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Abstract: Exploring the correlation of the built environment with metro ridership is vital for fostering
sustainable urban growth. Although the research conducted in the past has explored how ridership
is nonlinearly influenced by the built environment, less research has focused on the spatiotemporal
ramifications of these nonlinear effects. In this study, density, diversity, distance, destination, and
design parameters are utilized to depict the “5D” traits of the built environment, while Shapley
Additive Explanations with eXtreme Gradient Boosting (XGBoost-SHAP) are adopted to uncover the
spatial and temporal features concerning the nonlinear relationship of the built environment with
ridership for metro stations located in Xi’an. We conducted a K-means clustering analysis to detect
different site clusters by utilizing local SHAP coefficients. The results show that (1) built environment
variables significantly influence metro ridership in a nonlinear manner at different periods and
thresholds, with the POI facility density being the most critical variable and the other variables
demonstrating time-driven effects; (2) the variables of population density and parking lot density
exhibit spatial impact heterogeneity, while the number of parks and squares do not present a clear
pattern; and (3) based on the clustering results, the metro stations are divided into four categories,
and differentiated guidance strategies and planning objectives are proposed. Moreover, the current
work offers a more developed insight into the spatiotemporal influence of built environments on
metro travel in Xi’an, China, using nonlinear modeling, which has vital implications for coordinated
urban–metro development.

Keywords: metro station ridership; built environment; XGBoost-SHAP; K-means; spatiotemporal
heterogeneity

1. Introduction

At present, numerous cities worldwide are grappling with the so-called “big city
diseases” that stem from the rapid urbanization process, including traffic jams and trans-
portation difficulties, as well as environmental contamination. Consequently, urban design
interventions aimed at lowering vehicle operation and associated city issues have been a
focal point of academic research [1,2]. To promote green transportation in large cities, the
prioritized development of public transport, like urban metros, along with advocacy for
preferable urban development, have emerged as the most appropriate choices. Moreover,
urban metro buildings located in China have ushered in a fast growth era. Pedestrian
catchment areas (PCAs) in metro stations are popular gathering places for urban residential,
occupational, and commercial establishments, whose built environmental traits, including
land utilization, block design, and establishment arrangement, are influential for stations’
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ridership distribution [3–5]. Therefore, explaining the correlation of ridership with the
urban built environment helps us to improve the level of urban space–metro station coordi-
nation, helping us to achieve a sustainable developmental pattern for urban transportation.

To date, numerous studies in the field have employed the direct ridership model
(DRM) [6–10], which presumes a linear relationship between these variables. However,
the practical application and verification of this model, particularly in the context of metro
stations, present significant challenges to the research. However, empirical evidence on
the key variables and optimal thresholds is required to address the question of what
changes in the built environment can facilitate or inhibit ridership outcomes. Exploration
of the nonlinear correlation of the built environment with travel behavior is not a novel
idea [11–13]. Recent studies have successfully demonstrated this nonlinear relationship at
a global scale and identified the relevant thresholds. Nevertheless, spatial heterogeneity
can introduce instability into this nonlinear relationship [14]. Moreover, global studies may
overlook the impacts of local built environment factors. If uniform directional guidance is
applied to station regions, this can lead to the formulation of erroneous policies by planning
and management departments.

Therefore, this study employs an empirical approach, focusing on 106 metro stations
located in Xi’an city’s main urban zone. We examine the city’s built environment’s nonlinear
dynamics and threshold impacts on metro ridership outcomes during various time frames
considering spatial heterogeneity using the XGBoost-SHAP model, a machine learning
algorithm with SHAP interpretability. The K-means clustering method is employed to
categorize the stations and provide a theoretical basis for the planning and design of urban
metro station areas. The structure of our present study is as follows: Section 2 provides a
review of the relevant literature; Section 3 details the study area, data sources, and research
methods; Section 4 discusses the study results and provides relevant planning insights;
and, finally, we summarize the key results of the current research and propose the relevant
directions for future studies.

2. Literature Review
2.1. Variable Selection

In the early days, travel data were mainly collected using travel log surveys, and
the accuracy was affected by the subjective thinking of the respondents and the cost of
collection [15]. In recent years, the increase in and wide application of transport big
data, underground swipe cards, bus swipe cards, GPS positioning data, and other fine-
grained data have provided researchers with the opportunity to expand their studies
on related topics [16,17]. In comparison to questionnaires, transport big data have the
advantages of high precision, fine granularity, and a wide coverage. The measures of
metro ridership parameters vary significantly due to varying research objectives and
data constraints. The factors commonly considered by researchers include average daily
ridership, inbound ridership, and outbound ridership numbers [6,18]. However, some
scholars have highlighted the impact of peak hours on ridership characteristics due to
necessary activities, such as commuting. Conversely, off-peak hours, which offer more
time flexibility, tend to generate more spontaneous activities [5,19,20]. The majority of the
research tends to concentrate on examining the influence of specific elements on the total
station ridership, often overlooking variations in the spatial and temporal distributions of
ridership numbers [19]. Therefore, when studying station-level ridership, it is essential to
consider both commuting and non-commuting activities.

