percentages of POI-hexagons with social
events varied across quantiles in each demographic and socioeconomic variable (see effects
plots in Figure A3). Most of these variables as quantiles exhibited negative or positive effects
on the presence of social events, albeit with different degrees of uncertainty. For instance,
increasing quantiles of residents under 18 decreased the percentage of POI-hexagons with
social events from 8% to 1% with high confidence intervals across all four quartiles. The
decreasing effects implied that the majority of social events from Meetup in the study
area were for adult participants. On the other hand, middle school attainment and the
percentage of the Black population showed wide confidence intervals. Therefore, the
quantiles of neither variable had robust effects on the presence of social events.

We applied a forward stepwise model selection approach to rank the predictive
contributions of all 33 variables (19 POIs and 14 demographic and socioeconomic variables)
under linear assumptions. For each iteration, the stepwise model selection added each
variable into the model prediction and then compared the model performance with each
added variable based on improvements in reducing the residual sum of squares and the
Akaike Information Criterion (AIC) measure. While the study considered 33 variables,
the results showed increases in the residual sum of square and AIC measures in the 27th
iteration (Table 3).

Improvements to model fit in residuals and AIC decreased as the number of variables
increased and became negligible around the 20th rank. For computability, we consid-
ered the first 20 variables, 14 POI types, and 6 sociodemographic variables to build a BN
model for predicting the probability of the presence of each social event type: a total of
seven probabilities for seven event types in a local environment (e.g., a POI-hexagon in
the analysis). This resulted in approximately 67 million states for conditional probabili-
ties: P(Si = si |X 1 = x1, . . . , X20 = x20) for i = 1 to 7. The final multivariate linear model
accounted for 13.0–14.6% (95% confidence interval) of the spatial variance in social events,
providing a baseline fit prior to BN modeling.
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Table 3. Predictor importance rank by AIC.

Variables Rank Resid. Dev AIC Variables Rank Resid. Dev AIC

NA 890.58 −85,757 + college 13 771.15 −89,410
+ Manufac 1 844.70 −87,106 + RealEstate 14 770.47 −89,431
+ ProfSvcs 2 822.66 −87,780 + HealthCare 15 770.04 −89,443
+ highSchool 3 807.71 −88,246 + pop_dens 16 769.38 −89,463
+ Wholesale 4 798.15 −88,549 + ArtsRec 17 768.99 −89,474
+ PubAdmin 5 791.17 −88,771 + poverty 18 768.51 −89,488
+ F18_to_44 6 785.33 −88,959 + AccomFood 19 768.23 −89,495
+ under_18 7 781.45 −89,083 + EduSvcs 20 768.00 −89,500
+ Info 8 778.19 −89,188 + mid_school 21 767.83 −89,504
+ TransWare 9 775.96 −89,259 + other_race 22 767.73 −89,506
+ Utilities 10 774.00 −89,322 + black_rate 23 767.65 −89,506
+ Construct 11 772.71 −89,362 + per_income 24 767.58 −89,506
+ AdminSup 12 771.86 −89,389

To further explore the influences on social event likelihoods, we applied conditional
probability distributions (CPDs), a foundational statistical tool capturing event probabilities
under specific conditions. This method models event probabilities in context-specific ways,
offering insights into the collective contributions of different combinations of factors to
social events [40,41]. Additionally, we utilized the Maximum A Posteriori (MAP) query to
identify the most probable combinations of POIs and sociodemographic attributes in areas
hosting social events. MAP, rooted in Bayesian statistics, estimates optimal parameter sets
from observed data, effectively pinpointing pivotal factors facilitating social events. This ap-
proach is especially informative in urban studies, aiding urban planners and policymakers
in making informed decisions about community engagement and urban development [42].
These statistical techniques estimated event probability distributions under varying condi-
tions, revealed the critical contextual determinants conducive to social events, and drew
valuable insights into POIs as a social infrastructure that can enhance the fabric of urban
community life [43].

