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Abstract: Accurate prediction of fine particulate matter (PM2.5) concentration is crucial for improving
environmental conditions and effectively controlling air pollution. However, some existing studies
could ignore the nonlinearity and spatial correlation of time series data observed from stations, and it
is difficult to avoid the redundancy between features during feature selection. To further improve
the accuracy, this study proposes a hybrid model based on empirical mode decomposition (EMD),
minimal-redundancy-maximal-relevance (mRMR), and geographically weighted neural network
(GWNN) for hourly PM2.5 concentration prediction, named EMD-mRMR-GWNN. Firstly, the original
PM2.5 concentration sequence with distinct nonlinearity and non-stationarity is decomposed into
multiple intrinsic mode functions (IMFs) and a residual component using EMD. IMFs are further
classified and reconstructed into high-frequency and low-frequency components using the one-
sample t-test. Secondly, the optimal feature subset is selected from high-frequency and low-frequency
components with mRMR for the prediction model, thus holding the correlation between features and
the target variable and reducing the redundancy among features. Thirdly, the residual component is
predicted with the simple moving average (SMA) due to its strong trend and autocorrelation, and
GWNN is used to predict the high-frequency and low-frequency components. The final prediction
of the PM2.5 concentration value is calculated by an artificial neural network (ANN) composed
of the predictive values of each component. PM2.5 concentration prediction experiments in three
representational cities, such as Beijing, Wuhan, and Kunming were carried out. The proposed model
achieved high accuracy with a coefficient of determination greater than 0.92 in forecasting PM2.5
concentration for the next 1 h. We compared this model with four baseline models in forecasting
PM2.5 concentration for the next few hours and found it performed the best in PM2.5 concentration
prediction. The experimental results indicated the proposed model can improve prediction accuracy.

Keywords: PM2.5 concentration prediction; empirical mode decomposition; minimal-redundancy-
maximal-relevance; geographically weighted neural network

1. Introduction

The United Nations Sustainable Development Goals (SDGs) are a set of 17 social,
economic and environmental goals set by the United Nations in 2015 to address global
challenges and achieve sustainable development [1]. One of them is to build inclusive,
safe, resilient, and sustainable cities and human settlements. However, amid the expedi-
tious economic and societal advancement, the worldwide ecological milieu has suffered
tremendous harm, precipitating a notable catalyst in compromising human well-being—air
quality degradation [2,3]. The deleterious impacts of air pollution on human health are
unequivocal [4]. The main culprit is fine particulate matter (PM2.5) [5], with ramifications
extending beyond its adverse effects on air quality and visibility. PM2.5 harbors toxic and
detrimental substances that permeate deep within the lungs, heart, and bloodstream, exert-
ing a pernicious influence on vital organs such as the heart and brain, which poses a grave
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menace to human health [5–7]. The precise forecasting of PM2.5 concentration is crucial to
ameliorating environmental conditions, effectively managing air pollution, and proactively
averting the myriad health afflictions triggered by atmospheric contamination [8–10].

Recent research methodologies employed for PM2.5 concentration prediction can
be broadly classified into three main categories: mechanistic, statistical, and artificial
intelligence models [11,12]. Mechanistic models leverage meteorological principles and
mathematical techniques to simulate air quality at specific scales [9,12]. Typical mechanistic
models include the Community Multiscale Air Quality (CMAQ) model [13,14] and the
Weather Research and Forecasting (WRF) model [15,16]. High computational requirements
and complex modeling processes are among the factors that impede the broader utilization
of mechanistic models [12–17]. Statistical models explore the dynamics of PM2.5 using
statistical analysis techniques, which are devoid of modeling intricacies, yet display supe-
rior performances [18,19]. Statistical models primarily include the autoregressive moving
average model (ARMA) [20,21] and the autoregressive integrated moving average model
(ARIMA) [22]. The reliance of statistical models on historical PM2.5 concentration data
poses a challenge when incorporating external factors into the analysis [23]. Additionally,
statistical models struggle to capture the nonlinear characteristics present in PM2.5 con-
centration effectively [12]. Artificial intelligence models mainly include machine learning
and deep learning [23]. For instance, He et al. [24] employed an artificial neural network
(ANN) to forecast PM2.5 concentration. Experiments indicated that the ANN successfully
captured the nonlinear relationship between PM2.5 and the input variables.

The rapid advancement of deep learning technology has garnered significant scholarly
acclaim while simultaneously being used for air quality forecasting [12]. Long short-term
memory neural networks (LSTMs) [25,26] and convolutional neural networks (CNNs) [27]
represent two extensively utilized deep learning architectures within the domain of air
quality prediction. Li et al. [8] introduced a hybrid model that combined CNN and LSTM to
predict the 24-h PM2.5 concentration in Beijing. Previous research [25–27] has demonstrated
the commendable predictive capabilities of deep learning in discerning PM2.5 concentra-
tion with the utmost precision. Nonetheless, most existing deep learning models have
struggled to advance beyond their current performance, primarily due to their inadvertent
disregard for the non-stationarity inherent in time series [28]. Considering the detailed
nature of PM2.5 sequences, delving into data preprocessing techniques for PM2.5 predic-
tion has become imperative. These approaches have exhibited promising achievements,
contributing to a discernible enhancement in prediction accuracy [29]. The adoption of data
decomposition techniques is effective for preprocessing PM2.5 time series data, with the
potential to advance the accuracy of PM2.5 concentration prediction significantly [30]. Most
data decomposition techniques are based on empirical mode decomposition (EMD) [28,31].
For instance, Huang et al. [28] demonstrated the efficacy of employing EMD to decom-
pose the initial PM2.5 sequence into multiple subsequences. Subsequently, they applied a
well-constructed gated recurrent unit (GRU) to forecast each subsequence. The predicted
value of each subsequence was aggregated to yield the final predicted value of PM2.5
concentration. Numerous previous studies [28–31] have confirmed the efficacy of data
decomposition techniques in enhancing the accuracy of air quality predictions. Hence, the
model proposed in this study employs EMD to preprocess the original PM2.5 sequence
into multiple intrinsic mode functions (IMFs). Subsequently, the IMFs are reconstructed
based on the one-sample t-test. This approach reduces the model’s complexity and runtime
while maintaining prediction accuracy.