The built environment has a significant impact on resident travel patterns, which
subsequently shape the characteristics of metro ridership [21]. In recent decades, the
research has developed from employing the original “3D” [22] to “5D” [23] measures
of the built environment, i.e., density, diversity, design, destination, and distance. On
this basis, the research focus and results regarding the relationship between the built
environment and ridership differ for scholars. For the density factor, most researchers
select population density, building density, and employment density as the characterizing
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parameters [10,24]. Generally, there are more passengers in densely populated and built-
up regions. Moreover, diversity indicators relate to different land uses [23]. In their
study, Durning and Townsend confirmed the profound influence of diversity indicators on
the ridership outcomes across various cities [25]. In contrast, Chen’s research suggested
that mixed land use was not significantly linked to ridership [7]. At the neighborhood
design level, the street-related characteristics of an area, such as its road network density,
intersection density, and bus stop density, are usually assessed. Moreover, as suggested by
the evidence from Seoul, Nanjing, and other megacities, stations with higher passenger
numbers are typically situated in regions with dense road networks and intersections [10,26].
The research conducted in Shanghai indicates that an elevation in the road network density
can result in a decrease in passenger numbers [27]. Shao et al. determined that road
network density showed a positive correlation with metro passenger numbers within a
threshold range of 15–25 km/km2 [13]. Additionally, travel destination and distance were
factors that also influenced the metro travel outcomes [12]. Additionally, the variety of
destinations and their proximity greatly appeal to metro passengers [14].

2.2. Nonlinear Relationship between the Built Environment and Metro Ridership

As a traditional linear modeling approach, the DRM is considered to be the most
efficient method for estimating site ridership and has the added advantage of ease of
computation [28]. Recent studies have applied an innovative machine learning method,
which typically does not assume that the data satisfy a specific distribution, offers greater
flexibility, and is considered more capable of addressing nonlinear relationships in the data.
Machine learning presents good performance when addressing the issues of ridership,
the built environment, and land use [12,13]. The gradient boosting decision tree (GBDT)
algorithm has been introduced and applied to ridership studies, demonstrating a superior
model fitting quality when compared to linear models [29]. Compared to the GBDT
algorithm, the method has a higher execution speed and modeling performance, improving
efficiency, flexibility, and portability results. However, these modeling results may be biased
due to the neglect of the spatial instability and spatial heterogeneity of the parameters.
Meanwhile, the consideration of spatial heterogeneity leads to the formulation of a key
question: how do the built environment’s characteristics affect ridership outcomes in
different ways in various metro station areas? The answer can help us understand the
relative importance and spatial characteristics of built environments across various station
areas. To verify the issue of spatial non-smoothness, models based on linear assumptions,
such as the geographically weighted regression (GWR) [8,30] and multiscale geographically
weighted regression (MGWR) models [31], have been used to prove spatial influence based
on different spatial coefficients. However, in the framework of nonlinear research, few
studies have examined the potential spatial heterogeneity and lack of insights into the
spatiality of built environments in relation to ridership heterogeneity.

2.3. Gaps in the Current Research

Although machine learning models have been widely used to perform metro station
ridership analyses, shortcomings still exist in the research. Firstly, many studies struggle
with the “black-box” problem associated with machine learning, which makes interpret-
ing the model results challenging. The use of the Shapley additive explanation (SHAP)
interpretation method can effectively reconcile the trade-off between a model’s complexity
and interpretability [32]. Secondly, studies based on nonlinear relationships have provided
valuable insights into the renewal of environments around metro stations and the enhance-
ment of station ridership numbers, but these decisions and planning programs only play an
important role in stations with low ridership numbers. High-traffic stations, on the other
hand, can experience overcrowding and even come to a halt due to a highly concentrated
ridership population. However, this does not diminish the importance of the relevant
policies. Thus, exploring how the spatial heterogeneity of the built environment affects
ridership results, classifying and guiding station policies, and formulating differentiated
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policies are crucial aspects of fostering a positive interaction between metro stations and
the urban built environment. Although previous linear models have addressed the relevant
issues, machine learning models that consider spatial heterogeneity can provide a more
accurate analysis of this relationship. Therefore, in our study, we adopted the K-means
clustering method, combined with the local SHAP values mapped onto space, to categorize
Xi’an’s metro stations and guide the direction of differentiated development.