4.2. Spatial Clustering Analysis

The proposed BN model predicted the presence probability of each social event type in
each POI-hexagon based on the assembly of POI types and sociodemographic characteristics
for the respective POI-hexagon. As such, each POI-hexagon with social events is a meso-locale,
while each POI with a high probability of at least one social event type is a micro-locale. A
spatial cluster of POI-hexagons with high probabilities of at least one social event type gives
rise to a macro-locale. We applied local spatial autocorrelation statistic (local Moran’s I) to
identify significant hotspots representing macro-locales for each social event type. Local
Moran’s I measures the similarity between a focal location and its spatial neighbors [44] to
quantify the correlation of social event probabilities between the focal hexagon and its adjacent
hexagons. Positive values indicate clustering of similar values (high–high or low–low), while
negative values suggest marginalized or isolated meso-locales. Getis-Ord Gi* is another
common local metric that assesses whether the values of individual neighborhoods differ
from the global values in the study area [45]. Local Moran’s I fit better the conceptualization
from meso-locales to macro-locales than Getis-Ord Gi*.

Since we tessellated the study area to a hexagon grid and used POI-hexagons as
the spatial units of analysis in Bayesian Network modeling and spatial clustering, the
findings would be subject to the modifiable areal unit program (MAUP), including scale
and zoning effects from spatial aggregation [46,47]. To mitigate the effects, we ran the
same analysis across multiple spatial tessellations with varying sizes and delineations and
looked for consistent results across aggregation levels and zoning schemes [48]. The size of a
POI-hexagon was based on the most common walk scale [32]. We shifted the POI-hexagon
grid 400 m in six diagonal directions (Figure 6A) and ran the proposed Bayesian Network
model and spatial clustering analysis with the seven spatial configurations (the original
configuration plus six shifted configurations. For every POI-hexagon, we counted the
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number of times among the seven (7) configurations that the Moran’s I measure deemed it
a hotspot (i.e., a high probability of having social events). The POI-hexagons with more
numbers of hotspot designations were more consistent and, hence, more robust for a high
likelihood of social event presence.

Figure 6. Spatial shifts to perturb zoning effects: (A) shift a hexagon to the left; (B) ensemble results
from seven configurations into a final prediction.

The final output (Figure 6B) integrated all model outputs using aggregating strategies—
calculating the number of times that each location was predicted to have a high likelihood
of being an event host place across the seven arrangements. Notably, the final output will be
based on triangles since the intersection of the 7 (6 shifted + 1 original) models will be triangles.

5. Results and Discussion
5.1. Event Probability Surface
5.1.1. Bayesian Network Modeling with Only POI Types (BNPOI)

The hexagon grid consists of 25,550 POI-hexagons. The BNPOI model predicted probabil-
ities represent the “affinity” of an area for social events based on conditional probabilities of
the presence of POI types. For example, P(Event1 = 1|POI1 = 1, POI2 = 0, POI3 = 1) = 0.75
indicates a 75% probability of observing at least one Event1 instance in an area with POI1 and
POI3 present but not POI2, given the Meetup data. Hexagons with higher probabilities have
POI combinations that more likely constitute meso-locales.

To evaluate model performance, we used the area under the receiver operating char-
acteristic curve (AUC), mean absolute error (MAE), and mean squared error (MSE), as
suggested in the literature [49,50]. The high AUC value indicates a robust overall classifica-
tion accuracy between the predicted probabilities of event occurrence and the observed
presences and absences. This method involves plotting the True Positive Rate (TPR) against
the False Positive Rate (FPR) at different threshold settings, thereby offering a comprehen-
sive evaluation of the model’s ability to discriminate between classes at various levels of
probability cut-offs. To calculate the AUC, we combined the seven types of social events
into one general social event type and simplified the observations into presence or absence.
Figure 7A shows an AUC of 0.951 for modeling general social event occurrences. Figure 7B
shows the MAE and MSE for each event type to detail model performance. For example,
the 1.0% MAE for Hobbies and Passions events indicates a 1.0% average deviation between
predictions and observations. Figure 7C visualizes the spatial distribution of predicted



ISPRS Int. J. Geo-Inf. 2024, 13, 81 13 of 26

probabilities, with heightened probabilities in red depicting likely meso-locales. In general,
POI combinations account for 29% spatial variance in social events, which is calculated by

R2 =
∑i( p̂i − pi)

2

∑i(pi − pi)
2 (2)

where p̂ is the probability of the predicted event on the hexagon i, and pi is the binary
observation (presence/absence) of a social event type on the hexagon i.