Feature selection contributes to improved model performance and reduced model
complexity [32]. For PM2.5 concentration prediction, several common feature selection
criteria were utilized, including the Pearson correlation coefficient [33], Kendall’s tau co-
efficient [34], causality [32], and mutual information [35]. While these feature selection
methods perform well in selecting features that are highly relevant to the target variable,
they may still face challenges in avoiding redundancy between the selected features. The
minimal-redundancy-maximal-relevance (mRMR) algorithm considers both the redun-
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dancy between features and their relevance to the target variable [36]. Consequently, the
model proposed in this study utilizes the mRMR algorithm for feature selection.

Considering the data from neighboring stations surrounding the target station can
further improve the prediction accuracy [18]. Geographically weighted regression (GWR)
is a spatial statistical analysis method for exploring spatial non-stationarity and spatial
relationships in geographic data [37]. Combining the idea of GWR and ANN, this study
proposes the novel geographically weighted neural network (GWNN) model for predicting
PM2.5 concentration. GWNN model leverages the capabilities of ANN to determine the
coefficients of GWR, thereby eliminating the issue of traditional methods for tedious kernel
function and bandwidth selection.

Combining data decomposition, data reconstruction, feature selection, and considering
the spatial relationship of PM2.5 monitoring stations, this study proposes a hybrid model
called EMD-mRMR-GWNN for PM2.5 concentration prediction. The main contributions of
this study are as follows:

• The analysis of PM2.5 concentration in three representative cities, such as Beijing,
Wuhan, and Kunming, reveals that the PM2.5 concentration has distinct nonlinearity
as well as the diversity of seasonal patterns.

• The EMD-mRMR-GWNN model was developed for PM2.5 concentration prediction.
This model effectively integrates the advantages of data decomposition, data recon-
struction, and feature selection techniques while considering the spatial relationship
of PM2.5 monitoring stations. Experimental results on datasets from three cities
in China (Beijing, Wuhan, and Kunming) indicate that the proposed hybrid model
performed well.

• The original PM2.5 sequence is adaptively decomposed into multiple IMFs and a
residual component using EMD and classified into high-frequency and low-frequency
components by the one-sample t-test, significantly reducing the prediction difficulty
and model complexity.

• For prediction accuracy, considering the correlation between features and the target
variable, as well as the redundancy among features, we utilize the mRMR to select the
optimal feature subset. By leveraging the nonlinear modeling capability of ANN and
the spatial correlation capturing ability of GWR, we build a GWNN model to predict
the high-frequency and low-frequency components, which significantly improves the
accuracy of PM2.5 prediction.

This study is structured as follows: Section 2 introduces the material of this study and
presents the modeling framework. Section 3 analyzes the performance of the EMD-mRMR-
GWNN model and compares it with LSTM, GRU, GWNN, and mRMR-GWNN models.
Finally, a conclusion is provided in Section 4.

2. Materials and Methods
2.1. Data Description

Three Chinese cities were selected as the study areas: Beijing, Wuhan, and Kunming.
Beijing has 12 air quality monitoring stations (1001A–1012A), Wuhan has 9 (1325A–1334A,
of which 1332A was excluded due to too many missing values), and Kunming has
6 (1450A–1455A). These cities were chosen to represent different geographical regions
and varying levels of air pollution. Thus, the study provided a more comprehensive
understanding of PM2.5 concentration prediction in diverse urban environments. The
distribution of air quality monitoring stations in these three cities is shown in Figure 1.
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Figure 1. The distribution of air quality monitoring stations: (a) The distribution of air quality mon-
itoring stations in Beijing; (b) The distribution of air quality monitoring stations in Wuhan; (c) The 
distribution of air quality monitoring stations in Kunming. 

The air quality data were obtained from the China National Environmental Monitor-
ing Centre (CNEMC). Hourly pollutant concentration data, including PM2.5, PM10, SO2, 
NO2, O3, and CO, were collected from air quality monitoring stations in Beijing, Wuhan, 
and Kunming. The data collection period spanned from 1 January 2016, to 31 December 
2020. 

Figure S1 shows the PM2.5 concentration sequences of Beijing, Wuhan, and Kunming 
(one station is shown per city). Table S1 shows the statistical data of PM2.5 concentrations. 
The PM2.5 concentrations in all three cities exhibited volatility and had significantly dif-
ferent characteristics. The average PM2.5 concentration in Beijing was high and very vol-
atile. In contrast, Kunming maintained a low average PM2.5 concentration with little vol-
atility, resulting in stable air quality. Wuhan’s air quality was intermediate between the 
first two cities, with moderate PM2.5 concentration and volatility. Overall, these three 

Figure 1. The distribution of air quality monitoring stations: (a) The distribution of air quality
monitoring stations in Beijing; (b) The distribution of air quality monitoring stations in Wuhan;
(c) The distribution of air quality monitoring stations in Kunming.