3. Data and Methodology
3.1. Definition of the Study and Metro Station Areas

In recent years, significant advancements in the construction of metros in Xi’an, a
bustling northwestern Chinese metropolis and the capital of Shaanxi province, have been
observed. By April 2021, Xi’an Metro operated eight lines (1–6, 9, and 14), including
a total of 164 stations and covering an overall operating distance of 252.6 km. As a
renowned tourist destination, public transportation in Xi’an has become the preferred
mode of travel within the city, with the metro accounting for more than 50% of the city’s
public transportation. In addition, the urban outskirts are generally underdeveloped. The
urban downtown is the primary agglomeration zone of residents’ travel activities. In
comparison to first-tier cities, such as Beijing, Shanghai, and Guangzhou, Xi’an Metro is a
relatively late development. Xi’an Metro is thus a useful example of metro construction for
other same-scale cities. As a result, we selected metro stations from six downtown districts
in Xi’an, namely Baqiao, Beilin, Lianhu, Xincheng, Weiyang, and Yanta, for our research
herein (Figure 1). After eliminating non-operating metro stations, we retained a total of
106 stations.
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Figure 1. Study area.

Studies suggest that owing to mental (emotional) and physical (endurance) limitations,
passengers typically take around 10 min to reach metro stations that are at a distance of
800–1000 m [33]. In practical scenarios, residents from various cities have to travel varying
distances to access metros due to disparities in urban development projects, individual
walking speeds, and physical strength, as well as other factors. In relation to previous
studies conducted on this subject [5,6,34,35], this study defined the size of the PCAs for the
metro stations as a station-centric 800 m radius.
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3.2. Data Sources and Measures

The research data were derived from a diverse range of sources. This included
distribution maps of Xi’an’s metro lines and stations, hourly ridership data (collected
via automated fare collection (AFC)) over a continuous week in April 2021, and built
environment data. Python was used to process and clean the ridership data, and finally
the average daily number we obtained for the passengers of Xi’an Metro was 1516,349.
In Figure 2, it can be observed that the distribution of metro ridership throughout the
day exhibits a clear bimodal pattern, with significant peaks present during the morning
(7:00–10:00) and evening (17:00–20:00) commute times. The land use data were derived
from high-resolution satellite photos, field investigations, and measurements, along with
the 2018 built-up area database statistics for Xi’an in ArcGIS, which were mostly adopted
for calculating a range of built environmental trait parameters, such as the land utilization
and built-up areas of the PCAs. Despite the temporal discrepancy between the 2018 land
use data and other datasets, the impact on the final research results was minimal due
to the lagging effect of metro construction on urban land use [36]. The point of interest
(POI) data for Xi’an were obtained using the AMap API interface (https://lbs.amap.com/
api/webservice, accessed on 5 November 2022), providing a measure of the number and
concentration of facilities within the PCAs. The road network data were sourced from
the Open Street Map website (http://download.geofabrik.de/asia.html, accessed on 10
November 2022), with the road network within the study area extracted as the foundational
data. Xi’an Bell Tower, widely recognized as the city’s center, is home to Xi’an Bell Tower
station, located at the heart of the Xi’an Metro network. The distance from each metro
station to Xi’an Bell Tower station, calculated using the nearest-neighbor tool in ArcGIS,
represents the distance recorded from the downtown area. Lastly, the population density
data were derived based on real-time thermodynamic records for a single work and rest
day in April 2021. As proposed by some scholars, the population density for each station
was estimated using the integration of a thermodynamic chart-based approach to extracting
the population’s activity level [37].
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In this study, a variable set was established based on the features of the built environ-
ment as explanatory variables, using which the correlations of the average daily ridership
(ADR), average peak ridership (APR), and average flat ridership (AFR) (explained vari-
ables) with the built environment were investigated. Following a review of the literature,
five types of factors influencing metro travel were identified, namely “density”, “diver-
sity”, “design”, “destination”, and “distance”, which were well-established frameworks
for successfully categorizing the built environment [7,10,11,13,20,24,38]. Table 1 presents
the settings, calculations, and interpretations of the specific indices (data obtained from the
relevant literature [39]).

Table 1. Model variable settings.

Category Name Abbr. Computational Method and Interpretation Mean Std. Deviation

Dependent variable

Average daily ridership ADR
The sum of the average daily inbound and

outbound ridership in each metro
station (persons)

30,777 22,420

Average peak ridership APR
The ratio of inbound and outbound ridership to
the time period at the morning peak (7:00–10:00)

and evening peak (17:00–20:00) (persons)
2663 1717

Average flat ridership AFR
The ratio of inbound and outbound ridership to

the time period at times other than peak
hours (persons)

1226 1038

Independent variable

Density

Building density BGD The ratio of the building base area within the
PCA of each metro station (%) 23.52 11.72

Population density POP

The ratio of the population within the PCA of
each metro station calculated based on Baidu

thermodynamic diagram data
(10,000 persons/km2)

1.15 1.62

Diversity

Land use mixture LUM

Land use = −∑k
i=1 Pkiln(Pki), where k denotes

the number of land use classes in the station i
area and Pki denotes the area proportion of class

k land within the PCA of each metro station

1.01 0.09

Residential LU (R) RLU The ratio of residential land area within the PCA
of each metro station (%) 45.33 21.96

Public LU (A) ALU
The ratio of land area for public administration

and service facilities within the PCA of each
metro station (%)

17.14 15.25

Commercial LU (B) BLU
The ratio of land area for commercial service

facilities within the PCA of each metro
station (%)