Figure 7. Results of the BNPOI (Bayesian Network with POI types) model only: (A) ROC-AUC for
general events; (B) MAEs and MSEs of seven types of social events; (C) probability of having events
across POIs in the study area.
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However, the input data were significantly imbalanced: 99% of all social events
took place in only 5% of the 25,550 POI-hexagons. The absence-skewed data push the
model toward absence predictions. Error analysis of absent and present observations
separately (Table 4) revealed that POI combinations performed well for predicting absence
but poorly for presence, consistent with the much lower specificity value than the sensitivity
value. This demonstrates that POIs are necessary but insufficient conditions for social
events: events rarely occur without appropriate venues, yet POI presence alone does
not guarantee that events will happen. Social events involve people. Population density,
demographic compositions, and transportation connectivity are important considerations
for event locations [51,52]. For instance, areas with higher population densities, younger
age distributions, higher education levels, and higher income may provide fertile markets
for social events where POIs are present. Next, we expanded the Bayesian Networks with
POIs and sociodemographic data, including population density, age, race, education, and
income distributions.

Table 4. BNPOI performance on events absence and presence.

Absence Presence

Events MAE MSE Events MAE MSE

Career and Business 0.41% 0.06% Career and Business 77.54% 66.46%
Hobbies and Passions 0.85% 0.12% Hobbies and Passions 77.00% 66.06%
Movements 0.27% 0.03% Movements 81.43% 71.64%
Religion and Identity 0.42% 0.05% Religion and Identity 79.95% 70.95%
Science and Education 0.49% 0.06% Science and Education 77.10% 67.07%
Social Activities 0.69% 0.11% Social Activities 73.10% 61.02%
Sports and Health 0.91% 0.11% Sports and Health 79.13% 69.62%

5.1.2. BN Modeling with POI and Sociodemographic Data (BNcombined)

Table 5 summarizes the overall performance of predicting the presence of social events
for the BN models considering POI only and the combined POIs and sociodemographic
variables compared to linear (LM), logistic regression (LR), SAR, and CAR models. The
spatial weight matrix used here was estimated from neighborhood relationships using a
binary coding scheme based on adjacency.

Table 5. Performance comparison.

Models R-Squared (95% CI) AUC MAEPresence MAEAbsence

LM(POI) 0.108–0.122 0.851 73.66% 0.44%
LM(Combined) 0.130–0.146 0.875 70.18% 0.48%
LR(Combined) 0.166–0.183 0.892 66.49% 0.49%
SAR(Combined) 0.147–0.164 0.880 68.97% 0.47%
CAR(Combined) 0.149–0.166 0.872 66.97% 0.54%
BN(POI) 0.286–0.304 0.951 45.99% 0.88%
+ high school (%) 0.330–0.349 0.955 42.64% 0.83%
+ age from 18 to 44 (%) 0.476–0.494 0.978 30.68% 0.74%
+ age under 18 (%) 0.625–0.639 0.991 20.06% 0.59%
+ college (%) 0.666–0.679 0.993 17.80% 0.52%
+ population density 0.724–0.735 0.996 14.03% 0.46%
+ poverty (%) 0.813–0.821 0.997 9.34% 0.31%

Our input dataset may inherit a presence only bias where locations without social
events may have unreported social events. Thus, an effective model should understand the
relationship between event occurrences and local factors while minimizing the MAE. The
BN models gave the best results in terms of both overall R-squared and minimum MAE
for event presence hexagons. However, computational limits prevented exploring the full
explanatory potential of the BN models, which was restricted to 20 input predictors.

Incorporating sociodemographic data notably improved the Bayesian networks’ per-
formance, especially for event presence. The addition of six sociodemographic predictors
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increased the R-squared from 0.30 to 0.82 and decreased the MAE for event presence from
45.99% to 9.34%. Significantly influential were the age distribution variables, notably,
the rates of adolescence, middle age, and elders, which markedly enhanced the models’
explanatory capacity on the presence of events. The age influence implies the importance
of distinctive age-based social demands in communities.

Table 6 shows the combined model performance for predicting both the presence and
absence of social event types. For absence, MAEs remained low across all event types.
However, for event presence, MAEs of nearly all types approached 15–20%, indicating
approximately 80–85% accurate predictions for true occurrences in the majority. Sports
and Health, Movements, and Career and Business events exhibited higher MAEs, around
25%, significantly exceeding MAEs for other event types. These social events could take
place at various types of POI locations and were loosely connected to the selected built
environment or appealing to broader populations, with wider potential that gave rise to
meso-locales. Additional factors not included in the current model may further explain
the comparatively poorer performance of these two event types. In contrast, the lower
MAEs for most gatherings suggest a tighter geographical connection among POI types,
sociodemographic, and social event types.

Table 6. BNCombined performance on events absence and presence.