The air quality data were obtained from the China National Environmental Monitoring
Centre (CNEMC). Hourly pollutant concentration data, including PM2.5, PM10, SO2, NO2,
O3, and CO, were collected from air quality monitoring stations in Beijing, Wuhan, and
Kunming. The data collection period spanned from 1 January 2016, to 31 December 2020.

Figure S1 shows the PM2.5 concentration sequences of Beijing, Wuhan, and Kunming
(one station is shown per city). Table S1 shows the statistical data of PM2.5 concentra-
tions. The PM2.5 concentrations in all three cities exhibited volatility and had significantly
different characteristics. The average PM2.5 concentration in Beijing was high and very
volatile. In contrast, Kunming maintained a low average PM2.5 concentration with little
volatility, resulting in stable air quality. Wuhan’s air quality was intermediate between
the first two cities, with moderate PM2.5 concentration and volatility. Overall, these three
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cities displayed a declining trend in PM2.5 concentration, indicating an improvement in air
quality. One possible reason was that the Chinese government has made significant efforts
to adjust the energy structure, industrial structure, and transportation structure. In recent
years, the Chinese Government has taken positive action on many fronts to achieve the
goal of sustainable development. First, it has promoted energy transformation, limiting the
use of highly polluting coal energy and encouraging clean energy alternatives [38]. Second,
the Chinese government has actively promoted industrial upgrading and transformation to
reduce dependence on resource-intensive and highly polluting industries. Finally, the Chi-
nese government focuses on public transport in urban planning, building convenient public
transport systems such as subways and light railways, and supporting the development of
new energy vehicles through policies such as subsidies for car purchases [39]. Figure S2
shows the PM2.5 concentration for each season from December 2019 to November 2020 at
the three stations. For Beijing and Wuhan, the highest PM2.5 concentrations were in winter,
and the lowest were in summer. Heating is one of the major reasons for the high PM2.5 con-
centration during winter in Beijing. Wuhan has predominantly northerly winds in winter,
thus the transmission of pollutants from centralized heating in the north may contribute to
air pollution in Wuhan. The seasonal characteristics of PM2.5 in Kunming were different
from those in Wuhan and Beijing. The PM2.5 concentration in Kunming was greatest
during spring. Possible causes were spring drought, large temperature differences between
day and night, scarce rainfall, and being prone to inversions and fog, which affected the
dispersion of PM2.5. In this study, the three cities were considered representative as they
corresponded to regions with high, moderate, and low PM2.5 concentrations, respectively.
The proposed model’s stability was verified using different PM2.5 concentration datasets.

2.2. Empirical Mode Decomposition

EMD is a data analysis method used to decompose a nonstationary signal into a set
of IMFs and a residual component. Each IMF has a specific frequency range. EMD is an
adaptive data decomposition method that does not require predefined basis functions or
filters [40]. The EMD implementation process is as follows:

1. Detect and extract the local maximum and local minimum in the signal x(t) and set
the initial index i = 1.

2. The upper envelope u(t) and lower envelope l(t) of the signal are obtained by cubic
spline interpolation of the envelope between the extreme points.

3. Calculate the mean value m(t) of the upper and lower envelope.

m(t) =
u(t) + l(t)

2
(1)

4. The mean value m(t) of the upper and lower envelope is removed from the original
signal x(t) to obtain a new sequence h(t).

h(t) = x(t)− m(t) (2)

5. A judgment is made on the new sequence h(t). If h(t) satisfies the following two
conditions: the number of extreme points and the number of points crossing the zero
point are equal or differ by no more than one, and the average value of the upper
envelope formed by the local extreme points and the lower envelope formed by the
local extreme points is zero, then h(t) is considered to be an IMF, IMFi(t) = h(t). If
h(t) does not satisfy the above conditions, h(t) is considered the original signal for the
next round of iterations until the conditions are satisfied.

6. The above steps are repeated until no more new IMFs can be decomposed, and the
remaining signal is regarded as the residual component Res(t).
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7. Finally, the original signal is decomposed into multiple IMFs and a residual component.

x(t) =
i

∑
n=1

IMFi(t) + Res(t) (3)

2.3. Minimal-Redundancy-Maximal-Relevance

The mRMR (minimal-redundancy-maximal-relevance) is a feature selection method
used to select the most representative subset of features from a given feature set that is
highly correlated with the target variable and has less redundancy [36]. The mRMR algo-
rithm evaluated the importance of each feature by measuring its relevance and redundancy.
The goal of the mRMR algorithm was to reduce redundancy in the subset of features while
maintaining high correlation.

2.3.1. Maximal Relevance

According to mRMR, maximal relevance is achieved by finding a subset of features
that satisfies Equation (4), maximizing the average of the mutual information between the
features in the subset of features and the target variable.

maxD =
1
|K| ∑

xi∈K
I(xi; y) (4)

where K is the subset of features, xi is the feature, and y is the target variable. I is the mutual
information between the feature xi and the target variable y, and D is the average of the
mutual information between the features and the target variable in the subset of features.

Mutual information is a concept used to measure the correlation between two random
variables [36] to capture and assess the interdependence between these variables by eval-
uating the amount of information one variable provides about another variable [41]. Specifi-
cally, for two discrete random variables x and y, their mutual information is
defined as:

I(x; y) =
x

p(x, y)log
p(x, y)

p(x)p(y)
dxdy (5)

where p(x, y) denotes the joint probability distribution of x and y, and p(x) and p(y) denote
the marginal probability distribution of x and y, respectively. A larger value of mutual
information indicates a stronger correlation between the two variables. A value of 0
indicates that the two variables are independent.