11.25 12.66

Green space and square LU (G) GLU The ratio of land area for greening and squares
within the PCA of each metro station (%) 5.02 7.04

Design

Road network density RND The ratio of total road network length within the
PCA of each metro station (km/km2) 6.90 3.79

Intersection density IND The ratio of intersection quantity within the PCA
of each metro station (pcs/km2) 5.56 1.90

Average block side length ABL Average block side length within the PCA of
each metro station (km) 0.38 0.09

Parking lot density PLD The ratio of parking lot quantity within the PCA
of each metro station (pcs/km2) 50.16 37.02

Bus stop density BSD The ratio of bus stop quantity within the PCA of
each metro station (pcs/km2) 4.44 1.92

POI facility density PFD The ratio of the quantity of various facilities
within the PCA of each metro station (pcs/km2) 1103 826
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Table 1. Cont.

Category Name Abbr. Computational Method and Interpretation Mean Std. Deviation

Destination
Number of parks and squares NPS Quantity of parks and squares within the PCA of

each metro station (pcs) 1.48 1.61

Number of commercial facilities NCF Quantity of commercial facilities within the PCA
of each metro station (pcs) 888 718

Distance Distance from downtown DID The straight-line distance between metro station
and downtown centroid point (Bell Tower) (km) 7.49 4.21

3.3. Methods
3.3.1. eXtreme Gradient Boosting (XGBoost)

XGBoost is an integrated learning algorithm that was proposed by Chen and Guestrin
in 2014 [40]. The model has good stability, and some scholars have also applied it to the
field of urban planning and transportation [29,41,42].

The fundamental concept of the XGBoost model involves selecting certain samples
and features to form a basic classifier. This is achieved by learning the residuals of the
existing model to create a new one, thereby minimizing the value of the new model’s
objective function. This process is repeated, ultimately merging multiple simple models
into a highly precise model. The parameters of the XGBoost model are described below:

ŷi =
K

∑
k=1

fk(xi), fk ∈ T (1)

where ŷi is the predicted output value of the ith metro ridership; K is the total number of
regression trees; fk is the predicted value of the kth model in the ith metro sample; xi is the
attribute vector of the ith metro sample; and T is the space of the regression trees.

In the XGBoost model, we used multiple regression trees to perform and sum up the
predictions to obtain the final prediction. In order to reduce overfitting, a regular term, i.e.,
a penalty function, was added to the following objective function to limit the complexity of
the model, with parameters such as the cost of introducing additional leaf nodes, γ, the
number of leaf nodes, T, and the regularization parameter, λ:

Obj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (2)

Ω( fk) = γT +
1
2

λ
T

∑
j=1

w2
j (3)

where Obj is the objective function; ∑n
i=1 l(yi, ŷi) is the loss function, indicating the degree

of the model’s fit; Ω( fk) is the penalty function to reduce the risk of overfitting; yi is the
true value of the ith sample; and w2

j is the weight of the jth leaf node.
During the training stage, we updated the model’s parameters using the gradient

descent method to minimize the value of the loss function. To speed up this process, we
used second-order Taylor expansions to approximate the loss function and update the
parameters more efficiently. Eventually, by iteratively updating the parameters until the
conditions were satisfied, we created an XGBoost model with excellent performance for
accurate prediction and classification tasks.

Since there are relevant parameters in Equation (2), the model is trained using summa-
tions as follows:

Obj(t) =
n

∑
i=1

l(yi, ŷ(t−1) + ft(xi)) + Ω( ft) (4)
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where ŷ(t)i is the prediction for the tth instance at the ith iteration; ft is used for reducing
the loss function. To accelerate the optimization of the first loss function in Equation (4),
the second-order Taylor expansion is depicted as:

Obj(t) =
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( ft) (5)

where gi = ∂ŷ(t − 1)(yi, ŷ(t−1)) and hi = ∂2
ŷ(t−1) l(yi − ŷ(k−1)) are the first- and second-order

gradient statistics of the loss function, respectively, and the parameters are continuously
updated using Equation (5).

In this study, the XGBoost model was implemented in Python 3.8. The optimal
parameters were obtained using a grid search cross-validation method [42]. During the
parameter formulation stage, we evaluated the values of the tree depth (3, 4, 5, 6) and
learning rate (0.1, 0.05, 0.01, 0.005) variations. The dataset was then divided into training
and test data at a ratio of 8:2, and the K-fold cross-validation method was used (the value of
K was 4 in this study) to mitigate the randomness caused by dataset partitioning, effectively
avoiding the overfitting problem of the model presented during the training process. By
detecting the number of trees in the range of 80–200 at intervals of 40, after conducting the
experiments and the abovementioned cross-validation method, the XGBoost model finally
obtained the best hyperparameters for 160 trees with a learning rate of 0.1 and a depth of 5.