Absence Presence

Event Types MAE MSE Event Types MAE MSE

Career and Business 0.12% 0.05% Career and Business 22.37% 12.20%
Hobbies and Passions 0.16% 0.07% Hobbies and Passions 14.60% 8.24%
Movements 0.08% 0.03% Movements 23.19% 13.70%
Religion and Identity 0.08% 0.03% Religion and Identity 16.05% 9.49%
Science and Education 0.12% 0.05% Science and Education 19.41% 10.96%
Social Activities 0.18% 0.08% Social Activities 19.01% 10.74%
Sports and Health 0.29% 0.09% Sports and Health 24.91% 16.93%

Figure 8 displays the probability predictions from the BNcombined model. Compared
to the BNPOI model, the BNcombined model resulted in greater certainty in local affinity
for hosting social gatherings (shown in red dots in the figure). The integrated POI and
sociodemographic factors improved the model’s predictability of the presence of social
events. Social events, by definition, involve people of common interest at locations. POIs
provide the facility and affordance for social events, while people need to organize and
participate in these events. Therefore, POIs alone represent only the capacity to host social
events at locations. People, who they are, and what they like to do, are key to making
events happen. Hence, the inclusion of socioeconomic–demographic variables improves
the spatial prediction of social events significantly.

Figure 9A shows the ROC and AUC for the BNCombined model, with the AUC being
an impressive 0.997. This high AUC value reflects the strong capability of the model to
classify both the presence and absence of social events correctly. Figure 9B presents the
confusion matrix obtained by applying a threshold of 50% for converting probability to
a binary classification outcome. At this threshold, the combined model exhibits 99.51%
sensitivity and 84.96% specificity and generates 120 false-positive and 139 false-negative
predictions across all test locations (i.e., POI-hexagons), displayed in Figure 9C as blue and
red hexagons, respectively. Here, false positives represent locations incorrectly classified as
event presence. Given the nature of the input data, these blue hexagons potentially indicate
suitable locations with comparable combinations of POIs and people for the desired social
events, although there were no posted social events on Meetup at these locations.
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Figure 8. BNcombined predicted the probability of having events in POI-hexagons that constitute the
study area.

5.2. Relationships among Explanatory and Predictive Variables

BN modeling suggests the effects of explanatory variables on the predictive variable
(i.e., the presence probability of a social event type) through conditional probability dis-
tributions of explanatory variables. Figure 10A displays the probabilities of event types
subject to population density, high school education, and under 18 rates. Since each variable
has been transformed to a quantile scale, BN produced event probability distributions
with 43 (or 64) conditions. For example, the presence probability of Career and Business
events was high in two kinds of locations: (1) low population density, average high school
education population percentage, and low percent population under 18 years old, and
(2) high population density, average high school education population percent, and average
percent population under 18 years old. Career and Business events in each kind of location
likely targeted different workforces. The distinct location characteristics for each event
type implied that these locations met different social needs. Neighborhoods with many
school-age children and without children might have lower demand than the adult popula-
tion for Career and Business events. The graphs for Movement and Religion and Identity
events also showed distinctive location characteristics by the three variables. Location
characteristics for the other social event types were dispersed, especially at locations with
low event probabilities.
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Figure 9. Model results of BNcombined: (A) ROC-AUC for general events; (B) confusion matrix using
50% threshold; (C) classification error map.
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Figure 10. (A) Conditional probability distribution of events; (B) Maximum A Posteriori query.

Figure 10B shows results from the Maximum A Posteriori (MAP) query that identified
the most probable composition of POI types and sociodemographic variables for POI-
hexagons of different social event types. The MAP query normalized the probability of
occurrence for the reference event type to one (blue bars in Figure 10B) and then identified
the variable composition with the highest posterior probability given event presence (red
bars in Figure 10B). Among all POI types from the Safegraph data, Health Care and Social
Assistance were the most popular choice for gatherings. Arts, entertainment, and recreation
venues with a higher proportion of residents aged 18–44 were more common for Sports
and Health events. Meanwhile, Science and Education and Religion and Identity events
depended more on POI types than other types of events; these events commonly took
place with multiple types of POIs. Most social event types were more likely to occur in
communities with fewer children and a higher population density. Further discussion
on these findings revealed that the predictive capabilities of POIs and sociodemographic
factors are instrumental for strategic urban development. The nuanced understanding
of these variables can be leveraged to optimize resource distribution, enhance public
services, and inform urban planning. For example, the increased likelihood of Career and
Business events in areas with specific demographic characteristics can prompt city planners
to develop business hubs and employment opportunities in such locales. Conversely,
identifying areas with a lower probability for such events may signal the necessity for
amenities that cater to younger demographics, such as educational and recreational facilities.
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These insights emphasize the promising potential of integrating BN analyses in urban
planning processes to effectively meet the diverse needs of urban populations and foster
sustainable community development.