2.3.2. Minimal Redundancy

When selecting a subset of features based on the maximal relevance criterion, a
significant amount of redundant information may be generated within the chosen features.
This redundancy can adversely affect the computational effort required by the model and
potentially decrease the prediction accuracy [36]. Consequently, eliminating the redundant
information to optimize the selected subset of features becomes necessary. According to the
mRMR, minimal redundancy is achieved by minimizing the mutual information between
features in the subset as follows:

minR =
1

|K|2 ∑
xi ,xj∈K

I
(

xi; xj
)

(6)

where K is the subset of features, xi and xj are the features in the subset, and I is the mutual
information between the features. Redundant information is removed by minimizing
mutual information between features.
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Ultimately, considering both the relevance between the features and the target variable,
and the redundancy between the features, the goal of the mRMR is to satisfy Equation (7).

maxΦ = D − R (7)

Φ denotes the difference between the relevance and the redundancy. By maximizing
the difference between relevance and redundancy, the mRMR can reduce redundancy in the
subset of features while maintaining high relevance. The mRMR finds a subset of features
through an incremental search. Suppose that the n − 1 features were selected from the
original feature set X, constituting the subset of features Kn−1, then the selection of the nth
feature xn needs to satisfy Equation (8).

max
xn ∈ X − Kn−1

{
I(xn; y)− 1

n − 1 ∑
xi∈Kn−1

I(xn; xi)

}
(8)

According to Equation (8), the mRMR successively selects features from the remaining
set of features X − K and adds them to the subset of features K. Finally, the subset of
features with the largest mRMR value is selected as the model input.

2.4. Geographically Weighted Neural Network

The PM2.5 concentration sequence is nonstationary and a nonlinear relationship exists
between PM2.5 and the dependent variables. However, the GWR model is a linear model
that does not address the nonlinear relationship inherent in the data. Furthermore, the GWR
model relies solely on the spatial distance and the spatial weight matrix generated by the
kernel function to calculate the model, which is insufficient for capturing and explaining the
intricate relationship between the dependent variable and the independent variables [37].
In addition, the selection of an appropriate kernel function posed a challenge. Therefore,
when it comes to predicting PM2.5 concentration, relying solely on the GWR model was
unreliable. ANN possessed a more robust capability for nonlinear modeling compared to
traditional linear models. By incorporating a hierarchical structure and activation functions,
ANN effectively captured and represented intricate nonlinear relationships among input
features [42]. Furthermore, ANN learned from extensive amounts of data and dynamically
adjusted model parameters to suit various problems. To exploit the benefits of both
ANN and GWR, we proposed the GWNN model for predicting PM2.5 concentration. The
GWNN model integrated the geographically weighted conception into ANN to enhance the
accuracy of PM2.5 concentration prediction. By combining the robust nonlinear modeling
capabilities of ANN with the spatial correlation capturing abilities of GWR, GWNN aimed
to improve the accuracy and reliability of PM2.5 concentration prediction. The structure of
GWNN is shown in Figure 2.
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GWNN consisted of two ANNs with different roles. The ANN1 is a coefficient
estimation neural network used to learn the coefficients β in GWR. Any reasonably defined
distance metric can be used for GWR model solving [43]. Simple spatial distances could not
express the complex spatial relationships between stations. Consequently, we designated
the PM2.5 concentration data from neighboring stations surrounding the target station
within the previous 24 h of the prediction time as the ANN1 input. This was used to capture
the spatial relationship of PM2.5 concentration among different stations. The ANN1 output
was the regression coefficient β. The product of the regression coefficient β (learned by
ANN1) and the dependent variable x was employed as input to the second neural network,
ANN2. The independent variable x contained the constant 1 and the features selected by
the mRMR. Through the nonlinear transformation, ANN2 provided the predicted output
value, y. Both ANN1 and ANN2 consisted of an input layer, multiple hidden layers, and an
output layer.

2.5. Proposed Model

Based on data decomposition, mRMR, and GWNN, this study proposed a hybrid
model EMD-mRMR-GWNN for PM2.5 concentration prediction, as shown in Figure 3.
The EMD reduced the non-stationarity of the original PM2.5 sequence by decomposing it
into a set of subsequences. Additionally, the one-sample t-test was introduced to classify
and reconstruct the subsequences into high-frequency component and low-frequency
components. The mRMR was used to select features that were highly correlated with the
target variable and had less redundancy. This approach aimed to reduce model complexity
while improving prediction accuracy. GWNN was used for predicting high-frequency
and low-frequency components. GWNN integrated the geographically weighted idea into
ANN, leveraging the nonlinear modeling capabilities of ANN and the spatial correlation
capturing ability of GWR to improve prediction accuracy. The model was implemented
as follows:

1. Firstly, the original PM2.5 sequence was decomposed into multiple IMFs and a resid-
ual component using EMD.

2. To reduce the complexity, the running time, and the cumulative error of the model,
the IMFs were classified and reconstructed into high-frequency component and low-
frequency components using the one-sample t-test.

3. SMA was employed to predict the residual component with a strong trend and
autocorrelation, which avoids overfitting while ensuring prediction accuracy.