3.3.2. SHAP Model

Although the XGBoost model outperforms the traditional linear model in terms of
accuracy and generalization performance, its interpretability is much worse than the linear
model due to the black-box problem. To solve this issue, this study explained the results
obtained by the XGBoost model using the SHAP method. The SHAP method is based on
the cooperative game theory, and its core idea is to calculate the marginal contribution
of feature observations when they are supplemented into the model [43,44]. The SHAP
method possesses the following features: (1) it helps us to understand the decision-making
process of the model by calculating the contribution of each feature to the prediction result
of the model; (2) it evaluates the degree of influence of the features on the prediction result
of the model to determine the important features and noisy features; (3) by interpreting
the model, the user can identify the limitations and shortcomings of the model so that
the model can be tuned and improved; and (4) the SHAP method can help us to enhance
and improve the model’s interpretability, credibility, and usability. The specific calculation
methods are as follows:

SHAPj = ∑
S⊆{V1,V2,···Vp}\{Vj}

|S|!(p − |S|−1 )!
P!

[
fx
(
S ∪

{
Vj
})

− fx(S)
]

(6)

yi = ybase +
k

∑
j=1

SHAP(Xij)
(7)

where SHAPj indicates the SHAP value of a certain sample at feature j; S refers to the
feature subset used in the model; Vp represents the feature set in the model; p denotes the
number of features; fx(S) represents the model prediction result in the feature subset; yi
represents the prediction result at sample i; ybase denotes the mean predicted value of the
other samples; SHAP(Xij)

refers to the SHAP value of sample i at feature j; and k represents
the number of features.

3.3.3. K-Means Clustering

K-means clustering is an algorithm used in unsupervised learning practices for cluster
analysis. It operates on the principle of categorizing samples into distinct groups based on
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the similarity of their attributes. It is usually based on the sum of squared errors (SSE) as a
metric for optimal clustering [45], which is formulated as follows:

SSE =
k

∑
i=1

∑
x∈Ci

|x − µi|2 (8)

µi =
1

|Ci| ∑
x∈Ci

x (9)

where k is the number of optimal clusters; Ci is the ith cluster; x is the sample data; and µ is
the clustering center of the ith cluster Ci.

4. Results and Discussion
4.1. Comparison of the Model Performance

Prior to the model application stage, the independent variables were tested for mul-
ticollinearity in order to improve the accuracy of the prediction results. As a result, the
variable number of commercial facilities (NCF) was excluded, leaving 15 variables for the
subsequent analysis. All the variables in this study demonstrated variance inflation factor
(VIF) values below 10. To highlight the benefits of using the XGBoost model, we contrasted
it with the ordinary least squares (OLS) model, using metrics such as the root mean square
error (RMSE), mean absolute error (MAE), and R2 for the performance comparisons [46].
The results are presented in Table 2. In comparison to the OLS model, the RMSE of the
XGBoost model decreased by 38.80%, 42.90%, and 58.03%; the MAE decreased by 26.80%,
28.08%, and 43.93%; and the R2 improved by 52.94%, 45.46%, and 68.09%, and these results
are in line with those obtained in related studies [47]. The results demonstrate that the
XGBoost model has a better predictive ability than the linear model and can better solve
the complex association between ridership and the built environment’s features.

Table 2. Comparison of model performance.

ADR APR AFR

RMSE MAE R2 RMSE MAE R2 RMSE MAE R2

OLS 16923.41 11160.37 0.51 1250.81 819.17 0.55 817.31 497.29 0.47
XGBoost 10357.08 8169.30 0.78 714.17 589.15 0.80 342.99 278.81 0.79

improve (%) 38.80↓ 26.80↓ 52.94↑ 42.90↓ 28.08↓ 45.46↑ 58.03↓ 43.93↓ 68.09↑

4.2. Significance of Influencing Factors and Nonlinear Relationships
4.2.1. SHAP Variable Importance and Summary Plot

The XGBoost algorithm and SHAP method were utilized to investigate the correlation
between ridership and the variables of the built environment. The importance of these
variables was ranked based on the mean SHAP value, and a plot was created to visualize
this ranking in descending order. Similarly, a summary plot of the SHAP values was
drawn, where the y-axis represented the individual variables, the x-axis represented the
SHAP values of the samples, and the colors indicated the magnitude of the variable
eigenvalues. To enhance the visualization, overlapping sample points were set to jitter
in the y-axis direction (Figure 3). For the average daily ridership results, the POI facility
density (PFD) (mean SHAP = 0.22) and population density (POP) (mean SHAP = 0.16)
emerged as the two most significant elements. Distance from downtown (DID), number
of parks and squares (NPS), road network density (RND), and bus stop density (BSD)
were the other important features of this study. The source and direction of ridership
were associated with the development and construction of station areas, suggesting that a
high-density service facility layout could enhance metro utilization. Furthermore, ridership
generation was dominated by human activity, underscoring the substantial influence of the
POP [6]. The importance of variables such as DID and RND has been confirmed in several
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studies [12,48,49]. In terms of time-varying ridership, the ranking of influential factors
slightly differs, indicating that the built environment’s variables exert time-driven effects
on ridership numbers, but the overall influence of PFD, parking lot density (PLD), NPS,
and BSD is greater. These results also reflect the important roles of private cars and buses in
the “last-mile” connection mode and prove that attractions, such as parks and squares, are
important to Xi’an’s urban travel results [14]. It is noteworthy that the overall significance
of the impact of land use mixture (LUM) and residential LU (RLU) is poor, which is a
result that differs from previous studies conducted in Nanjing, China, and Seoul, Korea,
indicating that the mix of land use and the share of residential land area were significantly
positively correlated with metro ridership numbers [26,50]. The reasons for this result may
include the following factors: first, the result is linked to the limited variation in mixed
land use within the metro station zones in Xi’an, and second, the different development
intensities of the land are also an important cause of the non-significant effect [19,51].
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4.2.2. Nonlinear Effects of Built Environment Variables on Ridership Numbers