5.3. Event Probability Hotspots

Figure 11 displays the clusters of statistically significant high probability for each
social event type based on Local Moran’s I. The gray shading depicts cluster boundaries,
while the dark red indicates core areas with high probability values with p-values less than
0.05. The clusters were estimated by the BNcombined model rather than observed locations
as in the conventional hotspot analysis. This approach allowed us to leverage the learned
associations between social events and local variables to identify likely event locations. For
example, the area highlighted with a red rectangle for Religion and Identity events had few
observed instances but was classified as a highly probable location based on the model.

Figure 11. Highly likely locations for seven types of social events from the BNcombined model.
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The distributions of these clusters among social event types suggested geographic
variability in the prevalence of social event types across different communities. For instance,
Hobbies and Passions and Social Activities clusters dispersed from downtown Dallas to
Plano and further northward to Frisco along Highway 75 and Dallas’s north tollway
corridors. This pattern reflected the sprawl of entertainment and recreation amenities to
serve these growing northern communities. In contrast, Science and Education events
were concentrated around major institutional anchors like the University of Texas at Dallas
(UTD), Midwestern State University (MSU), University of Texas at Arlington (UTA), and
Southern Methodist University (SMU), as expected. Sports and Health gatherings exhibit
the widest dispersal, with numerous clusters surrounding water bodies that provide
venues for athletic activities. Grapevine Lake (highlighted with a red rectangle in Sports
and Health) arose as a hub for an active lifestyle culture. Overall, the spatial diversity
and dispersion among social event types underscored how localized environments shaped
social interactions.

5.4. Spatially Consistent Clusters

A single model with fixed spatial units may introduce zoning biases into the cluster
results. To reduce such biases and assess robustness, we conducted probability modeling
and cluster analysis with seven distinct spatial arrangements (Figure 6). Table 7 lists the
number of times that a location (a triangle resulted in the shift operation) was predicted as
an event hotspot across the seven spatial arrangements, categorized as weakly (1–2 times),
medium (3–5), or strongly (6–7) consistent. Only 50–60% of hotspots exhibited medium to
high consistency, indicating substantial MAUP effects of zoning biases in single modeling
with fixed spatial units. Changing the zoning strategies is essential to discovering more
spatially robust patterns.

Table 7. Persistent hotspots out of the model runs across seven zoning arrangements.

Events 1–2 (%) 3–5 (%) 6–7 (%)

Career and Business 20.58 54.24 25.18
Hobbies and Passions 49.26 34.03 16.71
Movements 37.80 53.62 8.58
Religion and Identity 38.06 44.81 17.14
Science and Education 40.13 40.58 19.28
Social Activities 40.21 39.97 19.82
Sports and Health 60.69 34.13 5.18

Meanwhile, the persistence of locations as hotspots varied greatly among event types.
Nearly 60% of clusters were weak for Sports and Health events. One potential explanation
was that the highly diversified POIs suitable for various sports led to comparatively poorer BN
model performance on this social event type, suggesting a weaker relationship to the selected
predictors and higher uncertainty in predictions. Since our spatial autocorrelation analysis
relied on BN predictions, the results might have inherited the uncertainty from the model.

Figure 12 displays the spatial distribution of hotspots across event types. The main
pattern of Hobbies and Passions and Social Activities dispersed from downtown Dallas
up to Plano and northward along Highway 75 and the Dallas North Tollway. Downtown
Dallas and the area near Carrollton showed robust hotspots for five of the seven event
types, except for Movements and Religion and Identity gatherings. These areas comprised
multi-functional meso-locales with diverse amenities, sociodemographic mixes, and trans-
portation access that could support varied social events. In contrast, peripheral suburban
cities like Denton and McKinney exhibited more specialized clusters catering to particular
interests like Movements and Hobbies and Passion. The geographic differentials in social
events suggested both general and niche event places that afforded flexible venues to serve
local community functions.
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Figure 12. Highly likely locations for seven types of events from seven BN models.
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6. Conclusions

People utilize the built environment to do things together and build social capital.
The rise in big data on social events allows researchers to take a data-driven approach that
deciphers where social events take place, the associated geographic context for human
activities there, and the implications for urban planning and community building.