4. GWNN was employed to predict the high-frequency and low-frequency components.
The input of ANN1 in GWNN was the PM2.5 concentration data in the past 24 h at
the stations surrounding the target station. The product of the regression coefficient β
learned by ANN1 and the dependent variable x, was the input of ANN2 in GWNN.
The features selected by the mRMR and the constant 1 constitute the independent
variable x.

5. Finally, the predicted value of each component was input into an ANN to predict the
PM2.5 concentration.
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2.6. Prediction Performance Evaluation Metrics

To evaluate the model prediction results objectively and intuitively and compare the
prediction performance of different models, this study utilizes three classical metrics: root
mean square error (RMSE), mean absolute error (MAE) and coefficient of determination
(R2), as the prediction performance evaluation metrics.

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)
2 (9)

MAE =
1
N

N

∑
i=1

|yi − ŷi| (10)

R2 = 1 − ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − y)

(11)

where N is the number of data, yi denotes the true value, ŷi denotes the predicted value,
and y denotes the average of the true values. Smaller values of RMSE and MAE indicate
a more accurate model, as they reflect a smaller difference between the predicted values
and the true values. The value of R2 ranges from 0 to 1. A higher value of R2 indicates
that the independent variables are more capable of explaining the dependent variable,
demonstrating the better performance of the model.

3. Results and Discussion
3.1. Decomposition and Reconstruction of PM2.5 Sequence
3.1.1. Decomposition with EMD

Due to the highly nonlinear and nonstationary nature of the PM2.5 sequence, im-
proving the accuracy of direct prediction of the original PM2.5 concentration becomes
challenging. Therefore, we have employed EMD to decompose the original PM2.5 se-
quence into a set of IMFs and a residual component. Taking the Beijing 1005A, Wuhan
1328A, and Kunming 1454A stations as examples, the results of decomposing the original
PM2.5 sequence using EMD are shown in Figures S3–S5. The PM2.5 sequences at the
three stations were decomposed into multiple IMFs at different frequencies and a residual
component. The PM2.5 sequence at the Beijing 1005A Station was decomposed into 15
IMFs, while the PM2.5 sequence at the Wuhan 1328A and Kunming 1454A stations were
decomposed into 13 IMFs each. The decomposition results illustrated the strong volatility
of the PM2.5 concentration in Beijing.

3.1.2. Reconstruction of IMFs with the One-Sample t-Test

Directly predicting the IMFs decomposed from the PM2.5 sequence increased the
complexity of the model significantly. To address this issue and reduce computational
time, we employed the one-sample t-test to reconstruct these IMFs. According to the EMD
algorithm, the IMFs must satisfy the local symmetry of the upper and lower envelope
relative to the time axis. In the initial stages of the EMD process, the first few IMFs generated
tend to be high frequencies. The upper and lower envelopes of these IMFs were obtained
by connecting numerous peaks in the signal. As a result, these IMFs were essentially
symmetric, and the mean value of the data approached zero. However, the latter IMFs
were produced by EMD with low frequency. The upper and lower envelopes were derived
by interpolating a limited number of peaks, which resulted in significant deviations from
the original signal’s trend. This led to an asymmetric signal; thus, maintaining a mean
value of zero for the data became challenging. Consequently, we used the one-sample t-test
to determine whether the IMFs were significantly different from zero, thus dividing the
IMFs into high-frequency and low-frequency components.

The results of the one-sample t-test for each IMF of PM2.5 at the Beijing 1005A, Wuhan
1328A, and Kunming 1454A stations are shown in Table S2. We set the significance level at
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0.05. When the p-value was less than 0.05, the null hypothesis was rejected, and the mean
of the IMF was considered significantly different from 0, and the IMF was categorized as a
low-frequency component. When the p-value was greater than 0.05, the null hypothesis
could not be rejected, and the mean of the IMF was considered not significantly different
from 0 and the IMF was categorized as a high-frequency component. According to the
results of the one-sample t-test, the classification of each IMF of PM2.5 at Beijing 1005A,
Wuhan 1328A, and Kunming 1454A stations is shown in Table S3. The IMFs classified as
high-frequency components were combined and reconstructed into a new high-frequency
component. The IMFs classified as low-frequency components were combined and recon-
structed into a new low-frequency component. The reconstruction results are shown in
Figure 4. After reconstruction, the original PM2.5 sequence was finally decomposed into
three components: a high-frequency component, a low-frequency component, and a resid-
ual component. The high-frequency component was characterized by pronounced volatility,
exhibiting substantial fluctuations. In contrast, the volatility of the low-frequency compo-
nent was weak and demonstrated periodic patterns. The residual components exhibited a
distinct trend.

3.2. Feature Selection with mRMR

After decomposing and reconstructing the original PM2.5 sequence into high-frequency,
low-frequency, and residual components, the subsequent work was to predict each of these
three components separately. The residual component, which exhibited a distinct trend,
was predicted using SMA. The high-frequency and low-frequency components were pre-
dicted using the proposed GWNN model. The mRMR algorithm was employed to perform
feature selection for the input of ANN2 in the GWNN model. The original features were
the PM2.5, PM10, SO2, NO2, O3, and CO concentration data and the high-frequency and
low-frequency components of the target station within the previous 24 h at the prediction
time. The mRMR was utilized to select the optimal features from the original features.
The original features are shown in Table 1. The features selected by the mRMR at Beijing
1005A, Wuhan 1328A, and Kunming 1454A stations, are listed in Table S4, Table S5, and
Table S6, respectively.