According to the variable importance analysis, this study selected the top four sig-
nificant built environment variables from each of the three models and plotted a partial
dependency graph to illustrate the nonlinear relationships (Figure 4). The bar chart repre-
sents the frequency distribution characteristics of the variable eigenvalues. The different
colors indicate the magnitude of the value of another variable that interacts most strongly
with that variable at each metro station.

For the PFD (Figure 4a), the SHAP value gradually increases until it reaches about
1500 pcs/km2, and the effect of this variable on the average daily ridership transitions from
a negative to a positive outcome. Second, the interaction effect between the PFD and public
LU (LUA) shows that a large LUA synergistically promotes ridership when the PFD is in the
range of 1000~1500 pcs/km2 [52]. The PFD values of both peak hourly average ridership
and flat hourly average ridership activities are 1150 pcs/km2 (Figure 4e,i), and the high
occupancy of commercial LU (LUB) synergistically creates a positive effect. The reason for
this outcome could be that these station types create more jobs and commercial activities,
which provide more destination and activity options [10,13,53]. Therefore, the density of
facilities at the site should be higher than the critical value to ensure the promotion of
ridership behavior.

Figure 4b shows that the effect of the POP on the average daily ridership num-
bers is negative at a low value and becomes positive and stabilizes when it exceeds
2000 persons/km2. This is the result possibly because as the population of a region be-
comes more concentrated, more people travel by metro, but when metro ridership activity
is too high or even “overloaded”, rail travel reduces, and the ridership number does not
increase [19]. The effect of the POP on peak hour average ridership is similar (Figure 4f), but
it shows that with an increase in the population density, the effect gradually decreases and
becomes negative, which indicates that during the necessary commuting trips performed
during peak hours, people choose other modes of transportation according to how they
perceive the scenario to ensure that their journey is efficient.
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DID = 12.5 km is the critical value of the variable (Figure 4c). This result shows
that the city center attracts more people compared to other areas. The city center has
complete public service facilities and concentrated jobs. To utilize various resources, such
as commerce, tourism, employment, and education, most of the travelers living at the
periphery of the city need to migrate to the city center over a short distance. However, as
the distance between their region and the city center increases, the elevated travel time
and costs become a priority, causing station ridership numbers to stabilize [41]. When the
critical value is exceeded, a negative effect is evident.

Similarly, it can be observed that NPS ≥ 1 pcs (Figure 4d), PLD = 9 pcs/km2 (Figure 4g),
RND = 5.5 km/km2 (Figure 4h), PLD = 12 pcs/km2 (Figure 4j), NPS ≥ 2 pcs (Figure 4k),
and BGD = 11% (Figure 4l) are the critical values of the different models. The identification
of these threshold values highlights the original linear model’s analysis of the drivers, and
the change in values can provide clearer information regarding the issues of metro station
patronage and built environment optimization and management.

4.3. Spatial Variation Effects of Built Environment Variables on Metro Ridership Numbers

To more thoroughly explore the disparities between the influence of significant vari-
ables on stations situated in various regions, this study spatially mapped local SHAP
values. This allowed us to examine the spatial heterogeneity of the impact of the built
environment variables on the metro ridership numbers during distinct periods. Due to
spatial constraints, the local SHAP of the POP (population density), NPS (number of parks
and squares), and PLD (parking lot density) were mapped, as shown in Figures 5–7.
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In the ADR model, the POP shows significant spatial heterogeneity (Figure 5a). Most of
the positive coefficient areas are situated in the city center area, specifically distributed along
Line 2 and the surrounding stations. This is because the stations located in the central area
usually serve as transportation hubs, attracting a substantial number of people, logistics,
and information flows, and form the activity center of the area, while the population in
the fringe areas of the city, where the metro is less densely distributed, prefers to remain
in the region. For long-distance activities, individuals choose to travel by car [54]. In the
APR model (Figure 5b), it can be observed that the positive coefficients of the stations in
the Weiyang and Yanta districts are higher, while negative impacts are mostly evident in
the Baqiao district. This conclusion is reasonable because urban residents mostly need
to commute to districts during peak hours, while residents living in the city center more
often choose to commute short distances on foot or by bicycle [55]. At the same time, the
northeastern part of the city is inadequately connected to other regions, and the increase
in commuting time for long distances prompts residents to seek out workplaces closer to
home. These plots also show that the peak SHAP coefficients are significantly lower than
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the average daily patronage, suggesting that the effect of the population distribution on
patronage diminishes during peak hours.
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Figure 7. Localized coefficients of parking lot density (PLD) in average peak (ADR) and flat ridership
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The heterogeneous distribution of the local coefficients of the NPS in the ADR and
AFR models does not show a strong pattern in space (Figure 6). The distribution of
surrounding attractions is typically considered in the design of the Xi’an Metro lines. This
makes the attraction of scenic spots more powerful when there are multiple, large scenic
spots compared to stations with ordinary urban green spaces and small venues, and these
destinations greatly contribute to the metro ridership numbers, such as those observed
for Xiaozhai Station, Big Wild Goose Pagoda Station, and Convention and Exhibition
Center Station. A lack of parks or squares in station areas has negative effects on ridership
numbers, too. In addition, as shown in Figure 3, it can be observed that people tend to
avoid visiting tourist attractions during the morning and evening peak hours to ensure a
more comfortable experience and reduce their waiting times.