This research used POI data to represent locations useful for social activities and
developed BN approaches to model the effects of POIs and local sociodemographic charac-
teristics on the presence of social events. Due to computational limits, we restricted the
model to 20 variables of POI types and sociodemographic characteristics and discretized
the sociodemographic data into quantiles for probabilistic estimates. Compared with
multivariate regression models, BN gave the best probability estimates with the fewest
prediction errors. Furthermore, BN modeling enabled the assessment of predictor–target
relationships through conditional probability distribution (CPD) and Maximum a Posteriori
(MAP) queries. CPD gave inferences for generic causality that the presence of a causal
factor (x) would increase the probability of its effect (y). If a POI type or sociodemographic
variable is a causal factor of a social event type, then the conditional probability of the
social event type subject to the POI type (or the sociodemographic variable), P(y|x), shall
be greater than the probability of the social event alone, P(y). MAP applied the learned
posterior distribution for probabilistic estimates of social event types at locations without
reported events.

The BN results revealed diverse location capacities, represented by POIs, to support
diverse social events across neighborhoods based on POI-hexagons of 400 m edge length
corresponding to a walking distance. However, beyond POIs, the presence of social events
also depended upon relevant sociodemographic characteristics. The BN model suggested
that a community’s age distribution appeared to be a key factor in where and what social
events took place in the community. Social events like Career and Business, Religion
and Identity, Science and Education, and Social Activities appeared to have high local
fidelity, and BN with age, education, population density, and POI types in individual
400 m hexagons could predict the presence of these events with under 10% averaged
spatial error in the greater Dallas area. However, spatial errors were higher in predicting
Sports and Health events than in other event types. The higher spatial errors implied
that Sports and Health events occurred in much more diverse geographic contexts. This
nuanced understanding of the interplay among sociodemographic variables, POI types, and
social event types offers valuable insights for urban planners and public affairs managers,
advocating for a data-driven approach to enhance the social utility of urban spaces. Urban
development can foster more vibrant, inclusive, and socially active communities by aligning
sociodemographic composition and POI distributions with community objectives.

The assumptions and spatial aggregation choices resulted in three apparent limitations
for the research findings and gave opportunities for future research. First, dichotomizing
POIs and social events into binary presence/absence data neglected the regularity or
periodicity of routine gatherings and the seasonality of many social events. Second, like
all spatial tessellation techniques, hexagonal tessellation inevitably inherited modifiable
areal unit problems (MAUP). The study associated POIs within 400 m from the edge of a
hexagon to determine POI-hexagons and their associated POI types. Nevertheless, some
POI types might have a greater circumference of influence than 400 m (such as a large
shopping mall) and should have been considered in associations with extensive, multiple
POI-hexagons. The use of local Moran’s I on the BN predictions to identify hotspots of
likely event locations assessed cluster robustness across predictions with different zoning
strategies, but it also confirmed substantial MAUP effects when using a single model with
fixed spatial units. As such, the findings highlighted the need for the proposed ensemble
approach to mitigate potential zoning biases like edge effects. Analyzing multiple spatial
arrangements helped uncover locale variations in multifunctionality and highlight flexible
event zones, like downtown Dallas.



ISPRS Int. J. Geo-Inf. 2024, 13, 81 23 of 26

The third limitation was the consideration of only POI types and sociodemographic
variables to characterize the local environmental context. Additional cultural, historical, and
sociopsychological factors might contribute to the occurrences of some social events and
warrant exploration. Furthermore, the result probability distribution from BN modeling
was confined by a priori assumption that the occurrence of social events was dependent
on local socioeconomic status and POIs. This assumption might not hold for certain types
of events, such as sports and business events. Judea Pearl [53] introduced do-calculus
and structural causal models (SCMs) for inferring causality among variables by altering
the a priori assumption in BN, which might be applicable in the next steps to ascertain
drivers for social events. Future work should address these limitations through data and
scale-insensitive techniques to refine place-based social intelligence. Additional studies
in different time periods and other cities are necessary to assess the generalizability of
relationships among people, places, and social events.
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Appendix A

Figure A1. Effects Plot of POIs on Social events.
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Figure A2. Effects Plots of Social events on POIs.

Appendix B

Figure A3. Effects plots of Sociodemographic data on social events.
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