3.3. Prediction Results of EMD-mRMR-GWNN

The high-frequency, low-frequency, and residual components, the previous 24 h of
PM2.5 concentration data from neighboring stations surrounding the target station, and the
features selected by mRMR, were input to the EMD-mRMR-GWNN model to predict the
PM2.5 concentration of the target station at the prediction time. The PM2.5 concentration
data from neighboring stations surrounding the target station within the previous 24 h
was the input to ANN1 in the GWNN model. The product of the independent variables
and the output of ANN1 was the input to ANN2 in the GWNN model. The independent
variables consisted of the constant value 1 and features selected by mRMR. The EMD-
mRMR-GWNN model parameters were set as follows: the number of ANN1 hidden layers
was 2, the number of ANN2 hidden layers was 5, the training batch size was 128, the
learning rate was 0.001, and the maximum number of iterations was 100. Every air quality
monitoring station had 42,803 data points. These data points were divided into training,
validation, and test sets according to the ratio of 6:2:2. To prevent overfitting, an early
stopping strategy was implemented during the training of the EMD-mRMR-GWNN model.
This strategy involved monitoring the validation set loss during training. If the validation
set loss increased continuously for three consecutive times, the training process was stopped.
The prediction results of EMD-mRMR-GWNN in forecasting PM2.5 concentration for the
next 1 h, as illustrated at the Beijing 1005A, Wuhan 1328A, and Kunming 1454A stations,
are shown in Figure 5.
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Table 1. Original features.

Feature Description

PM2.5t−n PM2.5 concentration at the time t − n (previous nth hour to time t)
PM10t−n PM10 concentration at the time t − n
SO2t−n SO2 concentration at the time t − n
NO2t−n NO2 concentration at the time t − n
O3t−n O3 concentration at the time t − n
COt−n CO concentration at the time t − n

Hight−n High-frequency component value at the time t − n
Lowt−n Low-frequency component value at the time t − n
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1 h: (a) Prediction results of EMD-mRMR-GWNN at Beijing 1005A Station; (b) Prediction results
of EMD-mRMR-GWNN at Wuhan 1328A Station; (c) Prediction results of EMD-mRMR-GWNN at
Kunming 1454A Station.

As shown in Figure 5, the prediction performance of EMD-mRMR-GWNN was ex-
cellent at the Beijing 1005A, Wuhan 1328A, and Kunming 1454A stations. Based on the
consistent predicted and actual values of PM2.5 across all three stations, the EMD-mRMR-
GWNN model provided high-precision predictions for PM2.5 concentration. Table 2
demonstrates the prediction performance evaluation metrics of the EMD-mRMR-GWNN
model at these three stations in forecasting PM2.5 concentration for the next 1 h. The
RMSE and MAE at the Beijing 1005A Station were significantly larger than those at the
Wuhan 1328A and Kunming 1454A stations, which may be attributed to the high PM2.5
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concentration and greater volatility in Beijing than in Wuhan and Kunming. RMSE at
Kunming 1454A Station was the smallest. The proposed model performed best at Wuhan
1328A Station, with the smallest MAE and the largest R2 value. The R2 values at all three
stations were close to 1 and greater than 0.92, showing the stabilizing performance of the
proposed model when predicting PM2.5 concentration at different levels. In particular, the
R2 at Wuhan 1454A Station was greater than 0.95. Table S7 demonstrates the prediction
performance evaluation metrics of the EMD-mRMR-GWNN model at these three stations
in forecasting PM2.5 concentration for the next few hours. The prediction accuracy of the
proposed model decreased with the increase in prediction hours. Taking the results of the
Beijing1005A Station as an example, R2 value dropped from 0.9435 in forecasting PM2.5
concentration for the next 1 h to 0.8941 in forecasting PM2.5 concentration for the next 12 h.

Table 2. Prediction performance evaluation metrics in forecasting PM2.5 concentration for the
next 1 h.

Station
Prediction Performance Evaluation Metric

RMSE MAE R2

Beijing 1005A Station 8.9714 5.4614 0.9435
Wuhan 1328A Station 5.7730 3.2199 0.9514

Kunming 1454A Station 5.3323 3.6039 0.9286

3.4. Prediction Performance Comparison of Different Models

To validate the superiority of the proposed EMD-mRMR-GWNN model in predicting
PM2.5 concentration, four benchmark models were employed for comparison: LSTM, GRU,
GWNN, and mRMR-GWNN. The prediction results of comparative models at the Beijing
1005A, Wuhan 1328A, and Kunming 1454A stations in forecasting PM2.5 concentration
for the next 1 h are shown in Figure 6. As two variants of the recurrent neural network,
LSTM and GRU have high prediction accuracy. GRU achieves comparable predictive
performance to the LSTM with fewer parameters. Therefore, it can be considered that GRU
is superior to LSTM in this experiment. The other three models showed higher prediction
accuracy than LSTM and GRU. Our method proved to be highly effective in enhancing the
accuracy of PM2.5 concentration prediction, as evidenced by the proximity between the
predicted values of the GWNN, mRMR-GWNN, and EMD-mRMR-GWNN models and
the true values. Compared to the benchmark models, the proposed model exhibited the
closest proximity between the predicted values and the true values, thereby demonstrating
the highest level of prediction accuracy. This strongly indicated that the proposed model
was superior to the other models under consideration. The prediction accuracy of the
models was ranked from low to high as follows: LSTM, GRU, GWNN, mRMR-GWNN,
and EMD-mRMR-GWNN. The mRMR effectively reduced the complexity of the model by
selecting a smaller set of input features, which not only decreased redundancy between
features but also enhanced prediction accuracy. By employing the EMD, the original
PM2.5 concentration sequence was decomposed into components characterized by smaller
volatility. This decomposition process effectively reduced the difficulty and improved the
accuracy of prediction. The application of EMD facilitated a more refined analysis of the
data, leading to improved forecasting outcomes.