PLD, as a metro–motor vehicle feeder facility, has a significant spatial impact on metro
ridership numbers (Figure 7). The effect is similar to that of the POP, which forms a “circle”
structure, a phenomenon that can be related to the city’s transportation demand and urban
planning outcomes [25,52]. As the number of parking lots increases in the central region,
drivers can choose to park their cars in the parking lots and transfer to the metro due to
traffic congestion, thus increasing metro ridership numbers. Another possible explanation
for this activity is that parking costs are higher in the central region and people may prefer
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to travel by metro, which is cheaper to use [31]. In the outer circles, residents tend to rely
more on surface transportation modes, and the availability of parking lots can encourage
residents to use private cars to commute to work.

4.4. Metro Station Clustering and Optimization

In accordance with the differences in the spatial impact of built environment character-
istics on ridership numbers, this study categorized different site types using the K-means
clustering method based on the SHAP values. The sum of squared errors (SSE) was cal-
culated to determine the optimal number of clusters for each model, and the periods at
which the SSE slowly decreased and stabilized were considered to be the points of optimal
clustering [5]. The optimal number of clusters was four in the ADR and AFR models and
five in the APR model. The clustering outcomes of the three models varied somewhat,
and the stations were classified into types with corresponding optimization suggestions
based on the following criteria: (1) if a station was classified as the same type in two or
more clustering results, it was assigned to that category; (2) if a station fell into different
categories, it was classified by amalgamating the characteristics of ridership and the built
environment. Ultimately, the stations were divided into four distinct classes (Figure 8d).
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Cluster 1 included stations that were located on Line 2, which opened in 2011, or the
Old Town area. The PFD coefficients of the stations in this cluster are much higher than
those of the other stations (Figure 8a–c), which means that the same PFD density generates
a higher ridership value for this type of station compared to other stations. This conclusion
can lead planning authorities to focus on increasing the density of the facility, thereby
increasing the trip-sharing rate of the metro. In fact, based on the ridership characteristics,
these types of stations have extremely high ridership numbers, both during peak and
flat scenarios. Therefore, promoting the flow of this type of station negatively affects the



ISPRS Int. J. Geo-Inf. 2024, 13, 105 16 of 20

urban transportation network system. At the same time, it can be observed that the RND
coefficient of this type of site has a negative impact (Figure 8b), which may be caused by
the high-density road network structure in the old city area. This leads to travelers having
more options, the urban functional area being more concentrated, and the cost and time
of travel also being lower relative to the main street area mode, which is more conducive
to the creation of an efficient, slow-moving system in the region. Part of the reason for
this negative impact is that residents living in the old city area with a higher income also
prefer to travel to work by private car and cabs [55]. Ultimately, this leads to a high load
on both surface and underground transportation services in the vicinity of the station.
Therefore, in the current urban development planning scenario, it is possible to transfer
the layout of facilities related to such stations to the neighboring stations in an orderly
manner, and the functions of the flow of people in the stations can be reduced so as to
balance the flow of passengers at different times of the day and to reduce the wastage of
metro transport resources due to an extreme flow of passengers. In addition, improving
the overall efficiency of transport interchange is also a proven solution.

The Cluster 2 sites are distributed along various routes. These stations are located
closer to the city center relative to the Cluster 3 and 4 stations and assume the role of
easing the flow of people at the Cluster 1 stations. Increasing the PFD, POP, and PLD
increases station ridership numbers when the other conditions are consistent. The results
of these studies show that the abovementioned significant factors must be improved in
order to alleviate the problem of a single passenger flow structure, promote the continuous
improvement of urban functions in the region, increase travel destinations, and form
an urban spatial structure linked by site areas. In the process of policy developments,
site developments must be promptly assessed to avoid the formation of new high-load
development site clusters [5].