Table 3 shows prediction performance evaluation metrics of the comparative models
at the Beijing 1005A, Wuhan 1328A, and Kunming 1454A stations in forecasting PM2.5
concentration for the next 1 h. The table indicated that, considering RMSE, MAE, and
R2, the proposed model is optimal with the smallest RMSE and MAE, and the largest R2.
This indicated that the proposed model had the highest prediction accuracy. At the Beijing
1005A Station, the RMSE, MAE, and R2 of the proposed model were 8.9714, 5.4614, and
0.9435, respectively. At the Wuhan 1328A Station, the RMSE, MAE, and R2 of the proposed
model are 5.7730, 3.2199, and 0.9514, respectively. At the Kunming 1454A Station, the
RMSE, MAE, and R2 of the proposed model are 5.3323, 3.6039, and 0.9286, respectively.
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The predicted values of the proposed model were the closest to the true values at all three
stations. Tables S8–S10 show prediction performance evaluation metrics of the comparative
models at the Beijing 1005A, Wuhan 1328A, and Kunming 1454A stations in forecasting
PM2.5 concentration for the next few hours. The prediction accuracy of all the models
declined with the increase in prediction hours. It should be noted that the proposed model
still performed best in all the experiments, demonstrating its stability and superiority.
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of comparative models at Wuhan 1328A Station; (c) Prediction results of comparative models at
Kunming 1454A Station.

To quantify prediction accuracy improvement in the proposed model, we calculated
the percentage of improvement in prediction evaluation metrics. We abbreviated LSTM,
GRU, GWNN, mRMR-GWNN, and EMD-mRMR-GWNN as M1, M2, M3, M4, and M5,
respectively. Table 4 shows the percentage of improvement in the prediction evaluation
metrics of different models at the Beijing 1005A, Wuhan 1328A, and Kunming 1454A
stations in forecasting PM2.5 concentration for the next 1 h. Considering RMSE, MAE, and
R2 comprehensively, models M1 and M2 were comparable and performed the worst and
model M5 was optimal. Compared to M1 and M2 at these three stations, the M5 RMSE
decreased by a maximum of 29.18%, MAE decreased by a maximum of 19.85%, and R2

increased by a maximum of 8.28%. Compared to M1 and M2, the M3 RMSE decreased
by a maximum of 7.05%, MAE decreased by a maximum of 10.56%, and R2 increased
by a maximum of 2.19%, indicating the superior performance of GWNN in predicting
PM2.5 concentration. The prediction accuracy was significantly improved by GWNN due
to its utilization of two key capabilities: the powerful nonlinear modeling capability of
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ANN and the spatial correlation capturing capability of GWR. Compared to M3, the M4
RMSE decreased by a maximum of 3.38%, MAE decreased by a maximum of 8.52%, and R2

increased by a maximum of 0.94%, demonstrating the effectiveness of mRMR in improving
model prediction accuracy. The mRMR integrated the relevance between features and the
target variable and the redundancy between features to improve the predictive ability of
the model while reducing the model complexity. In addition, compared to M4, the M5
RMSE decreased by a maximum of 21.33%, MAE decreased by a maximum of 14.01% and
R2 increased by a maximum of 4.97%. The use of EMD reduced the complexity of the
original PM2.5 sequence and improved the prediction accuracy of the model.

Table 3. Prediction performance evaluation metrics of comparative models at Beijing 1005A Station,
Wuhan 1328A Station, and Kunming 1454A Station in forecasting PM2.5 concentration for the
next 1 h.

Station Comparative Models
Prediction Performance Evaluation Metric

RMSE MAE R2

Beijing 1005A Station

LSTM 10.4934 6.2824 0.9227
GRU 10.5864 6.2223 0.9213

GWNN 9.8403 6.2026 0.9320
mRMR-GWNN 9.5402 5.6744 0.9361

EMD-mRMR-GWNN 8.9714 5.4614 0.9435

Wuhan 1328A Station

LSTM 6.5348 3.9133 0.9377
GRU 6.4942 3.7342 0.9384

GWNN 6.4606 3.5002 0.9391
mRMR-GWNN 6.2692 3.3808 0.9426

EMD-mRMR-GWNN 5.7730 3.2199 0.9514

Kunming 1454A Station

LSTM 7.5294 4.4959 0.8576
GRU 7.0243 4.4414 0.8761

GWNN 7.0149 4.3063 0.8764
mRMR-GWNN 6.7782 4.1910 0.8846

EMD-mRMR-GWNN 5.3323 3.6039 0.9286

Table 4. Improvement percentage of prediction performance evaluation metrics of different models
in forecasting PM2.5 concentration for the next 1 h.

Station Model
Improvement Percentage of Prediction Performance Evaluation Metric

RMSE MAE R2

Beijing 1005A Station

M3 vs. M1 6.22% 1.27% 1.00%
M3 vs. M2 7.05% 0.32% 1.16%
M4 vs. M3 3.05% 8.52% 0.44%
M5 vs. M4 5.96% 3.75% 0.79%
M5 vs. M1 14.50% 13.07% 2.25%
M5 vs. M2 15.26% 12.23% 2.41%

Wuhan 1328A Station

M3 vs. M1 1.14% 10.56% 0.15%
M3 vs. M2 0.52% 6.27% 0.07%
M4 vs. M3 2.96% 3.41% 0.38%
M5 vs. M4 7.91% 4.76% 0.93%
M5 vs. M1 11.66% 17.72% 1.46%
M5 vs. M2 11.11% 13.77% 1.39%

Kunming 1454A Station

M3 vs. M1 6.83% 4.22% 2.19%
M3 vs. M2 0.13% 3.04% 0.03%
M4 vs. M3 3.38% 2.68% 0.94%
M5 vs. M4 21.33% 14.01% 4.97%
M5 vs. M1 29.18% 19.85% 8.28%
M5 vs. M2 24.09% 18.86% 5.99%

M1:LSTM, M2:GRU, M3:GWNN, M4:mRMR-GWNN, M5: mRMR-GWNN-EMD.
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4. Conclusions

This study introduces a novel hybrid model combining three distinct techniques called
EMD-mRMR-GWNN, designed specifically for predicting hourly PM2.5 concentration.
Extensive experiments conducted in three different study areas, Beijing, Wuhan, and
Kunming, validate the stability and superior performance of this hybrid model for accurate
prediction. The results obtained present the efficacy and reliability of the EMD-mRMR-
GWNN model for dealing with PM2.5 concentration prediction challenges. The primary
conclusions are as follows:

1. The analysis of the PM2.5 concentration of Beijing, Wuhan, and Kunming reveals that
Beijing had the highest and most volatile PM2.5 concentration, while Kunming had the
lowest and least volatile PM2.5 concentration. The three cities have shown a declining
trend in PM2.5 concentration, indicating air quality improvement. Beijing and Wuhan
showed similar seasonal patterns, with the highest PM2.5 concentrations in winter
and the lowest in summer. However, Kunming had its peak PM2.5 concentration
during spring, showing a different seasonal pattern from Beijing and Wuhan.

2. We propose a model called GWNN that combines ANN and GWR. Experiments to
forecast PM2.5 concentration for the next 1 h at the Beijing 1005A, Wuhan 1328A, and
Kunming 1454A stations show that GWNN RMSE decreases by a maximum of 7.05%,
MAE decreases by a maximum of 10.56%, and R2 increases by a maximum of 2.19%,
compared to LSTM and GRU.

3. For feature selection, the mRMR is introduced, which considers the relevance between
features and the target variable as well as the redundancy between features. Compared
to GWNN, at the Beijing 1005A, Wuhan 1328A, and Kunming 1454A stations, mRMR-
GWNN RMSE decreases by a maximum of 3.38%, MAE decreases by a maximum of
8.52%, and R2 increases by a maximum of 0.94%. The mRMR-GWNN model achieves
higher prediction accuracy with fewer input features.

4. The complexity of the original PM2.5 sequence is reduced by decomposing the original
PM2.5 sequence into a set of IMFs and a residual component through EMD. Mean-
while, the one-sample t-test is introduced to reconstruct the IMFs into high-frequency
and low-frequency components.

5. The high-frequency and low-frequency components are predicted using mRMR-
GWNN. The residual component is predicted using SMA. The predicted value of each
component is input to an ANN for predicting PM2.5 concentration. Experiments at
the Beijing 1005A, Wuhan 1328A, and Kunming 1454A stations, show that the EMD-
mRMR-GWNN model outperforms baseline models. Compared to mRMR-GWNN,
the RMSE of the EMD-mRMR-GWNN model decreases by a maximum of 21.33%,
MAE decreases by a maximum of 14.01%, and R2 increases by a maximum of 4.97%.
Compared to LSTM and GRU, the RMSE of the EMD-mRMR-GWNN model decreases
by a maximum of 29.18%, MAE decreases by a maximum of 19.85%, and R2 increases
by a maximum of 8.28%.

6. Experiments to forecast PM25 concentration for the next 4, 8, and 12 h verified the
stability and superiority of the EMD-mRMR-GWNN model, compared with baseline
models.

This study presents an effective tool for the short-term prediction of PM2.5 concen-
tration. At the theoretical level, this study incorporates data decomposition and GWNN
into the task of predicting PM2.5 concentration. The proposed model demonstrates promis-
ing outcomes and offers a novel perspective on PM2.5 concentration prediction. At the
practical application level, the enhanced accuracy in predicting PM2.5 concentration can
greatly assist in assessing the exposure to air pollutants for people [44]. Additionally,
it can support the formation of environmental policies related to traffic management to
mitigate air pollution resulting from vehicles, as vehicles contribute to air pollution to
a significant extent [45]. However, the model proposed in this study solely focuses on
short-term PM2.5 concentration prediction and does not consider long-term scenarios.
Furthermore, meteorological factors are not incorporated within the proposed model in
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this study. Meteorological factors, including wind speed, wind direction, temperature, and
humidity have a discernible impact on PM2.5 concentration. Consequently, subsequent
studies should consider the influence of meteorological factors on air quality to improve
the prediction accuracy and to achieve the long-term prediction of PM2.5 concentration.
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sequence of Beijing 1005A Station; Figure S4: EMD decomposition of the PM2.5 sequence of Wuhan
1328A Station; Figure S5: EMD decomposition of the PM2.5 sequence of Kunming 1454A Station;
Table S1: Statistical analysis of PM2.5 dataset; Table S2: Results of the one sample t-test; Table
S3: Classification of IMFs; Table S4: Features selected by mRMR at Beijing 1005A station; Table
S5: Features selected by mRMR at Wuhan 1328A station; Table S6: Features selected by mRMR
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