Cluster 3 includes stations in the Weiyang, Lianhu, and Yanta districts. These areas have
convenient transportation modes, and residents are characterized by their short–medium
distance and strong centripetal travel activities. The coefficients of the PFD in different
models show a negative effect (Figure 8a–c), which suggests that the station areas satisfy
people’s various living requirements; in areas with densely packed facilities, people also
have more transportation choices, which reduces the number of metro trips [56]. This is
crucial for policy formulation. Secondly, the POP, DID, and PLD had positive effects. These
results indicate that focusing on population density and the number of parking lots in
this area is beneficial for metro ridership. Within this cluster, as the DID increased, more
parking lots were added for residents, thus attracting more employment opportunities.
However, it is also important to note that Line 2 runs through the old city center of Xi’an,
and a single addition to the ridership number will result in an increased burden on the
line. This scenario coincides with the expected plan in the Xi’an 14th Five-Year Plan for
Comprehensive Transportation Development [57], where the addition of parallel alternative
routes will greatly reduce the ridership pressure on Line 2.

Cluster 4 includes most stations in the Baqiao district and other marginal stations. The
effects of different influencing factors on this cluster are negative, and the ridership numbers
at these stations remain in a low vitality state. The essential reason for this outcome is
the mismatch between the highly developed areas and low-density metro network in the
region and the mismatch between the regional space and routes has resulted in more people
choosing to work and move around locally, with cars becoming the main mode of travel. A
reasonable increase in the line density or the use of an urban metro loop could effectively
improve the connectivity of the line and accessibility of travel, reducing the travel time,
for example, by constructing lines in the more densely populated areas of Baqiao district,
strengthening the connection between Lines 3 and 9, and improving the travel efficiency
for people living in suburban areas. On this basis, the mechanism of the relevant factors in
Cluster 3 can provide reference and guidance for the next policy formulation.
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5. Conclusions

In this study, the XGBoost-SHAP model was utilized to investigate the nonlinear
impacts and spatial effects of “5D” built environment characteristics on the average daily,
peak, and flat ridership numbers in metro station areas, and K-means clustering analysis
was employed to divide the stations by combining it with local SHAP coefficients. Planning
and policy recommendations were proposed based on the clustering results. The XGBoost
model had better fitting and predictive power results compared to the linear model, which
was a clear advantage for solving such problems. The SHAP model provided realistic and
accurate estimates at the local level. The main research results are as follows.

Firstly, the built environment variable of the POI facility density has a significant non-
linear impact on metro ridership across various time frames. Different variables have time-
driven and threshold effects in different models. For example, in the average daily ridership
model, a POI facility density = 1500 pcs/km2, a population density = 2000 persons/km2,
a distance from downtown = 12.5 km, and a number of parks and squares ≥ 1 pcs are
the threshold values of the variables, and a high percentage of public LU(A) can promote
ridership numbers, together with POI facility density.

Secondly, the local SHAP coefficients show the heterogeneity of the spatial impacts:
population density has a positive impact on the city center area and a negative impact on
other areas; the number of parks and squares presents no obvious pattern in space but
reflects the important contribution of tourist attractions to the ridership numbers in Xi’an;
and the effect of parking lot density is similar to that of population density, forming a
“circle” structure. The effect of parking lot density is similar to that of population density,
forming a “circle” structure.

Finally, K-means clustering analysis was performed based on the values of local SHAP
coefficients mapped into space. According to the influence of different built environments,
the sites were divided into four classes, and differentiated guidance strategies and planning
objectives were proposed. For example, for the stations located at Cluster 1, the site
functions were shifted to the neighboring stations to reduce the impact of high ridership
activity on the metro network while considering the characteristics of ridership. Increasing
the metro ridership number was not the sole aim of this study; rather, the optimization
of the built environment was accurately proposed based on time, location, station area
planning, and other characteristics.

This study has limitations concerning several aspects that deserve further research.
On the one hand, the scope of the PCA in this study was defined as an 800 m radius, but
the influence domain of the PCA could slightly differ depending on the station, and in the
future, the actual service areas in different stations should be divided using big data in
metro traveling research to improve the accuracy of the study. On the other hand, this study
relied on spatial and temporal big data of different granularities, including multi-time
travel, POI, and station built environment data. Fusion analysis of the data produced
relative errors in the results. This type of problem has also been frequently observed in
related studies [11,13], and in future research, it can be solved by using finer-grained big
data. In addition, due to the desensitization of big data, this study ignored the social
attributes of the traveling population at each station. Thus, in the future, it is necessary to
combine social media location data or mobile phone signaling data to explore the effects
of different attributes of the population and ridership behavior [58]. Finally, given the
inconsistencies in the scale and stage of urban development in China, it remains to be seen
whether the thresholds and spatial effects obtained in this study are applicable to other
regions, and a larger sample size or multiple modeling approaches should be used to verify
the robustness of the results in different spatial units. Multiple cities were selected for side-
by-side comparisons or in-depth studies based on different machine learning algorithms.
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